
Using Timed Game Automata to Synthesize Execution Strategies
for Simple Temporal Networks with Uncertainty

Alessandro Cimatti1, Luke Hunsberger2, Andrea Micheli1,3 and Marco Roveri1
cimatti@fbk.eu, hunsberg@cs.vassar.edu, amicheli@fbk.eu, roveri@fbk.eu

1Fondazione Bruno Kessler – Trento, Italy
2Vassar College – Poughkeepsie, NY, USA

3University of Trento – Trento, Italy

Abstract

A Simple Temporal Network with Uncertainty (STNU) is a
structure for representing and reasoning about temporal con-
straints in domains where some temporal durations are not
controlled by the executor. The most important property of
an STNU is whether it is dynamically controllable (DC); that
is, whether there exists a strategy for executing the control-
lable time-points that guarantees that all constraints will be
satisfied no matter how the uncontrollable durations turn out.
This paper provides a novel mapping from STNUs to Timed
Game Automata (TGAs) that: (1) explicates the deep theo-
retical relationships between STNUs and TGAs; and (2) en-
ables the memoryless strategies generated from the TGA to
be transformed into equivalent STNU execution strategies
that reduce the real-time computational burden for the execu-
tor. The paper formally proves that the STNU-to-TGA encod-
ing properly captures the execution semantics of STNUs.

1 Introduction
Temporal Networks are commonly used to represent tempo-
ral constraints among activities (Dechter, Meiri, and Pearl
1991; Vidal and Fargier 1999; Tsamardinos and Pollack
2003). Each activity is associated with two time-points, rep-
resenting the starting and ending times of the activity. Many
kinds of temporal networks have been identified depending
on the nature of the constraints. In a Simple Temporal Net-
work, each constraint is a binary difference constraint. In a
Disjunctive Temporal Network, arbitrary boolean combina-
tions of such constraints are allowed. In a Temporal Net-
work with Uncertainty (TNU), the durations of some activ-
ities are not controlled by the executor. The ending times
for those activities are represented by uncontrollable time-
points, while the starts are represented by free time-points.
For TNUs, three types of controllability problems have been
addressed: strong, weak and dynamic. Strong controllabil-
ity requires the existence of an assignment to all of the free
time-points that satisfies all of the constraints in the network
for every possible combination of durations for the uncon-
trollable activities. Weak controllability assumes that the ex-
ecutor knows the durations of all uncontrollable activities in
advance, enabling the scheduling of activities to be a func-
tion of those durations. Dynamic controllability is similar to

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

weak, except that each scheduling decision is constrained to
depend only on past events.

Because it captures the real-time constraints that apply to
most application domains, this paper focuses on dynamic
controllability (DC) for Simple Temporal Networks with
Uncertainty (STNUs). Polynomial algorithms for solving
the DC-checking problem have been presented (Morris and
Muscettola 2005; Morris 2006). Polynomial algorithms for
managing the execution of such networks have also been
presented (Hunsberger 2010; 2013a). However, the fastest
of these requires substantial run-time computations to prop-
agate constraints in response to observed executions. The
problem of synthesizing dynamic strategies that can be sim-
ply and compactly executed is currently an open problem.

This paper introduces a new approach to synthesizing ex-
ecution strategies for STNUs that is based on Timed Game
Automata (TGA) (Maler, Pnueli, and Sifakis 1995). A TGA
is a timed automata (Henzinger, Manna, and Pnueli 1991)
in which two opposing players are able to take transitions
subject to specified timing constraints. The goal of a player
can be, for example, to reach a certain state or to avoid cer-
tain states. Several practical algorithms have been developed
for constructively synthesizing winning strategies for TGAs.
We remark that TGAs are much more general than STNUs.

This paper makes the following contributions. First, it
presents a novel, linear mapping from STNUs to TGAs
that: (1) explicates the deep theoretical relationships be-
tween STNUs and TGAs; and (2) enables the memory-
less counter-strategies synthesized for TGAs to be trans-
formed into equivalent STNU execution strategies with the
aim of reducing the real-time computational burden for the
executor. Second, it proves that each dynamically control-
lable STNU maps onto a TGA for which there is a winning
counter-strategy; and that any winning counter-strategy for
that TGA is equivalent to a winning strategy for the original
STNU. Finally, the paper tests the feasibility of the approach
whereby an input STNU is mapped onto a TGA, a win-
ning counter-strategy is synthesized by the UPPAAL-TIGA
tool (Cassez et al. 2005), and then that strategy is converted
into executable C code that is compiled and efficiently exe-
cuted.

Related work. Researchers have explored a variety of
techniques for solving temporal problems in the face of un-
certainty, but only one is close to the approach presented this

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2242

paper. Vidal (2000) uses TGAs for checking the dynamic
controllability of a variant of STNUs called Contingent Tem-
poral Constraint Networks (CTCNs). His algorithm incre-
mentally constructs a TGA, interleaving checks for winning
TGA strategies along the way. The most significant draw-
back is that the resulting TGA has exponential size, com-
pared to the linear-sized TGAs in our approach.

TGAs have also been used to validate timeline-based
plans (Cesta et al. 2011; Orlandini et al. 2011). Each plan
is encoded as a TGA that includes an uncontrollable ob-
server that plays the role of the environment. The observer
checks the plan controllability and synthesizes a controller.
The encoding used by Orlandini et al. (2011) deviates from
the standard DC definition by allowing a free time-point to
be scheduled immediately after an uncontrollable.

Abdeddaim et al. (2009) use STNUs to represent strate-
gies for a subclass of TGA—the exact opposite of our
approach. In their work, an executor needs to be able to
solve the DC-checking problem (e.g., using an on-line al-
gorithm) to generate a TGA strategy. Finally, Cimatti et
al. (2012b; 2012a) focus on strong and weak controllability,
while also allowing disjunctive constraints.

