
Optimal Decomposition in Linear Constraint Systems

Cees Witteveen and Michel Wilson and Tomas Klos
Algorithmics group, Department of Computer and Software Technology,

Delft University of Technology, NL-2628 CD, Delft, The Netherlands

Abstract
Decomposition is a technique to obtain complete so-
lutions by assembling independently obtained partial
solutions. In particular, constraint decomposition plays
an important role in distributed databases, distributed
scheduling and violation detection: It enables conflict-
free local decision making, while avoiding communi-
cation overloading. One of the main issues in decom-
position is the loss of flexibility due to decomposition.
Here, flexibility roughly refers to the freedom in choos-
ing suitable values for the variables in order to satisfy
the constraints. In this paper, we concentrate on lin-
ear constraint systems and efficient decomposition tech-
niques for them. Using a generalization of a flexibility
metric developed for Simple Temporal Networks, we
show how an efficient decomposition technique for lin-
ear constraint systems can be derived that minimizes the
loss of flexibility. As a by-product of this decomposition
technique, we propose an intuitively attractive flexibil-
ity metric for linear constraint systems where decompo-
sition does not incur any loss of flexibility.

Introduction
Decomposition is a technique to obtain total solutions by as-
sembling partial solutions. Typically, these partial solutions
are obtained by distributed local problem solving and does
not require communication between the individual prob-
lem solvers. A well-known example is the maintenance of
global integrity constraints in distributed databases (Gupta
and Widom 1993; Alwan, Ibrahim, and Udzir 2009). If such
global integrity constraints would have to be maintained
centrally, communication costs would be too high. Decom-
position of such global integrity constraints results in the
addition of a set of local integrity constraints to each local
database (site) in such a way that satisfaction of all the con-
straints at each site guarantees satisfaction of the global in-
tegrity constraint. Another example is peer-to-peer systems
and sensor networks, where one is focusing on the detection
of constraint violations (Agrawal et al. 2007). Here, con-
straints define a set of normal states of the total system, and
violations of such constraints indicate potential anomalies
(e.g., huge file exchanges or extreme sensor readings). In or-
der to detect such anomalies in real time, decomposition is
Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

used to establish constraint violations in a distributed way,
without the need for communication during detection.

Note that these decomposition methods are performed off-
line and are not meant to improve the efficiency of finding
solutions1 online. Instead, they provide a means to distribute
a constraint problem over a number of local problem solv-
ing processes (sites) such that each site is able to propose
its own solution. These partial solutions constitute a set of
conflict-free solutions and can be easily merged to create a
total solution of the original constraint problem.

A major problem in decomposing constraint systems is
the loss of flexibility due to decomposition (Hunsberger
2002a; Wilson et al. 2013). Here, flexibility roughly refers
to the amount of freedom one has in choosing values for
variables to satisfy the constraints. Decomposition, while
aiming at providing enough flexibility to the local prob-
lem solvers, might seriously affect this flexibility. The ef-
fect of decomposition on the flexibility of constraint systems
has been studied mainly in the context of Simple Tempo-
ral Networks (STNs)2, where these decomposition methods
are known as as temporal decoupling methods (Hunsberger
2002b; Boerkoel and Durfee 2012; Brambilla 2010).

Currently, the study of flexibility metrics and decoupling
methods is restricted to STNs. In this paper, we would like to
generalize both the flexibility metrics as well as the decom-
position methods to general linear constraint systems such
that decomposition now can be applied to a much broader
range of applications. In that sense, our work can be seen
as an example of a concrete method satisfying the require-
ments for a general decomposition framework as sketched
by Brodsky et al. (Brodsky, Kerschberg, and Varas 2004).
As an even more ambitious goal for this paper we aim at a
tight integration of decomposition and flexibility computa-
tion in one framework. This means not only that we want to
use a common (LP-)framework to specify the flexibility of
original and decomposed systems, but also that we want to
come up with a flexibility metric that allows us to compute
an arbitrary decomposition in a very efficient way without
any loss of flexibility. Using this (stronger) flexibility met-

1It has been shown that finding a solution of a constraint sys-
tem is polynomially related to finding a decomposition for it,
see (Planken, de Weerdt, and Witteveen 2010).

2STNs (Dechter 2003) constitute a rather restricted subset of
linear constraint systems.

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2381



ric, we are able to generalize a quite recent result obtained
by (Wilson et al. 2013) to linear constraint systems.

Before presenting these results, we start with some pre-
liminaries.

