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Abstract

Qualitative Possibilistic Mixed-Observable MDPs (π-
MOMDPs), generalizing π-MDPs and π-POMDPs, are
well-suited models to planning under uncertainty with
mixed-observability when transition, observation and
reward functions are not precisely known and can be
qualitatively described. Functions defining the model as
well as intermediate calculations are valued in a finite
possibilistic scale L, which induces a finite belief state
space under partial observability contrary to its proba-
bilistic counterpart. In this paper, we propose the first
study of factored π-MOMDP models in order to solve
large structured planning problems under qualitative un-
certainty, or considered as qualitative approximations
of probabilistic problems. Building upon the SPUDD
algorithm for solving factored (probabilistic) MDPs,
we conceived a symbolic algorithm named PPUDD for
solving factored π-MOMDPs. Whereas SPUDD’s deci-
sion diagrams’ leaves may be as large as the state space
since their values are real numbers aggregated through
additions and multiplications, PPUDD’s ones always re-
main in the finite scale L via min and max operations
only. Our experiments show that PPUDD’s computation
time is much lower than SPUDD, Symbolic-HSVI and
APPL for possibilistic and probabilistic versions of the
same benchmarks under either total or mixed observ-
ability, while still providing high-quality policies.

Introduction

Many sequential decision-making problems under uncer-
tainty can be easily expressed in terms of Markov Deci-
sion Processes (MDPs) (Bellman 1957). Partially Observ-
able MDPs (POMDPs) (Smallwood and Sondik 1973) take
into account situations where the system’s state is not totally
visible to the agent. Finally, the Mixed Observable MDP
(MOMDP) framework (Ong et al. 2010; Araya-López et al.
2010) generalizes both previous ones by considering that
states can be expressed in terms of two parts, one visible
and the other hidden to the agent, which reduces the dimen-
sion of the infinite belief space. With regard to POMDPs, ex-
act dynamic programming algorithms like incremental prun-
ing (Cassandra, Littman, and Zhang 1997) can only solve
very small problems: many approximation algorithms have
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been proposed to speed up computations while controlling
the quality of the resulting policies (Pineau, Gordon, and
Thrun 2003; Smith and Simmons 2004; Kurniawati, Hsu,
and Lee 2008). In this paper, we proceed quite differently:
we start with an approximated qualitative model that we ex-
actly solve.

Qualitative possibilistic MDPs (π-MDPs), POMDPs (π-
POMDPs) and more broadly MOMDPs (π-MOMDPs) were
introduced in (Sabbadin 2001; Sabbadin, Fargier, and Lang
1998; Sabbadin 1999; Drougard et al. 2013). These pos-
sibilistic counterparts of probabilistic models are based
on Possibility Theory (Dubois and Prade 1988) and more
specifically on Qualitative Decision Theory (Dubois, Prade,
and Sabbadin 2001; Dubois and Prade 1995). A possibil-
ity distribution, classically models imprecision or lack of
knowledge about the model. Links between probabilities
and possibilities are theoretically well-understood: possibil-
ities and probabilities have similar behaviors for problems
with low entropy probability distributions (Dubois et al.
2004). Using Possibility Theory instead of Probability The-
ory in MOMDPs necessarily leads to an approximation of
the initial probabilistic model (Sabbadin 2000), where prob-
abilities and rewards are replaced by qualitative statements
that lie in a finite scale (as opposed to continuous ranges in
the probabilistic framework), which results in simpler com-
putations. Furthermore, in presence of partial observability,
this approach benefits from computations on finite belief
state spaces, whereas probabilistic MOMDPs tackle infinite
ones. It means that the same algorithmic techniques can be
used to solve π-MDPs, π-POMDPs or π-MOMDPs. What
is lost in precision of the uncertainty model is saved in com-
putational complexity.