Paper structure. Section 2 presents a novel charac-
terization of the execution semantics for STNUs. Section 3
presents our encoding of STNUs into TGAs. Section 4 pro-
vides formal proofs of correctness. Section 5 presents an em-
pirical evaluation of our approach. Finally, Section 6 draws
some conclusions and discusses future work.

2 STNUs and Dynamic Controllability
An STNU is a data structure for representing and reason-
ing about temporal knowledge in domains where some time-
points are controlled by the executor (or agent) while others
are controlled by the environment.1

Definition 1. An STNU is a tuple (T , C,L) where: T is a
set of real-valued variables called time-points, that is par-
titioned into the sets, Tf and Tu, of free and uncontrollable
time-points; C is a set of binary constraints, each of the form,
Y −X ≤ δ, for some X,Y ∈ T and δ ∈ R; and L is a
set of contingent links, each of the form, (A, `, u, C), where
A ∈ T , C ∈ Tu, and 0 < ` < u <∞.

An expression, Y − X ∈ [a, b], abbreviates the pair of
constraints, Y − X ≤ b and X − Y ≤ −a. A contin-
gent link, (A, `, u, C), represents a temporal interval from
A to C whose duration is uncontrollable, but bounded by
C − A ∈ [`, u]. A is called the activation time-point; C is
called the contingent time-point. Fig. 1 shows an STNU that
will be used as a running example. In the figure, contingent
links are indicated by thicker arrows. Note that the terminus
of any contingent link is an uncontrollable time-point.

Execution Semantics for STNUs
In the literature, the execution semantics for STNUs is ex-
pressed in terms of dynamic execution strategies (Morris,
Muscettola, and Vidal 2001). For an STNU, (T , C,L), the

1The agent and environment are not part of the formal STNU
semantics; they are used here for expository convenience.

C2 C1 X
[−3, 8] [6, 12]

A1A2
[1, 3][1, 10]

Tf = {A1, A2, X}; Tu = {C1, C2}
C = {C1 − C2 ∈ [−3, 8], C1 −X ∈ [6, 12]}
L = {(A1, 1, 3, C1), (A2, 1, 10, C2)}

Figure 1: An STNU and its graphical representation.

agent seeks a strategy for executing the free time-points in
Tf ⊆ T such that all constraints in C will necessarily be sat-
isfied no matter what durations the environment “chooses”
for the contingent links in L—within their specified bounds.
The decisions that constitute such a strategy can depend only
on execution events that occurred in the past; however, the
strategy can be dynamic in that it may react—after a positive
delay—to observations of contingent time-points executing.

An agent’s execution strategy can be compactly defined in
terms of real-time execution decisions (RTEDs), where each
RTED has one of two forms: wait or (T, χ) (Hunsberger
2009). A wait decision can be glossed as “wait until some
contingent time-point happens to execute.” A (T, χ) deci-
sion can be glossed as “if nothing happens before time T
(i.e., if no contingent time-point happens to execute before
time T), then I shall execute the (free) time-points in the set
χ at time T .” The outcomes for an RTED specify the range
of execution events that could happen next. For example, a
contingent time-point might happen to execute sometime be-
fore time T , in which case, the agent could react by adopting
a new decision; or a contingent time-point C might happen
to execute precisely at time T , in which case the time-points
in χ would be executed simultaneously with C at time T .

In the case of the STNU in Fig. 1, the agent seeks a
strategy for executing the free time-points, A1, A2 and X ,
that will guarantee that the constraints among C2, C1 and X
are satisfied, no matter what durations the environment hap-
pens to “choose” for the contingent links, (A1, 1, 3, C1) and
(A2, 1, 10, C2). For example, the agent might decide to ex-
ecute A2 at time 0, and X at time 1, and then wait. Should
the environment happen to “choose” a duration of 5 for the
contingent link, (A2, 1, 10, C2), the agent would observe, at
time 5, the execution of C2. The agent might then react—
after some positive delay—by, for example, deciding to exe-
cuteA1 at time 7. Later, the agent might observe the environ-
ment choosing to execute C1 at 9. In this example, after all
time-points have executed, C1 − C2 = 9− 5 = 4 ∈ [−3, 8]
and C1−X = 9−1 = 8 ∈ [6, 12]; thus, all constraints in C
are satisfied and the agent has succeeded. It can be checked
that this STNU is dynamically controllable (i.e., there exists
a strategy for the agent that ensures success no matter how
the environment behaves).

Although the execution semantics described above makes
reference to the agent and the environment, execution strate-
gies are only defined for the agent; the strategies available to
the environment are only implicitly described by the sets of
possible outcomes of the agent’s decisions. Thus, the seman-
tics is effectively a description of a one-player game where

2243

the outcomes of the agent’s decisions are non-deterministic.
This section introduces a novel formulation of the execution
semantics for STNUs as a two-player game between Agnes
(the agent) and Vera (the environment), where Agnes con-
trols the execution of free time-points and Vera controls the
contingent durations. Agnes seeks an execution strategy that
will ensure the satisfaction of all constraints in C no matter
what durations Vera chooses; Vera seeks a strategy that will
ensure that at least one constraint in C is unsatisfied no mat-
ter what Agnes does. As will be seen, this formulation high-
lights an important asymmetry in the execution semantics:
Agnes is not able to react instantaneously to observations of
contingent time-points executing, but Vera is able to react
instantaneously to executions of free time-points.

