
Parametrized Families of Hard
Planning Problems from Phase Transitions

Eleanor G. Rieffel, Davide Venturelli, Minh Do,
Itay Hen and Jeremy Frank

NASA Ames Research Center
Moffett Field, CA 94035

Abstract

There are two complementary ways to evaluate plan-
ning algorithms: performance on benchmark problems
derived from real applications and analysis of per-
formance on parametrized families of problems with
known properties. Prior to this work, few means of gen-
erating parametrized families of hard planning prob-
lems were known. We generate hard planning problems
from the solvable/unsolvable phase transition region
of well-studied NP-complete problems that map natu-
rally to navigation and scheduling, aspects common to
many planning domains. We observe significant differ-
ences between state-of-the-art planners on these prob-
lem families, enabling us to gain insight into the relative
strengths and weaknesses of these planners. Our results
confirm exponential scaling of hardness with problem
size, even at very small problem sizes. These families
provide complementary test sets exhibiting properties
not found in existing benchmarks.

Introduction
The construction of efficient general-purpose planners has
been the holy grail for the planning community since the
inception of the field. Benchmark problems enable the eval-
uation of progress toward this goal. Currently, most bench-
mark planning problems are designed by extracting solvable
problems from real-world applications. This approach has
the benefit of tuning algorithms toward the applications from
which the problems are obtained. The drawbacks include:
(1) It is hard to determine what makes a domain hard or easy
for certain planners. (2) It is hard to predict the performance
of a given planner on new domains with novel structure. (3)
There are polynomial-time algorithms for certain domains
(Helmert 2003; Hoffmann 2005). (4) Evaluation takes place
only on problems known to be solvable, which does not re-
flect most real-world applications.

A complementary approach is to design parametrized
families of planning problems that contain instances that can
be shown to be intrinsically hard in the typical case. This
approach has certain advantages: (1) It supports analysis as
to which types of planning problems, and which aspects of
these problems, are hard or easy for certain planners and

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

why. (2) It is meaningful to say that even quite small prob-
lems, ones that can be solved quickly by many planners,
are hard because they are part of a hard family. (3) Anal-
ysis of the behavior of planners on these small problems
can highlight strengths and weaknesses of various planners
and planning algorithms, give reasons for these strengths
and weaknesses, and enable prediction of the performance
of these algorithms on much larger instances. To date, how-
ever, parametrized families of hard planning problems have
been hard to find, and few were known prior to this work.

Our aim is to establish parameterized sets of planning
problems that (1) are intrinsically hard, and therefore chal-
lenging for all planners and types of planning algorithms; (2)
are controllable by parameters that provide an exponential
increase in problem hardness with linear size increase, and
enable the establishment of small planning problems as hard
instances (3) have explainable reasons for their hardness; (4)
contain structures that exist in planning and scheduling do-
mains of practical importance.

For many NP-complete problems, phase transitions from
almost always solvable to almost always unsolvable have
been observed, with the transition becoming sharper as the
size of the problems increases. Hard problems tend to lie at
the phase transition threshold (Cheeseman, Kanefsky, and
Taylor 1991). Some NP-complete problems naturally lend
themselves to planning problems. Here, we derive planning
problems from well-studied graph-theoretic problems for
which phase transition results are known, and for which the
hardness of the problems at the threshold has been confirmed
in empirical studies. The parametrized families of planning
problems we designed fall into two classes: navigation-style
families of planning problems derived from Hamiltonian
path problems, and scheduling-style families derived from
graph coloring problems. Many real-world applications of
planning have aspects of both navigation and scheduling.

Our contributions include: (1) Benchmark sets of navi-
gation and scheduling type planning problems derived from
well-known combinatorial problems that exhibit phase tran-
sitions. (2) Hard problems of arbitrary size, including small
instance involving only 10-40 grounded actions, two to
three orders of magnitude smaller than typicial benchmark
problems which involve thousands or tens of thousands of
grounded actions. (2) Unsolvable as well as solvable prob-
lems. (3) Investigation of phase-transition in planning, using

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2337

contemporary state-of-the-art planners. (4) Insights into the
relative strengths and weaknesses of these planners.