Nevertheless, existing works on π-(MO)MDPs do not to-
tally take advantage of the problem structure, i.e. visible or
hidden parts of the state can be themselves factored into
many state variables, which are flattened by current possi-
bilistic approaches. In probabilistic settings, factored MDPs
and Symbolic Dynamic Programming (SDP) frameworks
(Boutilier, Dearden, and Goldszmidt 2000; Hoey et al. 1999)
have been extensively studied in order to reason directly at
the level of state variables rather than state space in exten-
sion. However, factored probabilistic MOMDPs have not yet
been proposed to the best of our knowledge, probably be-
cause of the intricacy of reasoning with a mixture of a finite
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state subspace and an infinite belief state subspace due to the
probabilistic model – contrary to the possibilistic case where
both subspaces are finite. The famous algorithm SPUDD
(Hoey et al. 1999) solves factored probabilistic MDPs by us-
ing symbolic functional representations of value functions
and policies in the form of Algebraic Decision Diagrams
(ADDs) (Bahar et al. 1997), which compactly encode real-
valued functions of Boolean variables: ADDs are directed
acyclic graphs whose nodes represent state variables and
leaves are the function’s values. Instead of updating states
individually at each iteration of the algorithm, states are ag-
gregated within ADDs and operations are symbolically and
directly performed on ADDs over many states at once. How-
ever, SPUDD suffers from manipulation of potentially huge
ADDs in the worst case: for instance, expectation involves
additions and multiplications of real values (probabilities
and rewards), creating other values in-between, in such a
way that the number of ADD leaves may equal the size of the
state space, which is exponential in the number of state vari-
ables. Therefore, the work presented here is motivated by
the simple observation that symbolic operations with possi-
bilistic MDPs would necessarily limit the size of ADDs: in-
deed, this formalism operates over a finite possibilistic scale
L with only max and min operations involved, which im-
plies that all manipulated values remain in L.

This paper begins with a presentation of the π-MOMDP
framework. Then we present our first contribution: a Sym-
bolic Dynamic Programming algorithm for solving factored
π-MOMDPs named Possibilistic Planning Using Decision
Diagram (PPUDD). This contribution alone is insufficient,
since it relies on a belief-state variable whose number of
values is exponential in the size of the state space. There-
fore, our second contribution is a theorem to factorize the
belief state itself in many variables under some assumptions
about dependence relationships between state and observa-
tion variables of a π-MOMDP, which makes our algorithm
more tractable while still exact and optimal. Finally, we ex-
perimentally assess our approach on possibilistic and proba-
bilistic versions of the same benchmarks: PPUDD against
SPUDD and APRICODD (St-aubin, Hoey, and Boutilier
2000) under total observability to demonstrate that gener-
ality of our approximate approach does not penalize perfor-
mances on restrictive submodels; PPUDD against symbolic
HSVI (Sim et al. 2008) and APPL (Kurniawati, Hsu, and
Lee 2008; Ong et al. 2010) under mixed-observability.

Qualitative Possibilistic MOMDPs

Qualitative Possibilistic Mixed-Observable MDPs (π-
MOMDPs) have been first formulated in (Drougard et al.
2013). Let us define L = {0, 1

k , . . . ,
k−1
k , 1}, the fixed pos-

sibilistic scale (k ∈ N∗). A possibility distribution over the
state space S is a function π : S → L which verifies the pos-
sibilistic normalization: maxs∈S π(s) = 1. This distribution
ranks plausibilities of events: π(s) < π(s�) means that s is
less plausible than s�. A π-MOMDP is defined by a tuple
�S = Sv × Sh,A,L, Tπ,O,Ωπ, µ� where:

• S = Sv ×Sh is a finite set of states composed of states in
Sv visible to the agent and states in Sh hidden to it;

• A is a finite set of actions;
• Tπ : S ×A × S �→ L is a possibility transition function

s.t. Tπ(s, a, s�) = π (s� | s, a ) is the possibility degree of
reaching state s� when applying action a in state s;

• O is a finite set of observations;
• Ωπ : S × A × O �→ L is an observation function s.t.
Ωπ(s�, a, o�) = π (o� | s�, a ) is the possibility degree of
observing o� when applying action a in state s�;

• µ : S �→ L is a preference distribution that models quali-
tative agent’s goals, i.e. µ(s) < µ(s�) means that s is less
preferable than s�.

The influence diagram of a π-MOMDP is depicted in Fig-
ure 1. This framework includes totally and partially observ-
able problems: π-MDPs are π-MOMDPs with S = Sv (state
is entirely visible to the agent); π-POMDPs are π-MOMDPs
with S = Sh (state is entirely hidden).