Preliminaries
A linear constraint system is a tuple S = (X,C), where
X = {x1, . . . , xn} is a set of variables and C is a set of m
constraints ci each of the form ai,1x1 + . . . + ai,nxn ≤ bi.
A linear constraint system is compactly represented by the
matrix inequality Ax ≤ b where A = [ai,j ] is an m × n
matrix of coefficients, x = [xi]n×1 is an n × 1 vector of
variables, and b = [bj ]m×1 is an m× 1 vector of constants.
We use the following conventions: Bold-face capital letters
refer to matrices, and boldface lower case letters to vectors.
Elements of vectors and matrices are referred to by italic
lower case letters. If A is an m × n matrix, At denotes the
n × m transpose of A. The rows of A are indicated by ai,
i = 1, 2, , . . .m, that is A = [a1, . . . ,am]t.

A solution σ of a constraint system S is an assignment
σ(x) = v of the n×1 vector x of variables to an n×1 vector
v of real numbers such that Av ≤ b. Equivalently, we will
refer to such an assignment σ as a function from X to R. In
this paper, we always assume a linear constraint system S to
be consistent (there always exist at least one solution σ), and
bounded (every solution σ assigns a bounded real value v to
a variable x). We will use S = (X,C) or S : Av ≤ b to
refer to a linear constraint system.

In this paper we often refer to Simple Temporal Networks,
abbreviated by STNs. An STN S = (X,C) (Dechter, Meiri,
and Pearl 1991; Dechter 2003) is a special case of a linear
constraint system where every constraint in C is a binary
difference constraint xi − xj ≤ cij for some constant cij ∈
R.

Generalizing the STN flexibility metric
Instead of a single solution to a constraint system S, we are
interested in the flexibility of S. Intuitively, the flexibility of
S is related to the freedom we have in choosing values vi to
assign to variables xi in solutions σ for S. To introduce such
a flexibility metric for linear systems, we first concentrate
on STNs, for which a variety of flexibility metrics have been
proposed.

Considering consistent STNs, it is well-known (Dechter
2003) that for every x ∈ X we can find its (unique) mini-
mum3 value est(x) and maximum value lst(x) that can oc-
cur in any solution of S = (X,C). Moreover, the set of
minimum values and the set of maximum values both con-
stitute a solution to S. Finally, it holds that, for every vari-
able xi ∈ X and for every value vi ∈ [est(xi), lst(xi)],
the assignment xi �→ vi can be extended to a solution of
the constraint system. So for every (single!) xi ∈ X , we are
free to choose any value between est(xi) and lst(xi) with-
out jeopardizing the satisfaction of the constraints.

3STNs are used to specify temporal scheduling problems. Using
standard STN-terminology, we use est(x) and lst(x) as familiar
notations to indicate the earliest (minimum) and latest (maximum)
time value respectively, for the variable x.

These properties justified the idea that the flexibility
flex (xi) of a variable xi can be associated with the dif-
ference lst(xi) − est(xi). Therefore, quite a lot of flexi-
bility metrics for STNs (Hunsberger 2002b; 2002a; Poli-
cella et al. 2004; 2005) essentially are based on defining
the flexibility flex (S) of the constraint system S as the sum
flex (S) =

�
xi∈X(lst(xi)− est(xi)).

We want to obtain a flexibility metric flex (S) for lin-
ear constraint systems as a conservative extension of this
flexibility metric. The problem, however, when generalizing
from STNs to linear systems, is that, in general, the set of
maximum (minimum) values for variables does not consti-
tute a solution to S.
Example 1. Consider the system S = (X,C) where X =
{x1, x2, x3} and C contains the following linear constraints:
−xi ≤ 0, for i = 1, 2, 3, x1 + x3 ≤ 50, x2 + x3 ≤ 50,
and x1 ≤ x3. The matrix equation corresponding to S is
Ax ≤ b, where

A =





−1 0 0
0 −1 0
0 0 −1
1 0 1
0 1 1
1 0 −1




, x =

�
x1

x2

x3

�
, b =





0
0
0

50
50
0





Observe that the set of individual maxima of the variables
(i.e., x1 = 25, x2 = 50, x3 = 50) does not constitute a solu-
tion to S. On the other hand, if we would maximize the sum
x1+x2+x3 of all variables given Ax ≤ b, there is a unique
maximum value for this sum (75). Likewise, minimizing this
sum given Ax ≤ b results in a minimum value (0). Intu-
itively then, we could define the flexibility of S as the differ-
ence between the maximum and the minimum value of this
sum. Hence, the resulting flexibility of this system would be
75 − 0 = 75. There is however, one caveat: obviously, we
should ensure that the value of any variable xi in maximising
the sum should be at least as large as its value in minimising
the sum of variables.