Related work
Phase transitions in combinatorial optimization problems
have long been recognized (Huberman and Hogg 1987),
with hard problem instances generally found at these phase
transitions (Cheeseman, Kanefsky, and Taylor 1991; Sel-
man, Mitchell, and Levesque 1996). Bylander (Bylander
1996) investigated phase transitions in planning by gener-
ating random planning problems with the ratio of actions
to state variables as the control parameter. He found that
the probability of a instance having a plan was almost 0
for small ratios (too few actions) and almost 1 for large ra-
tios (too many actions). In this pioneering work, Bylander
used very simple algorithms, far from the sophisticated algo-
rithms of current state-of-the-art planners, to show the easi-
ness of determining solvability or unsolvability far from the
phase-transition region. He did not investigate the computa-
tional difficulty at the phase transition for realistic planning
algorithms. Also, his phase transition was not sharp because
key differences between random graphs and state-space tran-
sition graphs in planning mean that his problems had more
regularity than is ideal.

Slaney & Thiebaux (Slaney and Thiebaux 1998) inves-
tigated phase transitions for both optimization and deci-
sion problems in the popular BlocksWorld planning bench-
mark domain. Their empirical evaluation identified phase-
transitions at certain ratios of the number of towers in the
goal configuration to the total number of blocks. Their use
of a search strategy customized to this domain means that
it does not truly resemble algorithms employed by current
state-of-the-art planners, and so the result is not conclusive.

Subsequently, Rintanen (Rintanen 2004) improved upon
the early work by Bylander (Bylander 1996). His analysis
focused on problems within the phase-transition region in-
stead of in the easy regions. He also introduced two alterna-
tive models with additional restrictions to eliminate the most
trivially unsolvable instances. Unlike the previous work, he
used state-of-the-art planners for the empirical evaluation.
The results show the easy-hard-easy behavior for the FF
planner, but is not conclusive for the other two planners
(LPG and SP). While the problems generated are better than
those in Bylander’s pioneering work, they do not represent
identifiable aspects typical of real-world planning domains.

More recently, Rintanen (Rintanen 2012a) generated
parametrized families of hard planning instances that differ
from the previous work on several fronts. First, he generated
only proven solvable instances. Second, instead of originat-
ing from random graphs, the hardness of this family is based
on controlling the number of directed paths from the initial
state to the goal states. Unlike our problems, his do not en-
capsulate well-recognized structures essential to many plan-
ning applications. Also, as shown in our results section, our
problems are much harder than his at small instance sizes.

Porco et al. (Porco, Machado, and Bonet 2011) developed
a tool for translating NP-complete problems into planning
problems, specifically STRIPS fragments. While they ap-
plied their tool to the directed Hamiltonian path problem

and the graph coloring problem, among others, they did not
look specifically at problems in the phase transition region.
Moreover, while they used the M planner to test the PDDL
problems generated by the tool, we are interested in planner
analysis and understanding the relative strengths and weak-
nesses of multiple planners on hard parameterized planning
problems. Rintanen (Rintanen 2012b), extending the work
of Porco et al., compares the performance of many planners
on a large number of problems, including some problems
translated from NP-complete problems, but not specifically
in the phase transition region.

Parameterized Families of Navigation-Style
Planning Problems

Navigation is a critical component in many planning appli-
cations and existing planning benchmarks (Long and Fox
2003; Helmert 2003; Hoffmann 2005). Rover navigation is
one such domain. Given a list of locations a rover must visit
to, say, take picture or analyze samples, the planner must
find a route that makes optimal use of resources, such as
time and power, satisfies multiple constraints, and achieves
all goals. Under the assumptions that each location need be
visited only once, the high-level navigation problem is sim-
ilar to the Hamiltonian Path problems we investigate.

Planning problems from undirected Hamiltonian
path (UHP)
The undirected Hamiltonian path (UHP) problem on an
undirected graph G(V,E), with n vertices V and a set of
edges E, is to find a path that visits each node exactly once.
A planning problem instance based on this graph may be
formulated as follows. For each vertex v, there are:

• An action av representing visiting v.