The state’s hidden part may initially not be entirely
known: an estimation can be however available, expressed
in terms of a possibility distribution β0 : Sh → L called
initial possibilistic belief state. For instance, if ∀sh ∈ Sh,
β0(sh) = 1, the initial hidden state is completely unknown;
if ∃sh ∈ Sh such that ∀sh ∈ Sh, β0(sh) = δsh,sh (Kro-
necker delta), the initial hidden state is known to be sh.
Let us use the prime notation to label the symbols at the
next time of the process (e.g. β� for the next belief) and
the unprime one at the current time (e.g. a for the current
action). By using the possibilistic version of Bayes’ rule
(Dubois and Prade 1990), the belief state’s update under
mixed-observability is (Drougard et al. 2013) ∀s�h ∈ Sh:

β�(s�h) =

�
1 if s�h∈ argmax

s�h∈Sh

π (o�, s�v, s
�
h | sv,β, a )> 0

π (o�, s�v, s
�
h | sv,β, a ) otherwise,

(1)
denoted by β� = U(β, a, sv, s�v, o

�). The set of all beliefs
over Sh is denoted by Bπ . Note that Bπ

is finite of size

#L#Sh − (#L− 1)#Sh unlike continuous probabilistic be-
lief spaces B � [0, 1]Sh . It yields a belief finite-state π-MDP
over Sv × Bπ , named state space accessible to the agent,
whose transitions are (Drougard et al. 2013):
π (s�v,β

�
| sv,β, a ) = max

s�h∈Sh

o�|β�=U(β,a,sv,s
�
v,o

�)

π (o�, s�v, s
�
h | sv,β, a ) .

Finally, preference over (sv,β) is defined such that this
paired state is considered as good if it is necessary (accord-
ing to β) that the system is in a good state: µ(sv,β) =
min
sh∈Sh

max {µ(sv, sh), 1− β(sh)} .

A stationary policy is defined as a function δ : Sv×Bπ →

A and the set of such policies is denoted by ∆. For t ∈ N,

st st+1
π (st+1 | st, at )

π (ot | st, at−1 )
π (ot+1 | st+1, at )

sv,t sv,t+1

sh,t sh,t+1

atat−1

ot ot+1

Figure 1: Dynamic influence diagram of a (π-)MOMDP
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the set of t-length trajectories starting in state x = (sv,β) ∈
Sv × Bπ by following policy δ is denoted by T δ

t (x). For a
trajectory τ ∈ T δ

t (x), τ(t�) is the state visited at time step
t� � t and its quality is defined as the preference of its ter-
minal state: µ(τ) = µ(τ(t)). The value (or utility) function
of a policy δ in a state x = (sv,β) ∈ Sv × Bπ is defined as
the optimistic quality of trajectories starting in x:

V δ(x) =
+∞
max
t=0

max
τ∈T (δ)

t (x)
min{π(τ | x0 = x, δ), µ(τ(t))}

By replacing max by
�

and min by ×, one can easily
draw a parallel with probabilistic MDPs’ expected criterion
with terminal rewards. The optimal value function is defined
as: V ∗(x) = maxδ∈∆ V δ(x) , x = (sv,β) ∈ Sv × Bπ .
As proved in (Drougard et al. 2013), there exists an opti-
mal stationary policy δ∗ ∈ ∆, which is optimal over all
history-dependent policies and independent from the ini-
tial state, which can be found by dynamic programming if

there exists an action a such that π (s�v,β
� | sv,β, a ) =

δ(sv,β),(s�v,β�) (Kronecker delta). This assumption is satis-
fied if π (s� | s, a ) = δs,s� (state does not change) and
π (o� | s�, a ) = 1 ∀s�, o� (agent does not observe). Action
a is similar to the discount factor in probabilistic MOMDPs;
it allows the following dynamic programming equation to
converge in at most #Sv × #Bπ iterations to the optimal
value function V ∗:

V ∗
t+1(x) = max

a∈A
max

x�∈Sv×Bπ
min{π(x�

| x, a), V ∗
t (x

�)}, (2)

with initialization V ∗
0 (x) = µ(x). This hypothesis is yet

not a constraint in practice: in the returned optimal policy
δ∗, action a is only used for goals whose preference de-
gree is greater than possibility degree of transition to better
goals. For a given action a and state s, we note qa(x) =
maxx�∈Sv×Bπ min{π(x� | x, a), V ∗

t (x
�)} which is known

as the Q-value function.
This framework does not consider sv nor β to be them-

selves factored into variables, meaning that it does not tackle
factored π-MOMDPs. In the next section, we present our
first contribution: the first symbolic algorithm to solve fac-
tored possibilistic decision-making problems.