Based on this idea, we propose to define the flexibility
flex (S) of a linear system S : Ax ≤ b as follows: Consider
two vectors of variables x− = [x−

i ]n×1 and x+ = [x+
i ]n×1

and the following LP:

max
�

xi∈X

(x+
i − x−

i )

s.t. : Ax− ≤ b, (1)
Ax+ ≤ b,

x− ≤ x+

Note that a maximizer σ of the LP (1), where σ(x−) =
[v−i ]n×1 and σ(x+) = [v+i ]n×1, can also be viewed upon
as a set of non-empty4 intervals IX = {[v−i , v

+
i ] | i =

1, . . . , n} for the variables in X . In fact, IX is a set of in-
tervals with maximum total length, such that both the lower
bounds v−i of the intervals as well as the upper bounds v+i
constitute a solution to S.

4Observe that consistency an boundedness of S always guaran-
tee the existence of such a set of intervals.

2382



This flexibility metric max
�

xi∈X (x+
i − x−

i ) for linear
constraint systems constitutes a conservative extension of
the flexibility metric flex () defined for STNs:
Proposition 1. Let S : Ax ≤ b be an STN. Then for the
LP (1) associated with this constraint system, it holds that

max
�

xi∈X

(x+
i − x−

i ) =
�

xi∈X

(lst(xi)− est(xi)).

Proof. Observe that

max
�

xi∈X

(x+
i − x−

i ) ≤ max{
�

xi∈X

x+
i }−min{

�

xi∈X

x−
i }

≤
�

xi∈X

lst(xi)−
�

xi∈X

est(xi)

= flex (S).

Since S is an STN, both σ+(xi) = lst(xi) and
σ−(xi) = est(xi), i = 1, . . . , n, are solutions
of Ax ≤ b. Hence, max

�
xi∈X (x+

i − x−
i ) =�

xi∈X (lst(xi)− est(xi)) = flex (S).

Every variable xi ∈ X in an STN S enjoys the property5

that, for every value vi ∈ [est(xi), lst(xi)], the assignment
σ(xi) = vi is extendable to a complete solution σ of S.
For maximizers of linear systems using the LP (1) the same
property holds:
Proposition 2. Let vt = [(v−)t, (v+)t] be a maximizer of
the LP (1). Then for every xi ∈ X and every vi ∈ [v−i , v

+
i ],

there exists a solution σ for Ax ≤ b such that σ(xi) = vi.

Proof. Note that both v− and v+ are solutions of Ax ≤ b.
Clearly, vi ∈ [v−i , v

+
i ] implies vi = λv+i + (1 − λ)v−i

for some 0 ≤ λ ≤ 1. Since every convex combination
of solutions of an LP is a solution as well, it follows that
σ(x) = λv+ + (1− λ)v− is a solution of Ax ≤ b, extend-
ing σ(xi) = vi.

Decomposition in linear constraint systems
Often, constraint problems have to be solved in a distributive
context (see e.g. (Hunsberger 2002b; Boerkoel and Durfee
2013)) where communication between the problem solvers
is not possible. We consider the case that the set X of vari-
ables in S = (X,C) is partitioned into k disjoint subsets
Xi, each of them controlled by an independent agent. Be-
sides Xi, such an agent also is given a set of local constraints
Ci. While the task of each agent is to find a solution σi for
its local constraint system Si = (Xi, Ci), as designers of
the distributed system we have to make sure that the merge6

σ =
�k

i=1 σi of these partial solutions σi is a solution of the
original system S, whatever choices are made for these σi.
Then the flexibility-maximizing decomposition problem for
constraint systems is the following problem:

5Intuitively, this property guarantees that [est(xi), lst(xi)]
does not contain useless values.

6Think of the merge
�k

i=1 σi as an assembling function σ such
that for j = 1, . . . , n, σ(xj) is the value assigned by the agent
controlling xj .

Given a constraint system S = (X,C) and a partition-
ing {Xi}ki=1 of X , how to come up with suitable constraint
sets Ci for the subsets Xi such that (i) whatever solutions σi

for the subsystems Si = (Xi, Ci) are chosen, their merge
σ =

�k
i=1 σi is always a solution for the original system

S, while (ii) the total flexibility
�k

i=1 flex (Si) of the dis-
tributed system is maximized.

For STNs Hunsberger (Hunsberger 2002b) approached
this problem by making a distinction between intra-agent
constraints, involving variables belonging to a single agent
and inter-agent constraints, involving variables controlled
by different agents. Then he proposed so-called temporal
decoupling algorithms that, by tightening intra-agent con-
straints, make the set of inter-agent constraints obsolete. As
a result, a set of decomposed subsystems Si is returned such
that each combination of solutions σi for these subsystems
Si can be merged into a complete solution of the original
problem. Hunsberger observed that in some cases the added
(tightened) constraints may severely limit the flexibilities
of the individual subproblems, i.e., the sum

�k
j=1 flex (Sj)

of the flexibilities of the subsystems Sj could be consider-
ably less than the flexibility flex (S) of the original system.
Therefore, he proposed an algorithm that ensures a locally
optimal decoupling, i.e., a decoupling such that no individ-
ual constraint can be loosened without violating the property
of inducing a decoupling.