• A ‘goal’ state variable sgv to indicate that v needs to be
visited; sgv = T (true) means v has been visited.

• An ‘internal’ state variable siv represents whether or not
v has been visited. Specifically, siv = T means v has not
been visited while siv = F (false) means that it has been
visited. This variable ensures that each vertex can be vis-
ited at most once. While including both sgv and siv (which
always have opposite values) seems redundant, it is nec-
essary because the standard STRIPS planning representa-
tion allows only positive action preconditions and goals.

• An ‘external’ state variable sev represents whether or not
the vertex v can currently be visited given the edge struc-
ture of the graph. Specifically, it is set to T by an action
av′ corresponding to visiting a vertex v′ that is connected
to v by an edge. Otherwise, it is set to F .

Each action av has 2 preconditions: (1) siv = T , which in-
dicates that this action has not been used in the plan already,
and (2) sev = T , indicating that this action can legally follow
the previous action.

Each action av has n + 1 effects: (1) sgv = T , to indicate
that v has been visited, (2) siv = F , thus excluding av from
appearing twice in the plan, (3) sets each of the n−1 external
variables sev′ for each of the other vertices v′: if there is an

2338

edge from v to v′ then sev′ = T , enabling av′ to follow av; if
there is no edge from v to v′ then av sets sev′ = F , preventing
av′ from following av .

The initial state has all goal variables sgv = F while all
internal and external variables siv and sev have value T .
Thus, any of the n actions av can be performed at the start.
A valid plan is a sequence of the n actions that corresponds
to a path along the edges that visits all vertices exactly once.

Problem generation: We randomly generate Erdös-Rényi
graphsGn,p (Erdős and Rényi 1960), where n is the number
of vertices and p is a connectivity parameter: for any pair of
vertices, include the edge between them with probability p.
We then obtain a parametrized family of UHP-based plan-
ning problems, parametrized by n and p, from these graphs
as described in the preceding paragraphs. We wrote a simple
C++ program to generate these problems, and to produce
the PDDL representation (a domain and problem file pair)
for each instance.

Parametrized families of scheduling-type
planning problems

Many planning applications include scheduling aspects
(Chien et al. 2012). Scheduling, which deals with assign-
ing resources and time to tasks while taking into account
constraints, is in itself an important problem. Certain classes
of scheduling problems correspond to graph coloring. For
example, a scheduling problem, with a set of tasks and con-
straints that any pair of tasks competing for the same re-
source cannot be assigned the same time-slot, can be phrased
as a vertex coloring, a well-known NP-complete problem.
Specifically, the chromatic number (the smallest number of
colors needed) represents the smallest number of time-slots
needed to complete a corresponding schedule, thus repre-
senting the minimum makespan.

Planning problems from Graph Coloring (GC)
Given an undirected graph G = {V,E} with n vertices, the
planning problem to color G with k colors is formulated as
follows. For each vertex v there are:
• k actions acv representing coloring v with color c.
• A goal variable sgv representing whether or not v has been

colored at all.
• A state variable scv representing whether or not v has been

colored with the color c.
Let C(v) be the set of neighboring vertices that are

connected to v by an edge. For each action acv , there are
|C(v)|+1 preconditions: (1) sgv = F , which indicates that v
is not already colored; and (2) for each vi ∈ C(v), scvi

= F ,
guaranteeing that none of neighboring vi are already colored
with color c.

Each action acv has two effects: sgv = T and scv = T .
In the initial state, none of the vertices are colored:

∀v ∈ V : sgv = F , and scv = F . The goal state requires
that all vertices are colored: ∀v ∈ V : sgv = T . A plan is a
sequence of n actions, each of which colors a vertex v.

Problem generation: As for the Hamiltonian path based
problems, we obtain a parametrized family of graph-
coloring-based planning problems by randomly generating
Erdös-Rényi graphs Gn,p for a variety of values of n and
p. However, instead of relying on our own program, we ex-
tended the graph generator program described in (Culber-
son, Beacham, and Papp 1995), which provides methods to
generate different types of graph controlled by various pa-
rameters, to output PDDL files containing the specification
of planning problems derived from these graphs.