Solving factored π-MOMDPs using symbolic

dynamic programming

Factored MDPs (Hoey et al. 1999) have been used to ef-
ficiently solve structured sequential decision problems un-
der probabilistic uncertainty, by symbolically reasoning on
functions of states via decision diagrams rather than on in-
dividual states. Inspired by this work this section sets up
a symbolic resolution of factored π-MOMDPs, which as-
sumes that Sv , Sh and O are each cartesian products of vari-
ables. According to the previous section, it boils down to
solving a finite-state belief π-MDP whose state space is in
the form of Sv,1 × · · · × Sv,m × Bπ , where each of those
state variable spaces is finite. We will see in the next section
how Bπ can be further factorized thanks to the factoriza-
tion of Sh and O. While probabilistic belief factorization in
(Boyen and Koller 1999; Shani et al. 2008) is approximate,

t t + 1

X1

X2
...

X �
1

X �
2...atat−1

T a,1

T a,2

Figure 2: DBN of a factored π-MDP

the one presented here relies on some assumptions but is ex-
act. For now, as finite state variable spaces of size K can
be themselves factored into �log2 K� binary-variable spaces
(see (Hoey et al. 1999)), we can assume that we are reason-
ing about a factored belief-state π-MDP whose state space
is X = (X1, . . . , Xn), n ∈ N∗ and ∀i,#Xi = 2.

Dynamic Bayesian Networks (DBNs) (Dean and
Kanazawa 1989) are a useful graphical representation of
process transitions, as depicted in Figure 2. In DBN seman-
tics, parents(X �

i) is the set of state variables on which X �
i

depends. We assume that parents(X �
i) ⊂ X , but methods

are discussed in the literature to circumvent this restrictive
assumption (Boutilier 1997). In the possibilistic settings,
this assumption allows us to compute the joint possibility
transition as π (s�v,β

� | sv,β, a ) = π (X � | X, a ) =
minni=1 π (X �

i | parents(X
�
i), a ). Thus, a factored π-

MOMDP can be defined with transition functions T a,i =
π (X �

i | parents(X
�
i), a ) for each action a and variable X �

i .
Each transition function can be compactly encoded in an
Algebraic Decision Diagram (ADD) (Bahar et al. 1997).
An ADD, as illustrated in Figure 3a, is a directed acyclic
graph which compactly represents a real-valued function
of binary variables, whose identical sub-graphs are merged
and zero-valued leaves are not memorized. The possibilistic
update of dynamic programming, i.e. Equation 2, can be
rewritten in a symbolic form, so that states are now globally
updated at once instead of individually ; the Q-value of
an action a ∈ A can be decomposed into independent
computations thanks to the following proposition:
Proposition 1. Consider the current value function V ∗

t :
{0, 1}p → L. For a given action a ∈ A, let us define:
- qa0 = V ∗

t (X
�
1, · · · , X

�
n),

- qai = maxX�
i∈{0,1} min

�
(X �

i | parents(X
�
i), a ) , q

a
i−1

�
,

Then, the possibilistic Q-value of action a is: qa = qan .

Proof.
qa = max

(s�v,β�)∈Sv×Bπ
min{π(s�v, β

�|sv, β, a), V ∗
t (s�v, β

�)}

= max
X�∈Sv×Bπ

min
� n
min
i=1

π
�
X�

i

�� parents(X�
i), a

�
, V ∗

t (X�)
�

= max
X�

n∈{0,1}
min

�
π
�
X�

n

�� parents(X�
n), a

�
, · · ·

max
X�

2∈{0,1}
min

�
π
�
X�

2

�� parents(X�
2), a

�
,

max
X�

1∈{0,1}
min{π

�
X�

1

�� parents(X�
1), a

�
,V ∗

t (X�)}
�
· · ·

�

where the last equation is due to the fact that, for any vari-
ables x, y ∈ X ,Y finite spaces, and any functions ϕ : X →