A partial schedule represents the current state of the game
(i.e., the set of time-points that have executed so far).2

Definition 2 (Partial Schedule). A partial schedule for an
STNU, (T , C,L), is a set, ψ, of variable assignments to time-
points in T . TPs(ψ) ⊂ T denotes the set of time-points
appearing in ψ; Vals(ψ) ⊂ R denotes the set of values
appearing in ψ; for any X ∈ TPs(ψ), ψ(X) denotes the
value assigned to X; and nowψ = max{v | v ∈ Vals(ψ)}
is the time of the latest execution event in ψ. (If ψ = ∅, let
nowψ = 0.) Time-points in TPs(ψ) are said to be executed.
A partial schedule is called respectful if its assignments do
not violate the bounds on any contingent link.

Given a partial schedule ψ, Agnes must decide what to do
next. She has two options: (1) wait for Vera to (eventually)
do something; or (2) conditionally commit to executing a set
of free time-points at some time, Tf > nowψ . For example,
given ψ = {(A2, 0), (X, 1)}, for which nowψ = 1, Agnes
could decide to wait until Vera eventually executes C2. Al-
ternatively, she could decide that “if nothing happens before
time 7, I shall executeA1 at time 7.” The decisions available
to Agnes are called real-time execution decisions (RTEDs).
Definition 3 (RTED, for Agnes). Let ψ be a respectful par-
tial schedule. An RTED for Agnes has one of two forms:
wait or (Tf , χf). A wait decision is applicable if at least
one contingent time-point, C, is active in ψ (i.e., C’s activa-
tion time-point has already been executed, butC has not). A
(Tf , χf) decision (i.e., “If nothing happens before time Tf ,
execute the time-points in χf at time Tf”) is applicable if
Tf > nowψ and χf is a non-empty subset of unexecuted free
time-points (i.e., χf 6= ∅ and χf ∩ TPs(ψ) = ∅).

The kinds of decisions available to Vera are different in
two important respects. First, Vera’s version of an RTED—
called an RTED?—allows a decision of the form, “if nothing
happens before or at time Tu, then I shall execute the con-
tingent time-points in the set χu ⊆ Tu at time Tu.” Note that
when time Tu arrives, should Vera observe Agnes executing
any time-points at time Tu, Vera has the option of instanta-
neously changing her mind. Second, in such cases, Vera may
instantaneously react by executing some other contingent
time-points at time Tu. Such decisions are called instanta-
neous reactions. For example, suppose Vera had decided that
“if nothing happens before or at time 7, then I shall execute

2Defns. 2 and 3 are drawn from Hunsberger (2009).

ψ′ψ
execute time-points in χu at Tu

at time Tf at time Tf

Op(ψ, (Tf , χf),∆u)

execute time-points in χf execute time-points in Υu

Figure 2: The outcome of Agnes’ and Vera’s decisions.

C2 at time 7”, but when time 7 arrived, she observed Agnes
executing some time-point(s). Vera could withdraw her de-
cision to execute C2 and instantaneously react by deciding
to execute some other contingent time-point(s) at time 7.
Definition 4 (RTED?, for Vera). Let ψ be a respectful par-
tial schedule. A before-or-at RTED (RTED?) has one of two
forms: wait or (Tu, χu). A wait decision is only applica-
ble if no contingent time-points are currently activate in ψ.
A (Tu, χu) decision (i.e., “If nothing happens before-or-at
time Tu, I shall execute the time-points in χu at time Tu”) is
applicable only if Tu > nowψ , and χu is a non-empty subset
of currently-activated contingent time-points.
Definition 5 (Instantaneous reaction, for Vera). Let ψ be
a respectful partial schedule in which at least one contin-
gent time-point is activated and whose execution window
includes nowψ . An instantaneous reaction is a decision (by
Vera) to execute a set of such time-points at time nowψ .

To accommodate Vera’s ability to react instantaneously,
the outcome for a pair of decisions—one by Agnes, one by
Vera—is defined in two stages: partial and full.
Definition 6 (Partial Outcome). Let ψ be a respectful par-
tial schedule; let ∆f be an RTED for Agnes; and let ∆u be
an RTED? for Vera. The partial outcome,Op(ψ,∆f ,∆u), is
defined as follows.3

(1a) Op(ψ, wait, (Tu, χu)) = ψ ∪ {(C, Tu) | C ∈ χu}.
(1b) Op(ψ, (Tf , χf), (Tu, χu)) = ψ ∪ {(C, Tu) | C ∈ χu},

if Tu < Tf .
(2a) Op(ψ, (Tf , χf), wait) = ψ ∪ {(X,Tf) |X ∈ χf}.
(2b) Op(ψ, (Tf , χf), (Tu, χu)) = ψ ∪ {(X,Tf) |X ∈ χf},

if Tf ≤ Tu.

Note that in cases (1a) and (1b), the partial outcome in-
cludes only the execution of the contingent time-points in
χu at time Tu. Cases (2a) and (2b) are analogous, in that
the partial outcome includes only the execution of the free
time-points in χf at time Tf , except that Vera is also able to
instantaneously react by executing one or more contingent
time-points, also at time Tf , as described below.
Definition 7 (Full Outcome). Let ψp = Op(ψ,∆f ,∆u)
be a partial outcome, as described above; and let Υu be a
set of contingent time-points that constitute an instantaneous
reaction to ψp. The full outcome, O(ψ,∆f ,∆u,Υu), is the
same as ψp, except that in cases (2a) and (2b), the schedule
is augmented to include the execution of the time-points in
Υu at time Tf .

The possible paths from a partial schedule ψ to the full
outcome ψ′ = O(ψ,∆f ,∆u,Υu), are illustrated in Fig. 2.