Results and Discussion
In this section, we present the results and analysis of the per-
formance of several state-of-the-art planners on the different
planning domains described above. We specifically focus on
the phase transitions of these domains, which is where the
typical problems are expected to be the hardest to solve. The
order parameters for the phase transitions studied here are
the same as those of the original graph problems.

We first confirm the existence of a solvable/unsolvable
phase transition in each of these families as the connectiv-
ity parameter p is varied, and check that the problems in
this transition region are the ones that are most challenging
to tackle, taking the most time to solve or to show unsolv-
able, with easy-to-solve and easy-to-show-unsolvable prob-
lems on either side. We used a complete planner, FF, in both
cases, with each data point showing the median runtime of
50 random instances for the relevant parameters. These re-
sults were collected using a 64-bit RedHat Linux machine
with 8 Intel Core I7 cores running at 2.4 Ghz with 8 GB of
RAM.

We then did a thorough study, with hundreds of thousands
of runs, examining the scaling behavior of the planners as
problem size n increases and p is varied as a function of
n to stay on the phase transition. We obtain this order pa-
rameter from the literature on the underlying problems. The
exponential growth of the median runtime for all planners
provides further evidence of the intrinsic difficulty of the
problems at the phase transition. The absolute time and the
slope of the exponential enable us to compare the efficacy
of the planners on these problems. For these problems, we
used the Ivy Bridge nodes of NASA’s Pleiades supercom-
puter, Intel Xeon E5-2680v2 10-core processors running at
2.8 Ghz with 32 GB of RAM.
Planners used: To get representative results, we sought to
use a set of planners that: (1) use different planning algo-
rithms; and (2) are considered state-of-the-art (have strong
performance on existing benchmarks). Specifically, we
tested the following planners1: (1) FF (Hoffmann and Nebel
2001) and LAMA-2011 (Richter and Westphal 2010), rep-
resenting the current dominating forward-state-space search
framework; (2) LPG (Gerevini, Saetti, and Serina 2003) rep-
resenting local search approach; and (3) M and Mp (Rinta-
nen 2012b) representing the compilation approach.

We decided to exclude LAMA results from our analy-
sis and graphs for a couple of reasons. First, unlike other

1We made small adjustments to each planner to output the in-
formation we need, especially for problems that are not solvable.

2339

n 5
n 10
n 20
n 30
n 40

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p probability

U
H
P
Pr
ob

.o
f
so
lv
ab

ili
ty

n 5
n 10
n 20
n 30
n 40

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.1

1.

10.

100.

1000.

p probability

U
H
P
m
ed

ia
n
ru
nt
im

e
se
c

Figure 1: Navigation-type planning problems. Top: Fraction
of solvable instances as a function of the connectivity pa-
rameter p for different problem sizes n. Bottom: Median
runtime vs. p. The results shown are for the FF planner.

planners, LAMA has a preprocessing phase that can be
costly. For the smallest problem in the UHP domain which
other planners take a fraction of second to solve, LAMA
took approximately 30 seconds for the pre-processing step
alone. For the GraphColoring domain where the preprocess-
ing time (≈ 0.07 sec) is tolerable, it typically solves only the
smallest of these problems (n = 8, 12, 16) with the given
time and memory resources, and even the worst performing
planner on the scheduling type problems problems, FF, out-
performs LAMA significantly on these cases.

Results on navigation-type planning problems
Figure 1 shows the median running time of the FF planner
on the navigation-type planning problems inspired by undi-
rected Hamiltonian path (UHP) problems. Figure 1 (Top)
confirms the phase transition from unsolvable to solvable as
the connectivity p is increased. The phase transition is sharp
already at problem size n = 40, where n is the number of ac-
tions in the planning problem. While Figure 1 (Top) exhibits
the phase transition, Figure 1 (Bottom) shows a significant
difference in runtime between problems at the phase transi-
tion and those away from it, confirming that problems at the
phase transition do pose the greatest challenge for the plan-
ners. The results shown are for FF, but we observe similar
behavior in the other planners, M, Mp and LPG.