However, instead of locally optimal decompositions, we
want to establish globally optimal decomposition methods
not restricted to STNs, but applicable to linear constraint
systems.

To model this idea of decomposition, without loss of gen-
erality, we may assume that the variables x occurring in a
(consistent and bounded) linear constraint system Ax ≤ b
are partitioned into a set of k vectors yi of variables such
that [yt

1, . . . ,y
t
k] = xt. This corresponds to creating a parti-

tioning of the set of variables X . The flexibility-maximizing
decomposition problem for a linear constraint system S then
is to find k matrices Ai and k vectors b�

j such that
1. for j = 1, . . . , k, Sj : Ajyj ≤ b�

j is a linear constraint
system, and

2. whenever σi(yj) = vj is a solution to Sj , the solution σ
defined by σ(x)t = [σ(v1)t, . . . ,σ(vk)t] is a solution to
Ax ≤ b, and

3. the sum
�k

j=1 flex (Sj) is maximal.
Example 2. Assume that in the constraint system discussed
in Example 1, we have two agents, one controlling the
variables x1 and x2, and the other the variable x3. Then
y1 = [x1, x2] and y2 = [x3]. Consider the decomposition
{S1 : A1y1 ≤ b�

1, S2 : A2y2 ≤ b�
2} of S where

A1 =

� −1 0
0 −1
1 1

�
, y1 =

�
x1

x2

�
, b�

1 =

�
0
0

25

�

A2 =

�
1

−1

�
, y2 = [x3] , b�

2 =

�
25

−25

�

Clearly, the merge of any pair of solutions σ1 and σ2 of these
partial systems constitutes a solution to the total system. But

2383



this decomposition comes with a high price: the total flex-
ibility of these two systems equals 25 + 0 = 25, that is
one-third of the original flexibility. The question then arises
whether this decomposition is a maximally-flexible one.

Like Hunsberger, in linear constraint systems with a par-
titioning [yt

1, . . . ,y
t
k] = xt of X we also distinguish intra-

and inter-agent constraints:
1. An intra-agent constraint ci ∈ Intra(C ) is any constraint

ci : aix ≤ bi such that for all ai,h �= 0 the corresponding
variables xh belong to a single block yj . For example, the
first three constraints in A (see Example 1) are intra-agent
constraints.

2. If ci : aix ≤ bi contains variables xh and xh� that
(i) belong to different blocks of variables yj and yj� ,
respectively, while (ii) ai,h �= 0 and ai,h� �= 0, then
ci ∈ Inter(C ) is said to be an inter-agent constraint. For
example, the last three constraints in A are inter-agent
constraints.

The idea of decomposition is to provide an additional set of
intra-agent constraints such that all inter-agent constraints
are implied. To see how this can be realised, consider the
LP (1) for flexibility maximization. A maximizer of this
LP consists of vectors v− and v+. Let IX = {[v−i , v

+
i ] |

xi ∈ X]} be the corresponding set of intervals. From Propo-
sition 2 we know that, for every single xi, every value
vi ∈ [v−i , v

+
i ] can be chosen without jeopardizing the sat-

isfaction of any of the constraints. This property, however is
no longer sufficient in a decomposed system: In a decom-
posed system agents might choose an arbitrary value for a
variable xi in its variable block yj concurrently and inde-
pendently from the others. So, instead of extending an as-
signment for a single choice, we now have to be prepared for
extending an assignment for several concurrent choices to a
total solution. Hence, the set IX of intervals has to satisfy an
additional requirement: every inter-agent constraint ci has
to be satisfied whatever choices vj in the intervals [v−j , v

+
j ]

have been made by the individual agents. So suppose the i-
th constraint is an inter-agent constraint ci ∈ Inter(C ) and
equals

aix = ai,1x1 + . . .+ ai,mxm ≤ bi
Then it should hold that

aix ≤ bi ∀x [v− ≤ x ≤ v+]
But that means that such a set of flexibility-maximizing in-
tervals {[v−i , v

+
i ]}ni=1 can be derived from a maximizer of

the following LP:
max

�

xi∈X

(x+
i − x−

i )

s.t. : Ax− ≤ b, (2)
Ax+ ≤ b,

aix ≤ bi ∀x [x− ≤ x ≤ x+] ∀ci ∈ Inter(C),

x− ≤ x+

Here, as indicated in the preliminaries, ai denotes the i-th
row of A and bi refers to the i-th entry of b.