3Note that it is impossible for a wait decision to be simultane-
ously applicable for Agnes and Vera.

2244

ψ = {(A2, 0), (X, 1)}; ∆f = (7, {A1}); ∆u = (6, {C2}).
ψ′ = {(A2, 0), (X, 1), (C2, 6)}; Υu irrelevant.
ψ = {(A2, 0), (X, 1)}; ∆f = (7, {A1}); ∆u = (8, {C2}).
ψ′ = {(A2, 0), (X, 1), (A1, 7), (C2, 7)}, where Υu = {C2}.
ψ = {(A2, 0), (X, 1)}; ∆f = (7, {A1}); ∆u = (8, {C2}).
ψ′ = {(A2, 0), (X, 1), (A1, 7)}, where Υu = ∅.

Table 1: Full outcomes, ψ′, for sample decisions.

Note that nowψ′ is either Tf or Tu, depending on which
path is taken. Note, too, that the full outcome, ψ′, is typ-
ically a partial schedule, except at the very end when all
of the time-points have been executed. Some partial exe-
cution sequences that might arise in the case of the sam-
ple STNU are illustrated in Table 1, where in each case,
ψ′ = O(ψ,∆f ,∆u,Υu).
Definition 8 (Execution Strategies). An RTED-based strat-
egy (for Agnes) is a mapping from respectful partial sched-
ules to RTEDs. An RTED?-based strategy (for Vera) is a pair
of mappings, (f1, f2), where f1 is a mapping from respect-
ful partial schedules to RTED?s; and f2 is a mapping from
respectful partial schedules to instantaneous reactions.
Definition 9 (Outcomes of Strategies). Let ψ be a respect-
ful partial schedule; R an RTED-based strategy; and R? =
(f1, f2) an RTED?-based strategy. The one-step outcome is:
O1(ψ,R,R?) = O(ψ,R(ψ), f1(ψ), f2(ψp)), where ψp =
Op(ψ,R(ψ), f1(ψ)). The terminal outcome, O∗(ψ,R,R?),
is the complete schedule that terminates the sequence recur-
sively defined by: ψ0 = ∅ and ψi+1 = O1(ψi, R,R

?).
The constraints on the decisions generated by R?—

namely, that Vera must observe the bounds on the contin-
gent durations—ensure that each ψi in the sequence will be
respectful, given that ψ0 = ∅ is trivially respectful.

Given the above execution semantics for STNUs, the def-
inition of dynamic controllability is straightforward.
Definition 10 (Dynamic Controllability). An STNU,
(T , C,L), is dynamically controllable if there exists an
RTED-based strategy R, such that for all RTED?-based
strategies R?, the variable assignments in the complete
schedule, O∗(ψ0, R,R

?), satisfy all of the constraints in C.
Theorem 1. Defn. 10 is equivalent to the definition of dy-
namic controllability given by Hunsberger (2009).
• The proof is omitted due to space limitations.

3 From STNUs to Timed Game Automata
A Timed Game Automaton (TGA) is a formalism used to
model a game between two players—the controller and the
environment—where transitions are subject to various kinds
of temporal constraints (Maler, Pnueli, and Sifakis 1995).
This section presents a novel encoding of STNUs into Timed
Game Automata that preserves the property of dynamic con-
trollability across the models. It first introduces relevant
background and then formally describes the encoding.

Timed Game Automata
A finite automaton (Lewis and Papadimitriou 1998) com-
prises a finite set of states (or locations) and a finite set of

YX

c ≤ 3 〈c ≥ 1; pass; {c}〉

〈c ≥ 5; gain; {c}〉

Figure 3: A sample timed automaton.

agnes veragoal
〈tC < t̂; win; ∅〉

〈tA = t̂; sA; {tA}〉 〈(tC = t̂) ∧ (tA < t̂); sC; {tC}〉

〈>; pass; {tδ}〉

〈tδ > 0; gain; ∅〉

Figure 4: A sample Timed Game Automaton.

labeled transitions (or actions). One of the states is called
the initial (or starting) state; a distinguished subset of states
comprise the final (or accepting) states. Each labeled transi-
tion specifies a legal move from one state to another.

A Timed Automaton (TA) (Alur and Dill 1994) augments
a finite automaton to include real-valued clocks. Each transi-
tion in a TA may include temporal constraints, called guards,
that disable the transition if the current clock values do not
satisfy those constraints. Each transition may also include
clock resets that cause specified clocks to be reset to 0 when-
ever the transition is taken. Finally, each location may in-
clude an invariant—that is, a constraint specifying the con-
ditions under which the automaton may stay in that location.

Fig. 3 shows a sample TA. The TA has one clock, c. The>
symbol indicates that X is the initial location. X’s invariant
is c ≤ 3. Each transition has a label, 〈G; N ; R〉, where G is
the guard, N is a name for the transition, and R is the set of
clocks it resets. A run starts at X , with c = 0. X’s invariant,
c ≤ 3, and the guard, c ≥ 1, on the pass transition, together
ensure that the TA must take the transition to Y at some time
when 1 ≤ c ≤ 3. When taken, that transition resets c to 0.
The gain transition can be taken back to X at any time at
which c ≥ 5. If taken, it will again reset c to 0. However,
since Y has no invariant, the TA could remain at Y forever.
Definition 11 (Timed Automaton). A Timed Automaton
(TA) is a tuple, A = (L, l0,Act ,X , E, Inv), such that: L is
a finite set of locations, l0 ∈ L is the initial location, Act is
a set of actions, X is a finite set of real-valued clocks, E ⊆
L×H∩k (X)×Act×2X ×L is a finite set of transitions, and
Inv : L→ H∩k (X) associates an invariant to each location.
Elements in H∩k (X) are conjunctions of constraints of the
form, x ./ k or y − x ./ k, where x, y ∈ X , k is an integer,
and ./ is one of <,≤,=, > or ≥.