L and ψ : Y → L, we have:

max
y∈Y

min{ϕ(x),ψ(y)} = min{ϕ(x),max
y∈Y

ψ(y)}

The Q-value of action a, represented as an ADD, can be
then iteratively regressed over successive post-action state
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true false

X �
1

1
X1

X2
1
3

2
3

(a) ADD en-
coding T a,1

of Fig. 2

✄✂ �✁min
�

X �
1

X �
20

2
3 1

,

X �
1

1
X1

X2
1
3

2
3

�

=

X �
1

X1

X2

1
3

2
3

0
−−−−−−→✄✂ �✁max

X�
1

X1

X2

1
3

2
3

(b) Symbolic regression of the current Q-value
ADD combined with the transition ADD of
Figure 3a

Figure 3: Algebraic Decision Diagrams for PPUDD

variables X �
i, 1 � i � n. The following notations are used to

make it explicit that we are working with symbolic functions
encoded as ADDs:
-
✄✂ �✁min {f, g } where f and g are 2 ADDs;

-
✄✂ �✁max

Xi
f =

✄✂ �✁max
�
fXi=0, fXi=1

�
, which can be easily

computed because ADDs are constructed on the basis of the
Shannon expansion: f = Xi · fXi=0 + Xi · fXi=1 where
fXi=1 and fXi=0 are sub-ADDs representing the positive
and negative Shannon cofactors (see Fig. 3a).

Figure 3b illustrates the possibilistic regression of the Q-
value of an action for the first state variable X1 and leads
to the intuition that ADDs should be far smaller in practice
under possibilistic settings, since their leaves lie in L instead
of R, thus yielding more sub-graph simplifications.

Algorithm 1 is a symbolic version of the π-MOMDP
Value Iteration Algorithm (Drougard et al. 2013), which re-
lies on the regression scheme defined in Proposition 1. In-
spired by SPUDD (Hoey et al. 1999), PPUDD means Possi-
bilistic Planning Using Decision Diagrams. As for SPUDD,
it needs to swap unprimed state variables to primed ones in
the ADD encoding the current value function before com-
puting the Q-value of an action a (see Line 5 of Algorithm 1
and Figure 3b). This operation is required to differentiate the
next state represented by primed variables from the current
one when operating on ADDs.

We mentioned at the beginning of this section that be-
lief variable Bπ could be transformed into �log2 K� binary
variables where K = #L#Sh − (#L − 1)#Sh . However,

Algorithm 1: PPUDD
1 V ∗ ← 0 ; V c ← µ ; δ ← a ;
2 while V ∗ �= V c

do

3 V ∗ ← V c ;
4 for a ∈ A do

5 qa ← swap each Xi variable in V ∗ with X �
i ;

6 for 1 � i � n do

7 qa←
✄✂ �✁min {qa,π(X �

i | parents(X
�
i), a )} ;

8 qa ←
✄✂ �✁max

X�
i
qa ;

9 V c ←
✄✂ �✁max {qa, V c } ;

10 update δ to a where qa = V c and V c > V ∗ ;

11 return (V ∗, δ) ;

this K can be very large so we propose in the next section
a method to exploit the factorization of Sh and O in order
to factorize Bπ itself into small belief subvariables, which
will decompose the possibilistic transition ADD into an ag-
gregation of smaller ADDs. Note that PPUDD can solve π-
MOMDPs even if this belief factorization is not feasible, but
it will manipulate bigger ADDs.

π-MOMDP belief factorization

Factorizing the belief variable requires three structural as-
sumptions on the π-MOMDP’s DBN, which are illustrated
by the Rocksample benchmark (Smith and Simmons 2004).

Motivating example. A rover navigating in a N ×N grid
has to collect scientific samples from interesting (“good”)
rocks among R ones and then to reach the exit. It is fitted
with a noisy long-range sensor that can be used to determine
if a rock is “good” or not:
- Sv consists of all the possible locations of the rover in ad-
dition to the exit (#Sv = N2 + 1),
- Sh consists of all the possible natures of the rocks (Sh =
Sh,1 × . . .× Sh,R with ∀1 � i � R, Sh,i = {good, bad}),
- A contains the (deterministic) moves in the 4 directions,
checking rock i ∀1 � i � R and sampling the current rock,
- O = {ogood, obad } are the possible sensor’s answers for
the current rock.