To compare different planners, we created test sets of
5000 problems at the phase transition, for each prob-
lem size from 16 to 40 at an increment of 2 (for a to-
tal of 65000 problems). We use the scaling parameter
p = (log n+ log log n) /n that has been established for
the closely related Hamiltonian cycle problem (Komlós and
Szemerédi 1983; Cheeseman, Kanefsky, and Taylor 1991).

15 20 25 30 35 40

Problem size n: number of tasks

M
ed

ia
n

R
un

tim
e

[s
ec

]

0.01

0.1

1

10

100

1000

10,000

Planner Comparison: All Navigation Problems

FF:α=0.38 ± 0.019
LPG: α=0.19 ± 0.139
M: α=0.38 ± 0.007
Mp: α=0.64 ± 0.03

15 20 25 30 35 40

Problem size n: number of sites

M
ed

ia
n

R
un

tim
e

[s
ec

]
0.01

0.1

1

10

100

1000

Planner Comparison: Solvable Navigation Problems

FF:α=0.33 ± 0.014
LPG: α=0.09 ± 0.003
M: α=0.4 ± 0.012
Mp: α=0.6 ± 0.017

Figure 2: Median runtime vs. problem size at the phase
transition, p = (log n+ log log n) /n, for navigation-type
planning problems. The exponential scaling of runtime with
problem size is evident for all planners. The exponential co-
efficient α is given in each case. (Top) All problems. (Bot-
tom) Solvable problems.

Figure 2 (Top) shows the median runtime of the planners on
problems at the phase transition. We use a two-hour (7200
sec) cutoff. Once the median runtime reaches the two-hour
cutoff we no longer show results for that planner. The er-
ror bars are at the 35th and 65th percentile. For some of the
points with high median runtimes, the error bars are cut off
at 7200 seconds. The expected exponential scaling of dif-
ficulty, as measured by runtime, with the problem size is
seen clearly. On typical problem instances, the FF and LPG
planners outperform M and Mp. The relative slopes α sug-
gest they will retain this advantage at larger problem sizes.
At small problem sizes, FF performs best, but LPG over-
takes FF for larger problem sizes. M significantly outper-
forms Mp. For the hardest problems, the error bars suggest
that M is competitive with FF and LPG.

Figure 2 (Bottom) shows the runtime of different planners
on the subset of solvable problems at the phase-transition.
Upon restricting to solvable only instances, the relative
performance of the planners does not change. Also, a clear
exponential increase in solving time as problem size re-
mains. The key difference is the significant reduction in the

2340

uncertainty of LPG’s running time. This is expected because
LPG uses a local search approach, which is incomplete and
so performs particularly poorly on unsolvable instances.

Planners Comparison Analysis: Actions in the navigation-
type planning domains are strongly “sequential” in the sense
that: (1) each action of visiting a site C enables exactly
the set of actions corresponding to visiting other sites that
are connected to C by an edge; and (2) there are prevalent
mutual-exclusion relations between actions: we cannot visit
two sites in parallel. This type of constraint is known to put
compilation-based planners such as M and Mp at a disad-
vantage (Kautz and Selman 1999). Because they need to
bound the planning horizon h to create a SAT encoding, this
type of domain may require M and Mp to go through multi-
ple unsolvable encodings until it tries an h that is solvable.
Moreover, when the problem is not solvable, it is also harder
for M and Mp to discover that no matter how high the value
of h, there is no solution. FF, on the other hand, can switch to
a complete breadth-first-search algorithm that will exhaus-
tively search until depth n to return the correct answer.

However, this type of domain is not a perfect fit for FF’s
heuristic either. Each solution is of the same length n, so
when FF explores a search node X that is obtained via m
actions from the initial state, all children of X will either
have the same distance n − m to the goals or are “dead
ends” (cannot reach the goals). The equal heuristic values
means FF cannot use them to differentiate between “good”
and “bad” nodes to explore next, but the dead-end discovery
will help it to eliminate many children nodes, especially for
problems in the phase-transition region where there are few
solutions and therefore many dead ends.