Clearly, the occurrence of an infinite set of constraints in
the LP (2) prevents an efficient computation of the maximum

flexibility. Fortunately, there is an easy way to remove these
infinite sets of constraints by showing that one extremal so-
lution to the constraint Aix ≤ bi implies the existence of
solutions for all points x− ≤ x ≤ x+:
Proposition 3. Let σ(x)t = [(v−)t, (v+)t] be a maximizer
of the LP (2) and let ci : aix ≤ bi be a linear constraint.
Define the vector v∗

i = [v∗i,j ]n×1 such that for every j =
1, . . . , n,

v∗i,j =

�
v+j , if ai,j > 0

v−j , if ai,j ≤ 0.

Then aiv∗
i ≤ bi iff aiv ≤ bi, ∀v[v− ≤ v ≤ v+] .

Proof. The only-if direction is obvious since, by definition,
v− ≤ v∗

i ≤ v+. Conversely, assume that aiv∗
i ≤ bi and let

v = [vj ] be an arbitrary vector such that v− ≤ v ≤ v+.
Without loss of generality, we may assume that there exists
a 0 ≤ k ≤ m such that ai,j > 0 for 1 ≤ j ≤ k and ai,j ≤ 0
for m ≥ j > k. Then it holds that
m�

j=1

ai,jvj ≤
k�

j=1

ai,jv
+
j +

m�

j=k+1

ai,jv
−
j =

m�

j=1

ai,jv
∗
i,j ≤ bi

Hence, σ(x) = v satisfies the constraint ci, too.

As a consequence, we can replace the infinite set of equa-
tions belonging to an inter-agent constraint in LP (2) by one
single constraint, resulting in the following LP equivalent to
LP (2):

max
�

xi∈X

(x+
i − x−

i )

s.t. : Ax− ≤ b, (3)
Ax+ ≤ b,

aix
∗
i ≤ bi ∀ci ∈ Inter(C ),

x− ≤ x+.

Here,7 x∗
i is defined analogously to v∗

i .
Example 3. Consider the constraint system discussed in Ex-
ample 1, with the partitioning y1 = [x1, x2] and y2 = [x3].
Using the matrix A derived in Example 1, we can compute
the flexibility of the decomposition of S by computing:

max
�

xi∈X

(x+
i − x−

i )

s.t. : Ax+ ≤ b,

Ax− ≤ b,

x+
1 + x+

3 ≤ 50,

x+
2 + x+

3 ≤ 50,

x+
1 − x−

3 ≤ 0,

x− ≤ x+.

The flexibility of this system is 50. A maximizer is vt =
[(v−)t, (v+)t] = [[0, 0, 25]t, [25, 25, 25]t]. Note that this
(maximal) flexibility of this decomposition is larger than the
flexibility of the decomposition discussed in Example 2.

7Note that both aix
+ ≤ bi and aix

− ≤ bi occurring in
Ax+ ≤ b and Ax− ≤ b, respectively, are implied by aix

∗ ≤ bi.

2384



One of our goals in this paper is not only to compute the
maximum flexibility of a decomposed system, but also to
compute an optimal decomposition realizing this maximum
flexibility. One of the nice features of our framework is that,
once we have determined the flexibility of a decomposed
system, the decomposition itself can be easily derived from
the solution of the LP (3), as we will show in the next sec-
tion.

How to decompose a linear constraint system
To compute an actual decomposition of a linear constraint
system S : Ax ≤ b using a partitioning [yt

1, . . . ,y
t
k] = xt

of x, we need to specify a decomposition {Sj : Ajyj ≤
b�
j}kj=1 with the required properties as mentioned before. To

obtain this decomposition, we first solve the LP (3) and then
use a maximizer vt = [(v−)t, (v+)t] for this LP to obtain
the decomposition as follows:

Using the partitioning [yt
1, . . . ,y

t
k] = xt of x, every con-

straint ci : aix ≤ bi in S can be written as:
aix = a(i,1)y1 + . . .+ a(i,k)yk ≤ bi

where ai = [a(i,1), . . . ,a(i,k)] is the i-th row of A. Since
vt = [(v−)t, (v+)t] is a maximizer for LP (3), it holds that

aiv
∗
i ≤ bi,

where v∗
i = [v∗i,j ] is defined as:

v∗i,j =

�
v+j , if ai,j > 0

v−j , if ai,j ≤ 0.

Let us partition the vector v∗
i into [v∗

i,1,v
∗
i,2, . . . ,v

∗
i,k]

t ac-
cording to the partitioning of x. Then aiv∗

i can be written
as

aiv
∗
i = a(i,1)v

∗
i,1 + . . .+ a(i,k)v

∗
i,k ≤ bi (4)

Using this equation, we replace the inter-agent constraint ci :
aix ≤ bi by a set of intra-agent constraints as follows: For
every vector yj , create the constraint

a(i,j)yj ≤ b�i,j (5)
where b�i,j = a(i,j)v

∗
i,j and add this constraint to Sj .