A Timed Game Automaton (TGA) in turn generalizes a TA
by partitioning the set of transitions into controllable and un-
controllable transitions. A TGA can be used to model a two-
player game between an agent and the environment, where
the agent controls the controllable transitions, and the envi-
ronment controls the uncontrollable transitions.
Definition 12 (Timed Game Automaton). A Timed Game
Automaton (TGA) is a Timed Automaton whose set of ac-
tions, Act , is partitioned into controllable (Actc) and un-
controllable (Actu) actions.

Fig. 4 shows a TGA with three locations: agnes, vera
and goal, where vera is the initial location. It has four

2245

clocks: tA, tC , t̂ and tδ . The solid arrows represent control-
lable transitions; the dashed arrow represents the one uncon-
trollable transition. For example, the transition from agnes

to itself has the label, 〈tA = t̂; sA; {tA}〉, which specifies
that it can only be taken if tA and t̂ have the same value; and
that this transition resets tA to 0. Consider the following pos-
sible run of this TGA. It begins at the initial location vera,
with all clocks set to 0. Five units of time later, when all
clocks read 5, the agent takes the gain transition to agnes.
(The guard is satisfied; and no clocks get reset.) Then, at
time 6, the agent takes the sA transition, which causes tA to
be reset to 0. Then, at time 7, the agent takes the pass tran-
sition back to vera, which resets tδ back to 0. At this point,
tδ = 0; tA = 1; and tC = t̂ = 7. Thus, the environment can
take the sC transition from vera to itself, resetting tC to 0.
Then, at time 10, the agent takes the gain transition back
to agnes, and at 11 the win transition to the goal state.

In what follows, the common practice of labeling cer-
tain locations as urgent is used. An urgent location is one
in which players are prevented from waiting. An urgent lo-
cation ` is equivalent to: (1) introducing a new clock c that
is reset by every transition entering `; and (2) conjoining a
new invariant, c ≤ 0, to `.

For any TGA, different kinds of games can be mod-
eled (Cassez et al. 2005). In a reachability game, the con-
troller (or agent) seeks to move the TGA into one of the win-
ning locations within a finite amount of time. In the avoid-
ance game, the controller seeks to prevent the TGA from
entering a certain set of locations. This paper focuses on
memoryless strategies, since they have been shown to be suf-
ficient for reachability and avoidance games (Maler, Pnueli,
and Sifakis 1995; Cassez et al. 2005). Intuitively, a memo-
ryless strategy associates a state of the system to either an
action to be executed or a special symbol λ that stands for
“wait” (i.e., do nothing; wait until something changes).

Definition 13. For a TGA, (L, l0,Act ,X , E, Inv), a mem-
oryless strategy is a mapping f : L×RX>=0 → Actc ∪ λ.

Further details on the semantics for TGAs are available
from Maler et al. (1995).

Encoding an STNU into a TGA
This section presents an encoding of STNUs into TGAs.
Given an STNU S = (T , C,L), the goal is to provide a
TGA TS = (L, l0,Act ,X , E, Inv), and a winning condi-
tion φ, such that the STNU S is dynamically controllable if
and only if the TGA TS admits a counter-strategy for φ. An
important—and unexpected—part of this encoding is that
uncontrollable TGA transitions are used to model the execu-
tion of the free time-points in S, and controllable TGA tran-
sitions are used to model the execution of the uncontrollable
time-points in S. Thus, the traditional use of TGAs where
the environment is associated with uncontrollable transitions
has been inverted. (That is why a counter-strategy is sought.)
The underlying reason is that according to the STNU se-
mantics, when both players attempt to make transitions at
the same time, Agnes must play before Vera, whereas in the
TGA semantics, the uncontrollable transition would go first.

goal
〈tδ > 0; gain; ∅〉

〈>; pass; {tδ}〉
veraagnes

〈tX = t̂; sX; {tX}〉

〈ΦC2(tA2, tC2, t̂); cvC2; ∅〉

〈Ψ(tC1, tC2, tX, t̂); win; ∅〉

〈ΦC1(tA1, tC1, t̂); cvC1; ∅〉

〈tA2 = t̂; sA2; {tA2}〉 〈tA1 = t̂; sA1; {tA1}〉

〈Σ(tA1, tC1, t̂); sC1; {tC1, tδ}〉

〈Σ(tA2, tC2, t̂); sC2; {tC2, tδ}〉

Figure 5: Encoding the STNU from Fig. 1 into a TGA. Solid
arrows represent controllable transitions (for Vera); dashed
arrows uncontrollable transitions (for Agnes). The doubly-
circled agnes location is urgent; the initial location is vera.

The set of locations is: L =̇ {agnes, vera, goal}, where
agnes is marked urgent. Note that L has only three loca-
tions, regardless of the number of time-points in the STNU.
Intuitively, agnes represents a state in which Agnes can exe-
cute one or more free time-points; vera represents a state in
which Vera can execute one or more contingent time-points;
and goal represents a state in which all of the constraints
have been satisfied and the game is over. The initial location
of the TGA is vera (i.e., l0 =̇ vera).

The set of clocks is: X =̇ {t̂, tδ} ∪ {tX | X ∈ T }. All
clocks start at 0. The clock t̂ is never reset; it simply mea-
sures global time. The clock tδ is used to ensure that there
will always be a positive delay between the execution of any
contingent time-point (by Vera) and any reaction by Agnes.
(This is crucial for capturing the STNU semantics.) Finally,
for each time-point X ∈ T , there is a corresponding clock
tX. That clock is reset at most once each run, at the instant
X is executed. It follows that any time-point X has been ex-
ecuted if and only if tX < t̂. (Since the initial state is vera,
no time-point can be executed at 0.) Also, after being exe-
cuted, the execution time for X is forever equal to t̂− tX.