LPG’s performance is similar to FF’s because (1) it seeds
its initial flawed plan to repair with FF’s first relaxed plan;
(2) its heuristic function relies on an FF-style heuristic to
rank which flaw to fix next; (3) if it cannot find a solution
after a long time it switches to FF. Because it starts with a
relaxed-plan of size equal to the final plan, LPG can out-
perform FF since it may require fewer fixes than FF, which
starts from an empty plan.

The main difference between M and Mp is the SAT vari-
able selection. While M uses a general SAT solver’s algo-
rithm, Mp sets goal orderings and prioritizes actions that
achieve them. This ordering technique does not work well in
UHP because there is little order between goals, especially
since we allow any node to be visited first.2

Results on GC-inspired planning problems
We now turn to results on scheduling-type planning prob-
lems. Figure 3 shows the median running time of the FF
planner for the planning problems inspired by 3-color graph
coloring problems. Like Figure 1 for the UHP domain, Fig-
ure 3 (Top) confirms the solvable/unsolvable phase transi-
tion. The phase transition is sharp already at problem size
n = 18, where n is the number of vertices in the graph (or

2We have preliminary results showing that this goal order-
ing technique is effective for Directed Hamiltonian Path problems
which, being based on directed graphs, have more inherent order.

n 10
n 12
n 14
n 16
n 18

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p connectivity

G
C
Pr
ob

.o
f
so
lv
ab

ili
ty

n 10
n 12
n 14
n 16
n 18

0.0 0.2 0.4 0.6 0.8 1.0

0.1

10.

1000.

p connectivity

m
ed

ia
n
ru
nt
im

e
se
c

Figure 3: Scheduling-type planning problems. Top: Fraction
of solvable instances as a function of the connectivity param-
eter p for different problem sizes. Bottom: Median runtime
vs. p. The results shown are for the FF planner.

3× n = 54 grounded actions in the corresponding planning
problem). Figure 3 (Bottom) shows that the typically hardest
problems do indeed occur at the phase transition. The figure
shows results for FF, but the other planners behave similarly.

To compare the planners, we created test sets of 1000
problems at each size (increment of 4) at the phase transi-
tion. A sharp phase transition threshold in the k-colorability
ofG(n, p) graphs has been established for all k ≥ 3 in terms
of the parameter c = m/n = p× n, the ratio of the number
of edges to the number of vertices (Achlioptas and Friedgut
1999). The threshold scales as c = k log k in the leading
term, but the precise location of this threshold is still an open
question, even for k = 3 (Coja-Oghlan 2013).

Our runs were done with c = 4.5, a value intermedi-
ate to the best current lower bound (Achlioptas and Moore
2003) and upper bound (Dubois and Mandler 2002) for the
phase transition. The median runtime for different planners
on problems at this phase transition are shown in Figure 4
(Top), with error bars at the 35th and 65th percentile. We
use a three-hour (10800 sec) cutoff. Once the median run-
time reaches the cutoff, we no longer show results for that
planner. For points with high median runtimes, the error bars
are cut off at 10800 seconds. In contrast to the results for
navigation-type problems, the M planner significantly out-
performs other planners on these scheduling-type problems.

Figure 4 (Bottom) shows the runtime of different planners
on the subset of solvable problems. As in the UHP domain,
the only planner that changed its relative performance
significantly when restricting to solvable instances is LPG.
This is again due to its incomplete local search algorithm
that performs badly on unsolvable instances.

2341

10 20 30 40 50

Problem size n: number of tasks

M
ed

ia
n

R
un

tim
e

[s
ec

]

0.01

0.1

1

10

100

1000

10,000

Planner Comparison: All Scheduling Problems

FF:α=1.11 ± 0.061
LPG: α=0.69 ± 0.139
M: α=0.1 ± 0.007
Mp: α=0.54 ± 0.035

10 20 30 40 50

Problem size n: number of tasks

M
ed

ia
n

R
un

tim
e

[s
ec

]

0.01

0.1

1

10

100

Planner Comparison: Solvable Scheduling Problems

FF:α=0.52 ± 0.009
LPG: α=0.04 ± 0.139
M: α=0.02 ± 0.029
Mp: α=0.2 ± 0.035

Figure 4: Median runtime vs. problem size at the phase
transition for scheduling-type planning problems. (Top) All
problems. (Bottom) Solvable problems.