Applying this procedure for all constraints results in a set
of subsystems {Ajyj ≤ b�

j}kj=1 derived from Ax ≤ b.
Note that some of these constraints might be trivial if all the
coefficients in a row of Aj are 0. Therefore, these constraints
(rows) can be omitted.

It is easy to see that this set {Ajyj ≤ b�
j}kj=1 is a decom-

position of S : Ax ≤ b: For j = 1, . . . , k, let σj(yj) be an
arbitrary solution to the subsystem Sj : Ajyj ≤ b�

j . Finally,
let σ(x) be the merge of all the solutions σj(yj). We have
to show that σ(x) is a solution of the original system S.

Consider an arbitrary constraint ci : aix ≤ bi of S. By
construction, for j = 1, . . . , k there exist constraints ci,j :
a(i,j)yj ≤ b�i,j in Sj such that a(i,j)σj(yj) ≤ b�i,j and b�i,j =
a(i,j)v

∗
j . Hence, since σ is the merge of the local solutions

σj :

aiσ(x) =
k�

j=1

a(i,j)σj(yj) ≤
k�

j=1

b�i,j =
k�

j=1

a(i,j)v
∗
i,j ≤ bi

where the last inequality holds by the inequalities (4) and
(5). Hence, the merge σ(x) of all solutions σj(yj) satisfies
ci.

Example 4. Continuing Example 3, consider a maximizer
v− = [0, 0, 25]t and v+ = [25, 25, 25]t for a decomposi-
tion of S. Using this maximizer, the constraints −x1 ≤ 0,
−x2 ≤ 0 are added to S1, and −x3 ≤ 0 is added to S2. The
constraint x1+x3 ≤ 50 is split into two constraints x1 ≤ 25
and x3 ≤ 25. These are added to S1 and S2, respectively.
Likewise, x2 + x3 ≤ 50 is split into x2 ≤ 25 and x3 ≤ 25.
Finally, x1 ≤ x3 is split into x1 ≤ 25 and −x3 ≤ −25. The
outcome of this procedure is the following decomposition
[A1y1 ≤ b�

1,A2y2 ≤ b�
2] of S where

A1 =





−1 0
0 −1
1 0
0 1



 , y1 =

�
x1

x2

�
, b�

1 =





0
0

25
25





A2 =

�
1

−1

�
, y2 = [x3] , b�

2 =

�
25

−25

�

Although the procedure specified above results in a de-
composition of the original system Ax ≤ b, we also have
to show that it results in a flexibility-maximizing decompo-
sition, i.e., the sum of the flexibilities flex (Si) of the subsys-
tems equals the flexibility as computed by the LP (3). So let
S = (X,C) be partitioned by {Xj}nj=1. Let F be the maxi-
mum flexibility of this system as computed by the LP (3) and
vt = [(v−)t, (v+)t] be a corresponding maximizer. Let the
resulting decomposition using vt be {Sj : (Xj , Cj)}kj=1 =

{Sj : Ajyj ≤ b�
j}kj=1. We show that

�k
j=1 flex (Sj) = F ,

where flex (Sj) is the maximum flexibility computed using
the original LP (1) for Ajyj ≤ b�

j .

1.
�k

j=1 flex (Sj) ≤ F . Note that
�k

j=1 flex (Sj) =

flex (S�) where S� = (X,
�k

j=1 Cj) and the flexibility
is computed using LP (1). Let F � be the flexibility of
S� computed with the LP (3). Since there are no inter-
agent constraints, in this case LP (3) is equivalent to
the LP (1), hence flex (S�) = F �. Now consider S�� =

(X,
�k

j=1 Cj ∪ C) with the same partitioning {Xj}nj=1

as S and let LP (3) compute its maximum flexibility F ��.
On one hand, since every constraint in C is either equal
to a constraint in

�k
j=1 Cj or implied by it, it should hold

that F � = F ��. On the other hand,
�k

j=1 Cj ∪ C contains
C, and, since the partitioning is identical, F �� ≤ F . There-
fore, we have

�k
j=1 flex (Sj) = flex (S�) = F � = F �� ≤

F .

2. F ≤
�k

j=1 flex (Sj) Consider the maximizer vt =

[(v−)t, (v+)t] for the LP (3) applied to S. For j =
1, . . . , k, let vt

j = [(v−
j )

t, (v+
j )

t] be the parts of the max-
imizer corresponding to the partitioning of x. We show
that, for j = 1, . . . , k, both v−

j and v+
j are solutions to

Ajyj ≤ b�
j . This is easy to see since

Ajv
−
j ≤ Ajv

∗
j ≤ b�

j and Ajv
+
j ≤ Ajv

∗
j ≤ b�

j .