The more the rover is close to the checked rock, the better
it observes its nature. The rover gets the reward +10 (resp.
−10) for each good (resp. bad) sampled rock, and +10 when
it reaches the exit.

In the possibilistic model, the observation function is ap-
proximated using a critical distance d > 0 beyond which
checking a rock is uninformative: π (o�i | s

�
i, a, sv ) = 1

∀o�i ∈ Oi. The possibility degree of erroneous observation
becomes zero if it stands at the checked rock, and lowest non
zero possibility degree otherwise. Finally, as possibilistic se-
mantics does not allow sums of rewards, an additional visi-
ble state variable sv,2 ∈ {1, . . . , R} which counts the num-
ber of checked rocks is introduced. Preference µ(s) equals
qualitative dislike of sampling R+2−sv,2

R+2 if all rocks are bad
and location is terminal, zero otherwise. The location of the
rover is finally denoted by sv,1 ∈ Sv,1 and the visible state
is then sv = (sv,1, sv,2) ∈ Sv,1 × Sv,2 = Sv .

Observations {ogood, obad } for the current rock can be
equivalently modeled as a cartesian product of observations
{ogood1 , obad1 }× · · ·× {ogoodR , obadR } for each rock. By
using this equivalent modeling, state and observation spaces
are both respectively factored as Sv,1× . . .×Sv,m×Sh,1×

. . . × Sh,l and O = O1 × . . . × Ol, and we can now map
each observation variable oj ∈ Oj to its hidden state vari-
able sh,j ∈ Sh,j . It allows us to reason about DBNs in the
form of Figure 4, which expresses three important assump-
tions that will help us factorize the belief state itself:
1. all state variables sv,1, sv,2, . . . , sh,1, sh,2, . . . are inde-
pendent post-action variables (no arrow between two state
variables at the same time step, e.g. sv,2 and sh,1);
2. a hidden variable does not depend on previous other hid-
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t t + 1

sv,1

sv,2
...

s�v,1

s�v,2
...

sh,1

sh,2
...

s�h,1

s�h,2
...

atat−1
o1

o2
o�1

o�2

Figure 4: DBN of a factored belief-independent π-MOMDP

den variables: the nature of a rock is independent from the
previous nature of other rocks (e.g. no arrow from sh,1 to
s�h,2);
3. an observation variable is available for each hidden state
variable. It does not depend on other hidden state variables
nor current visible ones, but on previous visible state vari-
ables and action (e.g. no arrow between s�h,1 and o�2, nor be-
tween s�v,1 and o�1). Each observation variable is indeed only
related to the nature of the corresponding rock.

Formalization. To formally demonstrate how the three
previous independence assumptions can be used to factor-
ize Bπ , let us recursively define the history (ht)t�0 of a π-
MOMDP as: h0 = {β0, sv,0 } and for each time step t � 1,
ht = {ot, sv,t, at−1, ht−1 }. We first prove in the next theo-
rem that the current belief can be decomposed into marginal
beliefs dependent on history ht via the min aggregation:

Theorem 1. If sh,1, . . . , sh,l are initially independent, then
at each time step t > 0 the belief over hidden states can be

written as βt =
l

min
j=1

βj,t with ∀sh,j ∈ Sh,j , βj,t(sh,j) =

π (sh,j | ht ) the belief over Sh,j .

Proof. First sh,1, . . . , sh,l are initially independent, then

∃ (β0,j )
l
j=1 such that β0(sh) =

l
min
j=1

β0,j(sh,j). The inde-

pendence between hidden variables conditioned on the his-
tory can be shown using the d-separation relationship (Pearl
1988) used for example in (Witwicki et al. 2013). In fact,
as shown in Figure 4, given 1 � i < j � l, s�h,i and
s�h,j are d-separated by the evidence ht+1 recursively rep-
resented by the light-gray nodes. Thus π (s�h | ht+1 ) =

l
min
j=1

π
�
s�h,j

�� ht+1

�
i.e. βt(s

�
h) =

l
min
j=1

βj,t(s
�
h,j). Note

however that it would not be true if the same observation
variable o would have concerned two different hidden state
variables sh,p and sh,q: as o is part of the history, there would
be a convergent (towards o) relationship between sh,p and
sh,q and the hidden state variable would have been depen-
dent (because d-connected) conditioned on history. More-
over if hidden state variable s�h,p could depend on previous
hidden state variable sh,q , then s�h,p and s�h,q would have
been dependent conditioned on history because d-connected
through sh,q .