Planners Comparison Analysis: The structure of graph
coloring problems and navigation-based problems is
markedly different. For example, multiple actions can be
executed in parallel (e.g. two actions that color two un-
connected nodes can be executed in parallel). As a result,
the ranking of the planners is markedly different between
the two cases. That actions can be executed in parallel fa-
vors compilation-based planners such as M and Mp which
can find solutions at much lower planning horizons than FF
which always returns a sequential plan, in this case of depth
n. The Mp planner tries to build and utilize goal orderings,
but this approach is poorly suited to this problem since there
is no preferred order for coloring the nodes. Thus, Mp does
not perform as well as the M planner. The median solving
time of the LPG planners seems to suffer badly from the un-
solvable instances (Figure 4). When faced with only solvable
instances, its performance improves vastly (Figure 4 (Bot-
tom)), especially over FF. One explanation is that LPG also
uses FF’s relaxed-plan heuristic but benefits from not having
to sequentially search to a certain depth and enjoys fewer
mutual exclusion constraints in this domain.

Solvable vs. Unsolvable:
When faced with a real-world planning problem, planners
do not know whether it is solvable or not. Yet all existing
benchmarks contain only guaranteed solvable instances. The

easy conclusion would be that, among problems with simi-
lar characteristics, state-of-the-art planners have been honed
to solve solvable problems better than unsolvable ones. Our
results generally support this conclusion, but differ greatly
between the two domains.
UHP: Figure 2 reveals that each planner takes roughly the
same amount of time on solvable and unsolvable navigation
problems; the median runtime of all planners improves by at
most one order of magnitude when the unsolvable instances
are removed. The uncertainty in expected runtime, however,
decreases for all four planners. The change is most pro-
nounced for the LPG planner which has the most predictable
runtimes on the solvable instances and the least predicatable
on the whole set. As we explained in the previous section,
the incomplete local search algorithm LPG employs is badly
equipped for unsolvable instance.
Graph Coloring: Figure 4 reveals that all four planners per-
form better on solvable instances of scheduling problems
than on unsolvable ones. Median runtime reduced by an or-
der of magnitude for the M, 3 orders of magnitude for Mp
and FF, and 5 order of magnitude for LPG, moving LPG to
2nd place. The exponential slopes α also improved signifi-
cantly, so the improvement is likely even more pronounced
on larger problems. As for the UHP domain, the uncertainty
in runtime reduced greatly for all planners, with LPG expe-
riencing the most significant reduction. Figure 3 also illus-
trates FF’s greater difficulty with unsolvable instances than
solvable ones, even far from the phase transition.

Conclusions and Future Work
Our parametrized families of navigation-type and
scheduling-type planning problems complement cur-
rent benchmark sets obtained from real world applications.
The analysis shows the sort of insights one can gain by
examining planner performance on even small instances in
these hard problem families. Our results suggest that one
key reason for differences in planner performance is that
some planners perform well on the scheduling aspects of
planning problems but not so well on the navigation aspects,
while others do the reverse. The improved planners of the
future will need to perform well on both aspects.

Our families enable designers to tease apart reasons for
their planner’s performance, by giving them a sense for
which aspects of planning problems their planners perform
well on and which not. It would be exciting to see a fu-
ture planner outperform the current best planners on both
the scheduling- and navigation-type planning problems. As
another example, our inclusion of unsolvable instances en-
ables the evaluation of planners in the more realistic scenario
in which it is unknown whether a plan exists. We hope this
work spurs the development of more parametrized families
of planning problems, from other NP-complete problems or
through other means, that capture other aspects common to
many planning problems.