The sets of controllable and uncontrollable actions are de-
fined as follows. First, the controllable actions (for Vera)
consist of one action for each contingent time-point in
S, as follows: Actc =̇ {sX | X ∈ Tu}. Each action
in this set represents the execution of the correspond-
ing time-point. The uncontrollable actions (for Agnes) in-
clude more options: Actu =̇ A1 ∪ A2 ∪ A3, where:
A1 = {sX |X ∈ Tf}; A2 = {cvC | (A, `, u, C) ∈ L}; and
A3 = {gain, pass, win}.A1 contains one execution action
for each free time-point. A2 contains one action for each
contingent link; these actions are only enabled if Vera vi-
olates the bounds on her contingent links. gain and pass
model the interplay between the execution of time-points by
Agnes and Vera; win is used at the end when all time-points
have been executed and all constraints have been satisfied.

The transition relation, E, for the TGA encoding of an
STNU is demonstrated in Fig. 5, using the sample STNU
from Fig. 1. For each free time-point X , there is a transition
from agnes to agnes labeled by 〈tX = t̂; sX; {tX}〉,
which represents the execution of X by Agnes. The guard,
tX = t̂ (i.e., X not yet executed), ensures that this tran-
sition will be taken at most once per run. The set, {tX},
stipulates that the clock tX will be reset by this transition,
signalling that X has been executed. Similarly, for each
contingent link, (A, `, u, C), there is a transition from
vera to vera labeled by 〈Σ(tC, tA, t̂); sC; {tC, tδ}〉,

2246

which represents the execution of C by Vera. The guard,
Σ(tC, tA, t̂) =̇ (tA < t̂) ∧ (tC = t̂) ∧ (tA ≥ `) ∧ (tA ≤ u),
ensures that this transition can only be taken when
the link is currently activated and its duration would
fall within [`, u]. In addition, for each contingent link,
(A, `, u, C), there is a transition from agnes to goal
labeled by 〈ΦC(tA, tC, t̂); cvC; ∅〉, enabling Agnes
to move to goal should Vera ever violate the bounds
on that link by failing to execute C. The guard is:
ΦC(tA, tC, t̂) =̇ (tA < t̂) ∧ (tA > u) ∧ (tC = t̂).
Next, if ~t is the vector of clocks tX such that X ∈ T , the
transition from agnes to goal labeled by 〈Ψ(~t, t̂); win; ∅〉
signals the end of the game. Ψ(~t, t̂) models that all time-
points have been executed and all constraints are satisfied:
Ψ(~t, t̂)=̇

∧
x∈T (tX < t̂) ∧

∧
Y−X≤k(tX− tY ≤ k). Last,

to model the interplay between the players, there are two
more transitions. The transition from vera to agnes labeled
by 〈tδ > 0; gain; ∅〉 enables Agnes to gain control for the
purpose of executing some free time-points—but only after
some positive delay since Vera last executed a contingent
time-point. The transition from agnes to vera labeled
by 〈>; pass; {tδ}〉 enables Agnes to immediately pass
back to vera, once she has finished executing her chosen
time-points. Crucially, no time elapses from the instant
Agnes leaves vera to the instant she returns, because agnes
is an urgent state. From Vera’s perspective, the winning
condition φ of the (safety) game is to avoid the goal state.
A counter-strategy for Agnes foils Vera by ensuring that
goal can be reached.

4 Correctness
This section presents theoretical results that confirm the cor-
rectness of the encoding, and the correspondence between
strategies for the STNU and its TGA counterpart.

Theorem 2. Let S = (T , C,L) be any STNU; and let Θ
be the encoding of S as a TGA, as described in Section 3.
Then Θ correctly captures the execution semantics for S in
the sense that any sequence of partial schedules that can
be generated for S according to the execution semantics for
STNUs corresponds to a run for Θ that can be generated by
following its transitions according to the TGA semantics.

Proof. The following invariant is proved by induction. Each
respectful partial schedule ψ that can be generated for S
corresponds to a state of Θ in which the location is vera,
tδ = 0, nowψ = t̂, for each executed time-point X ,
ψ(X) = t̂ − tX, and for each unexecuted time-point Y ,
ψ(Y) = t̂. For the base case, the initial partial schedule,
ψ0 = ∅, corresponds to the initial state of Θ in which the
location is vera, all clocks are at zero, and all time-points
are unexecuted. Note that ψ0 is trivially respectful.

Now, suppose that ψ is a respectful partial schedule that
can be generated according to the execution semantics for
STNUs, and that satisfies the hypothesized invariant. Let θ
be the corresponding state of the TGA. Since tδ = 0, the
only transitions that are immediately enabled are the loops
whereby contingent time-points are executed. These transi-
tions, if taken, correspond to the instantaneous reaction de-

cisions for Vera, in which a set Υu of one or more contingent
time-points can be executed simultaneously. However, sup-
pose that Vera does not make any such transitions at tδ = 0.
Once tδ > 0, both Agnes and Vera have transitions that
they could make at any time. For example, Vera might de-
cide to execute one or more contingent time-points when
tδ = 3. That would correspond to an RTED?-based deci-
sion, (Tu, χu), where Tu = nowψ + 3 and χu contains the
time-points to be executed. Since each transition by Vera re-
sets tδ to 0, Agnes is unable to interrupt Vera’s simultaneous
execution of contingent time-points. The resulting outcomes
are equivalent to the partial schedules that arise in Cases (1a)
and (1b) of Defn. 6. The guards on Vera’s transitions, which
enforce the durational bounds for the contingent links, en-
sure that the resulting partial schedule is respectful. Also,
when Vera’s sequence of “simultaneous” transitions com-
plete, t̂ equals the time of the most recent execution (i.e.,
nowψ + 3). In addition, for each newly executed time-point,
C, the clock tC is set to 0, ensuring that t̂ − tC equals the
execution time of C. Since both clocks will never again be
reset, this difference remains fixed forever.