Thanks to the previous theorem, the state space acces-
sible to the agent can now be rewritten as Sv,1 × . . . ×
Sv,m ×Bπ

1 × · · ·×Bπ
l with Bπ

j � LSh,j . The size of Bπ
j is

#L#Sh,j − (#L− 1)#Sh,j . If all state variables are binary,
#Bπ

j = 2#L − 1 for all 1 � i � l, so that #Sv × Bπ =

2m(2#L − 1)l: contrary to probabilistic settings, hidden

state variables and visible ones have a similar impact

on the solving complexity, i.e. both singly-exponential in
the number of state variables. In the general case, by noting
κ = max{max1�i�m #Sv,i,max1�j�l #Sh,j}, there are
O(κm(#L)(κ−1)l) flattened belief states, which is indeed
exponential in the arity of state variables too.

It remains to prove that sv,1, . . . , sv,m,β1, . . . ,βl

are independent post-action variables. This result is
based on Lemma 1, which shows how marginal be-
liefs are actually updated. For this purpose, we re-
cursively define the history concerning hidden vari-
able sh,j : hj,0 = {βj,0 } and ∀t � 0, hj,t+1 =

{oj,t+1, sv,t, at, hj,t }. We note π
�
o�j , s

�
h,j

��� sv,βj , a
�
=

max
sh,j

min
�
π
�
o�j
��s�h,j , sv, a

�
,π

�
s�h,j

��sv, sh,j , a
�
,βj(sh,j)

�
:

Lemma 1. If the agent is at time t in visible state sv , with a
belief over jth hidden state βj,t, executes action a and then
gets observation o�j , the update of the belief state over Sh,j

is: βj,t+1(s�h,j)

=






1 if s�h,j ∈ argmax
s�h,j∈Sh,j

π
�
o�j , s

�
h,j

�� sv,βj,t, a
�
>0

π
�
o�j , s

�
h,j

��� sv,βj,t, a
�

otherwise.
(3)

Proof. First note that sh,j and {om,s }s�t,m �=j ∪ {sv,t }
are d-separated by hj,t then sh,j is independent
on {om,s }s�t,m �=j ∪ {sv,t } conditioned on hj,t:
π (sh,j | ht ) = π (sh,j | hj,t ). Then, possibilistic Bayes’
rule as in Equation 1 yields the intended result.

Finally, Theorem 2 relies on Lemma 1 to ensure indepen-
dence of all post-action state variables of the belief π-MDP,
which allows us to write the possibilistic transition function
of the belief-state π-MDP in a factored form:
Theorem 2. ∀β,β� ∈ B, ∀sv, s�v ∈ Sv , ∀a ∈ A,
π (s�v,β

� | sv,β, a )

= min

�
m
min
i=1

π
�
s�v,i

�� sv,β, a
�
,

l
min
j=1

π
�
β�
j

�� sv,βj , a
��

Proof. Observation variables are independent given the past
(d-separation again). Moreover, we proved in Lemma 1 that
updates of each marginal belief can be performed indepen-
dently on other marginal beliefs, but depends on the cor-
responding observation only. Thus, we conclude that the
marginal belief state variables are independent given the
past. Finally as s�v and o� are independent given the past,
π (s�v,β

�
| sv,β, a )= max

o�|β�=U(β,a,sv,o�)
π (s�v, o

�
| sv,β, a )

= min

�
π (s�v | sv,β, a ) , max

o�|β�=U(β,a,sv,o�)
π (o� | sv,β, a )

�

= min {π (s�v | sv,β, a ) ,π (β� | sv,β, a )} which con-
cludes the proof.
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Figure 5: PPUDD vs. SPUDD on the navigation domain

Experimental results

In this section, we compare our approach against proba-
bilistic solvers in order to answer the following question:
what is the efficacy/quality tradeoff achieved by reasoning
about an approximate model but with an exact efficient al-
gorithm? Despite radically different methods, possibilistic
policies and probabilistic ones are both represented as ADDs
that are directly comparable and statistically evaluated under
identical settings i.e. transition and reward functions defined
by the probabilistic model.