Acknowledgements
Many thanks to Jüssi Rintanen for sharing his code for the
generation of his hard family of problems, for making his

2342

code for the M and Mp planners available, and for gen-
erously answering our questions. Thanks also to Dimitris
Achlioptas for sharing his knowledge about the state-of-the-
art in phase transitions for graph coloring problems. We are
grateful to Vadim Smelyanskiy and Sergey Knysh for use-
ful discussions throughout the course of the work, to Chris
Henze for his generous assistance with the NASA’s Pleiades
supercomputer, and to Bryan O’Gorman for helpful com-
ments on drafts of this paper.

References
Achlioptas, D., and Friedgut, E. 1999. A sharp threshold for
k-colorability. Random Structures and Algorithms 14(1):63–
70.
Achlioptas, D., and Moore, C. 2003. Almost all graphs with
average degree 4 are 3-colorable. Journal of Computer and
System Sciences 67(2):441–471.
Bylander, T. 1996. A probabilistic analysis of propositional
STRIPS planning. Artificial Intelligence Journal 81:241–
271.
Cheeseman, P.; Kanefsky, B.; and Taylor, W. M. 1991.
Where the really hard problems are. In IJCAI, volume 91,
331–337.
Chien, S.; Johnston, M.; Frank, J.; Giuliano, M.; Kavelaars,
A.; Lenzen, C.; Policella, N.; and Verfailie, G. 2012. A gen-
eralized timeline representation, services, and interface for
automating space mission operations. In 12th International
Conference on Space Operations.
Coja-Oghlan, A. 2013. Upper-bounding the k-colorability
threshold by counting covers. arXiv:1305.0177.
Culberson, J.; Beacham, A.; and Papp, D. 1995. Hiding our
colors. In Proceedings of the CP95 Workshop on Studying
and Solving Really Hard Problems, 31–42.
Dubois, O., and Mandler, J. 2002. On the non-3-
colourability of random graphs. arXiv:math/0209087.
Erdős, P., and Rényi, A. 1960. On the evolution of random
graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5:17–61.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in LPG. Journal of Artificial Intelligence Research 20:239–
290.
Helmert, M. 2003. Complexity results for standard bench-
mark domains in planning. Artificial Intelligence Journal
219–262.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2005. Where ignoring delete lists works: Local
search topology in planning benchmarks. Journal of Artifi-
cial Intelligence Research 24:685–758.
Huberman, B. A., and Hogg, T. 1987. Phase transi-
tions in artificial intelligence systems. Artificial Intelligence
33(2):155–171.
Kautz, H. A., and Selman, B. 1999. Unifying sat-based and
graph-based planning. In Proceedings of IJCAI’1999.

Komlós, J., and Szemerédi, E. 1983. Limit distribution for
the existence of Hamiltonian cycles in a random graph. Dis-
crete Mathematics 43(1):55–63.
Long, D., and Fox, M. 2003. The 3rd international planning
competition: Results and analysis. J. Artif. Intell. Res.(JAIR)
20:1–59.
Porco, A.; Machado, A.; and Bonet, B. 2011. Automatic
polytime reductions of NP problems into a fragment of
STRIPS. In ICAPS, 178 – 185.
Richter, S., and Westphal, M. 2010. The LAMA planner:
guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Research 39:127–177.
Rintanen, J. 2004. Phase transitions in classical planning: an
experimental study. In Proceedings of the 14th International
Conference on Automated Planning & Scheduling (ICAPS-
2004), 101–110.
Rintanen, J. 2012a. Generation of hard solvable planning
problems. In Technical Report (TR-CS-12-03), Australian
National University.
Rintanen, J. 2012b. Planning as satisfiability: Heuristics.
Artificial Intelligence 193:45–86.
Selman, B.; Mitchell, D. G.; and Levesque, H. J. 1996. Gen-
erating hard satisfiability problems. Artificial intelligence
81(1):17–29.
Slaney, J., and Thiebaux, S. 1998. On the hardness of deci-
sion and optimization problems. In Proc. of the 13th Euro-
pean Conference on Artificial Intelligence.

2343