On the other hand, suppose that Agnes decided to execute
the time-points in χf at an earlier time, say, nowψ + 2. This
would correspond to her making the transition to the agnes
location and instantaneously executing the time-points in χf
at that time and, then, immediately returning to the vera
location. Since agnes is an urgent state, the global clock
equals nowψ + 2 when the return transition is made. This
sequence of transitions corresponds to the partial outcomes
in Cases (2a) and (2b) in Defn. 6, where Agnes’ decision
is (Tf , χf), where Tf = nowψ + 2. Furthermore, if Vera
chooses to instantaneously execute some contingent time-
points at that same time, nowψ + 2, that will correspond to
an instantaneous reaction, as specified in Defn. 5.

Finally, if at time nowψ , Agnes and Vera both decided to
execute some time-points at time nowψ + 1, then the STNU
semantics ensures that Agnes’ time-points will be executed,
and that Vera will be able to instantaneously react, if she
chooses. This corresponds to Agnes’ transition having pri-
ority over Vera’s transition. Agnes transitions to the agnes
state, executes her time-points, and returns to the vera state,
with the global clock ending up at nowψ + 1.

Since, in all cases, the resulting state of the TGA satisfies
the desired invariant property, the result is proven.

Theorem 3. Let S be any STNU; let Θ be the encoding of
S; and let σ be a winning TGA counter-strategy for Agnes.
Then there is an equivalent RTED-based strategy for Agnes
that will ensure the satisfaction of all constraints in S no
matter how the contingent durations turn out.

Proof. Let S,Θ and σ be as described in the statement
above. Therefore, σ : L × RX>=0 → Actu ∪ {λ}, where
Actu is the set of uncontrollable actions (for Agnes).

Suppose the TGA has just entered the state, (vera, v),
where v represents the vector of clock values. As has already
been noted, for any time-point X and associated clock tX:
(1) before X executes, tX = t̂; and (2) after X executes,
tX < t̂ and the fixed difference, t̂ − tX, equals the time at

2247

which X executed. Thus, the vector of clock values speci-
fies a partial schedule, ψ. Now, suppose that nowψ < t̂ (i.e.,
that some positive time has elapsed since the last execution
event in ψ). The only way that could have happened is if the
state (vera, v) had been preceded by one or more useless
loops (i.e., loops using only the gain and pass transitions to
go back and forth between vera and agnes without execut-
ing any time-points). Let (vera, v′) be the state immediately
preceding the first such useless loop. Then for some positive
ε, v = v′ + ε (i.e., the clock values in v are ε units larger
than their corresponding values in v′). And by construction,
nowψ = v′(t̂).

Next, let D be the minimum time that can elapse
from v before the strategy σ recommends a non-
trivial transition to the agnes location. That is:
D = min{d | σ(vera, v′ + d) 6= λ, σ(agnes, v′ + d) 6= pass}.
Let v0 = v′ + D. The unique sequence of execution
transitions at the agnes location is: τ1 = σ(agnes, v0),
τ2 = σ(agnes, v1), τ3 = σ(agnes, v2), . . ., where each
vi+1 is the same as vi, except that the clock for the
just-executed time-point is 0 in vi+1. This sequence must
terminate, since there are only finitely many time-points,
and each can be executed only once. If τm is the last execu-
tion transition, it follows that pass = σ(agnes, vm). That
transition leads back to the state, (vera, vm), where vm is
the same as v′, except that the clocks for the time-points
executed by the transitions, τ1, . . . , τm, are all zero in vm.

Next, let Tf = v0(t̂) be the global time at which σ rec-
ommends its first non-trivial transition to agnes; and let
χf be the set of time-points that correspond to the execu-
tion transitions, τ1, . . . , τm. Then (Tf , χf) is an RTED for
ψ that corresponds to what the strategy σ recommends at
(vera, v′). Note that Vera may decide to instantaneously re-
act by executing some contingent time-points also at time
Tf , an outcome that is sanctioned by the execution seman-
tics for STNUs. Finally, it may happen that Vera decides to
intervene before time Tf arrives, by executing one or more
contingent time-points and effectively generating a new par-
tial schedule, ψ∗. In that case, the same procedure could be
applied to ψ∗ to generate an appropriate RTED. Since the
guard on the transition from vera to agnes requires a pos-
itive time delay, that RTED is properly prohibited from any
kind of instantaneous reaction (by Agnes).

This procedure provides a mapping from any (vera, v)
state that is reachable following the winning strategy σ. In
addition, the sequences of partial schedules generated by fol-
lowing the RTEDs correspond to runs that can be produced
by σ. Thus, the complete schedules generated by the RT-
EDs are guaranteed to satisfy all STNU constraints assum-
ing Vera observes the bounds on all contingent links.