We first assessed PPUDD performances on totally ob-
servable factored problems since PPUDD is also the first
algorithm to solve factored π-MDPs (by inclusion in π-
MOMDPs). To this end, we compared PPUDD against
SPUDD on the navigation domain used in planning com-
petitions (Sanner 2011). In this domain, a robot navigates
in a grid where it must reach some goal location most re-
liably. It can apply actions going north, east, south, west
and stay which all cost 1 except on the goal. When mov-
ing, it can suddenly disappear with some probability defined
as a Bernoulli distribution. This probabilistic model is ap-
proximated by two possibilistic ones where: the preference
of reaching the goal is 1; in the first model (M1) the high-
est probability of each Bernoulli distribution is replaced by
1 (for possibility normalization reasons) and the same value
for the lowest probability is kept; for the second model (M2),
the probability of disappearing is replaced by 1 and the other
one is kept. Figure 5a shows that SPUDD runs out of mem-
ory from the 6th problem, and PPUDD computation’s time
outperforms SPUDD’s one by many orders of magnitude for
the two models. Intuitively, this result comes from the fact
that PPUDD’s ADDs should be smaller because their leaves’
values are in the finite scale L rather than R, which is in-
deed demonstrated in Figure 5b. Performances were evalu-
ated with two relevant criteria: frequency of runs where the
policy reaches the goal (see Figure 5c), and average length
of execution runs that reach the goal (see Figure 5d), that
are both functions of the problem’s instance. As expected,
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Figure 6: PPUDD vs. APPL and symb HSVI (RS)

model (M2) is more cautious than model (M1) and gets a
better goal-reached frequency (similar to SPUDD’s one for
the instances it can solve). The later is more optimistic and
gets a better average length of execution runs than model
(M2) due to its dangerous behavior. For fairness reasons,
we also compared ourselves against APRICODD, which is
an approximate algorithm for factored MDPs: parameters
impacting the approximation are hard to tune (either huge
computation times, or zero qualities) and it is largely out-
performed by PPUDD in both time and quality whatever the
parameters (curves are not shown since uninformative).

Finally, we compared PPUDD on the Rocksample prob-

lem (RS) against a recent probabilistic MOMDP planner,
APPL (Ong et al. 2010), and a POMDP planner using
ADDs, symbolic HSVI (Sim et al. 2008). Both algorithms
are approximate and anytime, so we decided to stop them
when they reach a precision of 1. Figure 6a, where problem
instances increase with grid size and number of rocks, shows
that APPL runs out of memory at the 8th problem instance,
symbolic HSVI at the 7th one, while PPUDD outperforms
them by many orders of magnitude.

Instead of precision, computation time of APPL can be
fixed at PPUDD’s computation time in order to compare
their expected total rewards after they consumed the same
CPU time. Surprisingly, Figure 6b shows that rewards gath-
ered are higher with PPUDD than with APPL. The reason
is that APPL is in fact an approximate probabilistic planner,
which shows that our approach consisting in exactly solv-
ing an approximate model can outperform algorithms that
approximately solve an exact model.

Conclusion

We presented PPUDD, the first algorithm to the best of
our knowledge that solves factored possibilistic (MO)MDPs
with symbolic calculations. In our opinion, possibilistic
models are a good tradeoff between non-deterministic ones,
whose uncertainties are not at all quantified yielding a very
approximate model, and probabilistic ones, where uncertain-
ties are fully specified. Moreover, π-MOMDPs reason about
finite values in a qualitative scale L whereas probabilistic
MOMDPs deal with values in R, which implies larger ADDs
for symbolic algorithms. Also, the former reduce to finite-
state belief π-MDPs contrary to the latter that yield contin-
uous-state belief MDPs of significantly higher complexity.
Our experimental results highlight that using an exact algo-
rithm (PPUDD) for an approximate model (π-MDPs) can
bring significantly faster computations than reasoning about
exact models, while providing better policies than approxi-
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mate algorithms (APPL) for exact models. In the future, we
would like to generalize our possibilistic belief factorization
theory to probabilistic settings.
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