So, for j = 1, . . . , k, flex (Sj) ≥
�

xij∈Xj
(v+ij − v−ij ).

2385



Summing up, we derive
k�

j=1

flex (Sj) ≥
k�

j=1

�

xij∈Xj

(v+ij − v−ij ) = F.

A strong flexibility metric
In the LP (3) every inter-agent constraint aix∗ ≤ bi en-
tails two constraints aix+ ≤ bi and aix− ≤ bi occurring
in Ax+ ≤ b and Ax− ≤ b, respectively. Hence, these
constraints can be removed from the LP-specification with-
out affecting the solution. As a limiting case then, when the
(finest) partitioning of the variables results in n blocks con-
taining only one variable xi, the LP-specification obtained
from LP (3) is:

max
�

xi∈X

(x+
i − x−

i )

s.t. : aix
∗
i ≤ bi i = 1, 2, . . .m, (6)

x− ≤ x+.

Defining the matrices A+ = [a+i,j ] and A− = [a−i,j ] by

a+i,j =

�
ai,j if ai,j > 0
0 else

a−i,j =

�
ai,j if ai,j < 0
0 else

we can easily rewrite this LP to the following simple LP:

max
�

xi∈X

(x+
i − x−

i )

s.t. : A+x+ +A−x− ≤ b, (7)
x− ≤ x+

Let us denote the flexibility of a constraint system S
computed for the finest partition {xi}ni=1 by flex∗(S), i.e.,
flex∗(S) is the outcome of solving LP (7). This metric
exhibits a stronger property than the weak flexibility met-
ric flex (S) we have discussed before: Consider the set of
intervals {[v−i , v

+
i ]}ni=1 generated by a maximizer vt =

[(v−)t, (v+)t] for LP (7). This metric not only assures that
for every single variable xi every value vi in the interval
[v−i , v

+
i ] can occur in a solution σ, but also that this property

holds for any concurrent choice of values for a set of vari-
ables: For any subset X � ⊆ X of variables, values vi in the
intervals [v−i , v

+
i ] might be chosen simultaneously without

jeopardizing the satisfaction of all the constraints:
Proposition 4. Let S : Ax ≤ b be a constraint sys-
tem with the finest partitioning X = {xi}ni=1. Let vt =
[(v−)t, (v+)t] be a maximizer for the LP (7). Then for ev-
ery v such that v− ≤ v ≤ v+, it holds that Av ≤ b.

Proof. Let v be such that v− ≤ v ≤ v+. Then we have
Av = A+v +A−v ≤ A+v+ +A−v− ≤ b.

Therefore, we call flex∗() a strong flexibility metric. As
the careful reader might have noticed, we can easily show
that an optimal decomposition of linear constraint systems
does not need to result in any loss of flexibility using this
strong flexibility metric flex∗():

Proposition 5. Let S be a linear constraint system Ax ≤ b
and let [y1, . . . ,yk] be a partitioning of x. Then there ex-
ists a decomposition {Sj}kj=1 of S according to [y1, . . . ,yk]

such that flex∗(S) =
�k

j=1 flex
∗(Sj).

Proof. Consider a maximum-flexibility decomposition
{Sxi}ni=1 induced by the finest partitioning {xi}ni=1 of X us-
ing the LP (7). For i = 1, . . . n, let Sxi = ({xi}, Cxi). It fol-
lows that flex∗(S) =

�n
i=1 flex

∗(Sxi). Since {Sxi}ni=1 is
a decomposition, a decomposition induced by [y1, . . . ,yk]
can be obtained by taking Sj = (Xj ,

�
xi∈Xj

Cxi) for
j = 1, . . . , k, where Xj is the set of variables occurring
in yj . The resulting (strong) flexibility of the decomposed
system induced by {Xj}kj=1 now equals

k�

j=1

flex∗(Sj) =
k�

j=1

�

xi∈Xj

flex∗(Sxi)

=
n�

i=1

flex∗(Sxi) = flex∗(S).

Hence, there exists at least one decomposition realizing a
total flexibility equal to the original flexibility flex∗(S).

This result generalizes a recent result obtained by (Wilson
et al. 2013) for STNs to linear constraint systems.

Conclusion and Discussion
In this paper we concentrated on the decomposition of linear
constraint systems. We introduced a generalisation flex () of
a flexibility metric proposed for STNs and used this metric
to compute a maximum-flexible decomposition of a linear
constraint system induced by a partitioning of the set of vari-
ables. Using an LP-approach, we finally proposed a strong
flexibility metric flex∗() as an alternative to the flexibility
metric derived from STNs. We showed that using this strong
flexibility metric, an arbitrary decomposition of a linear con-
straint system can be achieved without any loss of flexibility.