5 Implementation and Experiments
The encoding presented in this paper has a clear theoretical
importance, but it can also be used to synthesize executable
strategies for a dynamically controllable STNU. In previous
approaches (Hunsberger 2010; 2013a), Agnes is required to
reason at run-time to decide the next action to execute. With
our STNU-to-TGA encoding, we can produce a strategy for
the TGA using classical techniques and transform it into an

executable form. In principle, it is also possible produce a
hardware circuit that implements the strategy. This is impor-
tant for domains such as spacecraft control, where the plat-
form is subject to stringent safety constraints and resource
bounds that preclude the real-time use ofO(N3) algorithms.
For such domains, the ability to synthesize a fixed but prov-
ably correct, simple-to-execute strategy is essential. In addi-
tion, avoiding the reasoner in the executor allows for the use
of existing techniques for the validation and certification of
the executor itself.

We show the feasibility of this approach by implement-
ing a proto-type toolset4 that allows for the production of
a dynamic strategy compiled into executable code starting
from an STNU. The flow of the toolset is as follows. First,
an encoder takes an STNU and produces a TGA in the for-
mat used by the UPPAAL-TIGA tool (Cassez et al. 2005).
UPPAAL-TIGA is able to solve the TGA, and returns a
counter-strategy for Agnes iff the STNU is dynamically con-
trollable. Then, a compiler takes the TGA counter-strategy
and produces a function in C code.

We ran our toolset on two sets of benchmarks for a
total of 1028 STNU instances. The first set was taken
from Cimatti et al. (2012b). The second is composed of
14 non-DC “magic-loop” instances as described by Huns-
berger (2013b) and 14 DC “near-magic-loop” instances. We
used an Intel Xeon E31270 @3.40GHz workstation setting
the timeout to 400 seconds and a memory limit of 4 GB.
We produced an executable strategy for 370 instances and
proved that 49 instances were not dynamically controllable.
The other instances reached the timeout limit.

We also designed an experiment to evaluate the speed of
the generated strategies. We implemented a program that
simulates the execution of an STNU by randomly generat-
ing durations for the contingent links and applying a given
strategy. We measured the execution time of all the 370 gen-
erated strategies running each of them on 100 randomly gen-
erated situations. The results show that the execution times
are negligible, always below 0.0003 seconds.

We highlight that the TGA check is the bottleneck of the
entire toolset and causes all the observed timeouts. Never-
theless, the presented proto-typical toolset shows the feasi-
bility of strategy synthesis using our TGA encoding.

6 Conclusion and Future Work
This paper presented a novel approach to synthesizing exe-
cution strategies for STNUs. The approach is based on a re-
duction to Timed Game Automata that we prove correct and
complete. Our encoding is linear in the size of the STNU
and allows the construction of strategies that can be directly
executed without run-time reasoning. In the future, we plan
to extend this work by customizing the synthesis technique
in order to scale up the efficiency. We also plan to general-
ize the approach to deal with disjunctive temporal networks,
for which no sound-and-complete dynamic controllability
checking algorithm has yet been presented in the literature.

4The toolset and all the benchmarks are available at: https://es.
fbk.eu/people/roveri/tests/aaai14.

2248

References
Abdeddaim, Y.; Asarin, E.; and Sighireanu, M. 2009. Sim-
ple algorithm for simple timed games. In TIME, 99–106.
Alur, R., and Dill, D. L. 1994. A theory of timed automata.
Theoretical Computer Science 126(2):183–235.
Cassez, F.; David, A.; Fleury, E.; Larsen, K. G.; and Lime,
D. 2005. Efficient on-the-fly algorithms for the analysis of
timed games. In CONCUR, 66–80.
Cesta, A.; Fratini, S.; Orlandini, A.; and Finzi, A. 2011.
Flexible plan verification: Feasibility results. Fundamenta
Informaticae 107(2–3):111–137.
Cimatti, A.; Micheli, A.; and Roveri, M. 2012a. Solving
temporal problems using SMT: strong controllability. In CP,
248–264.
Cimatti, A.; Micheli, A.; and Roveri, M. 2012b. Solv-
ing temporal problems using SMT: weak controllability. In
AAAI, 448–454.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Henzinger, T. A.; Manna, Z.; and Pnueli, A. 1991. Timed
transition systems. In REX Workshop, LNCS 600, 226–251.
Hunsberger, L. 2009. Fixing the semantics for dynamic con-
trollability and providing a more practical characterization
of dynamic execution strategies. In TIME, 155–162.
Hunsberger, L. 2010. A fast incremental algorithm for man-
aging the execution of dynamically controllable temporal
networks. In TIME, 121–128.
Hunsberger, L. 2013a. A faster execution algorithm for
dynamically controllable stnus. In TIME, 26–33.
Hunsberger, L. 2013b. Magic loops in simple temporal net-
works with uncertainty. In ICAART, 157–170.
Lewis, H. R., and Papadimitriou, C. H. 1998. Elements of
the Theorey of Computation. Prentice-Hall, Inc., 2 edition.
Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the synthesis
of discrete controllers for timed systems. In STACS, 229–
242.
Morris, P. H., and Muscettola, N. 2005. Temporal dynamic
controllability revisited. In AAAI, 1193–1198.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In IJCAI, 494–
499.
Morris, P. 2006. A structural characterization of temporal
dynamic controllability. In CP, 375–389.
Orlandini, A.; Finzi, A.; Cesta, A.; and Fratini, S. 2011. Tga-
based controllers for flexible plan execution. In KI, number
7006 in LNAI. Springer-Verlag. 233–245.
Tsamardinos, I., and Pollack, M. E. 2003. Efficient solution
techniques for disjunctive temporal reasoning problems. Ar-
tificial Intelligence 151:43–49.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. Journal of Experimental and Theoretical Artificial
Intelligence 11(1):23–45.

Vidal, T. 2000. Controllability characterization and check-
ing in contingent temporal constraint networks. In KR, 559–
570.

2249