We remark that the ratio flex (S)/flex∗(S) of these flex-
ibility metrics indicates how much dependencies there exist
between the variables X in S: whenever this ratio is close
to one, the values of variables within the intervals deter-
mined by the flex metric can be chosen almost indepen-
dently, while a large ratio indicates that choosing a value
within an interval can heavily influence the choice of val-
ues for other variables. Geometrically, flex (S) determines
the smallest box containing the polyhedron associated with
S while flex∗(S) determines the largest box contained in the
polyhedron determined by S.

Finally, we would like to remark that LP (7) can also be
used outside a decomposition setting: Given an arbitrary LP
with objective function max f(x) resulting in a maximum
m, we can add an additional constraint in the form of f(x) ≥
m to the set of constraints. Then applying LP (7) to the re-
sulting system and using a maximizer vt = [(v−)t, (v+)t]
to obtain a set of intervals {[v−i , v

+
i ]}ni=1, we know which

values for the individual variables xi do not affect the max-
imum value m. This provides a way to obtain flexible solu-
tions to LP-problems.

2386



Acknowledgments
The authors thank the anonymous reviewers for their con-
structive remarks and well-considered suggestions for im-
provement of the paper.

References
Agrawal, S.; Deb, S.; Naidu, K. V. M.; and Rastogi, R.
2007. Efficient detection of distributed constraint viola-
tions. In Proceedings of the 23rd International Conference
on Data Engineering (ICDE 2007), April 15-20, 2007, Is-
tanbul, Turkey, 1320–1324. IEEE.
Alwan, A.; Ibrahim, H.; and Udzir, N. I. 2009. Improved in-
tegrity constraints checking in distributed databases by ex-
ploiting local checking. Journal of Computer Science and
Technology 24(4):665–674.
Boerkoel, J., and Durfee, E. 2012. A distributed approach to
summarizing spaces of multi-agent schedules. In Proceed-
ings of the 26th AAAI Conference on Artificial Intelligence
(AAAI-12), 1742–1748. AAAI Press, MenloPark, CA.
Boerkoel, J., and Durfee, E. 2013. Distributed reasoning
for multi-agent simple temporal problems. Journal of AI
Research 47:95–156.
Brambilla, A. 2010. Artificial Intelligence in Space Systems:
Coordination Through Problem Decoupling in Multi-Agent
Planning for Space Systems. Lambert Academic Publishing.
Brodsky, A.; Kerschberg, L.; and Varas, S. 2004. Opti-
mal constraint decomposition for distributed databases. In
Maher, M., ed., Advances in Computer Science - ASIAN
2004. Higher-Level Decision Making, volume 3321 of Lec-
ture Notes in Computer Science, 301–319. Springer Berlin
Heidelberg.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Gupta, A., and Widom, J. 1993. Local verification of global
integrity constraints in distributed databases. SIGMOD Rec.
22(2):49–58.
Hunsberger, L. 2002a. Algorithms for a temporal decou-
pling problem in multi-agent planning. In Proceedings of the
Association for the Advancement of Artificial Intelligence
(AAAI-02), 468–475.
Hunsberger, L. 2002b. Group Decision Making and Tem-
poral Reasoning. Ph.D. Dissertation, Harvard University,
Cambridge, Massachusetts.
Planken, L.; de Weerdt, M.; and Witteveen, C. 2010. Op-
timal temporal decoupling in multiagent systems. In Van-
derHoek; Kaminka; Lesperance; Luck; and Sen., eds., Pro-
ceedings of the Ninth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-10),
789–796.
Policella, N.; Smith, S. F.; Cesta, A.; and Oddi, A. 2004.
Generating robust schedules through temporal flexibility. In
Zilberstein, S.; Koehler, J.; and Koenig, S., eds., Proceed-
ings of the 14 International Conference on Automated Plan-
ning & Scheduling (ICAPS’04), 209–218.

Policella, N.; Wang, X.; Smith, S.; and Oddi, A. 2005. Ex-
ploiting temporal flexibility to obtain high quality schedules.
In Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI-05), 1199–1204. AAAI Press, Menlo
Park, CA.
Wilson, M.; Klos, T.; Witteveen, C.; and Huisman, B. 2013.
Flexibility and decoupling in the Simple Temporal Problem.
In Rossi, F., ed., Proceedings of the 23th International Joint
Conference on Artificial Intelligence (IJCAI-2013), 2422 –
2428. AAAI Press, Menlo Park, CA.

2387




