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Abstract

In this paper we revisit the problem of generating query
plans using AI automated planning with a view to leveraging
significant advances in state-of-the-art planning techniques.
Our efforts focus on the specific problem of cost-based join-
order optimization for conjunctive relational queries, a crit-
ical component of production-quality query optimizers. We
characterize the general query-planning problem as a delete-
free planning problem, and query plan optimization as a
context-sensitive cost-optimal planning problem. We pro-
pose algorithms that generate high-quality query plans, guar-
anteeing optimality under certain conditions. Our approach
is general, supporting the use of a broad suite of domain-
independent and domain-specific optimization criteria. Ex-
perimental results demonstrate the effectiveness of AI plan-
ning techniques for query plan generation and optimization.

1 Introduction
Informally, a query execution plan (query plan for short)
is an algebraic expression composed of physical operations
over data structures representing finite relations that are
used to access and combine information. Query optimiza-
tion endeavors to find a query plan that minimizes space,
latency, or other properties associated with the efficiency
of query plan execution (Ioannidis 1996; Chaudhuri 1998;
Haas et al. 2009).

In this paper we revisit how AI automated planning can
be applied to the query optimization problem for relational
queries. In particular, we focus on the so called join-order
selection for conjunctive queries. The join-order selection
part of query optimizers is responsible for choosing which
data structures to use to access disk-resident data, for the
selection of the join algorithms to combine the retrieved
data, and for arranging these operators into a query plan
in a way that minimizes the cost of executing such a plan
(with respect to a given cost model). The importance of
the join-order optimization can hardly be overstated: the
heart of query optimizers in commercial relational systems
is the join-order optimizer for conjunctive queries. These
are sometimes based on proprietary extensions of dynamic
programming techniques developed in (Selinger et al. 1979),
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and sometimes based on time-limited branch and bound
search. Complex queries are typically preprocessed by
heuristic rules to so called query blocks—(maximal) con-
junctive subqueries—that are optimized for join-order sepa-
rately to reduce the overall search space (Chaudhuri 1998).

There is a body of previous AI planning research related
to query planning by Knoblock, Ambite, Kambhampati,
and others (e.g., (Kambhampati and Gnanaprakasam 1999;
Nie and Kambhampati 2001; Kambhampati et al. 2004;
Knoblock 1996; Ambite and Knoblock 1997; 2000; Barish
and Knoblock 2008; Friedman and Weld 1997)) with Karpas
and colleagues’ work being the most recent (Karpas et al.
2013). Most of these works use planning to rewrite rela-
tional query expressions using rewriting rules based on text-
book relational expression equivalences, which do not cap-
ture the critical challenges within commercial practice.

There are two main differences that set our approach apart
from other research on AI planning for query optimization:

1. We provide a novel encoding of the conjunctive query op-
timization problem as an AI planning problem. Unlike
many other approaches whose states essentially encode
the generated query plan (Ambite and Knoblock 1997;
2000; Barish and Knoblock 2008; Karpas et al. 2013) in
our approach states encode what the partial plan has log-
ically achieved to answer the query; the plan itself is en-
coded by the (optimal) sequence of actions that reach the
particular state. This way, different but equivalent query
plans lead to the same state (with a different cost) and con-
sequently the planner can prune suboptimal partial plans.

2. We integrate a relational cost model into the planning
process. Unlike standard planning problems (including
other approaches to query planning (Karpas et al. 2013))
in which the cost of executing actions is constant and ad-
ditive (such as the shortest path in a road network), cost
of relational operations crucially depends on properties of
their inputs (such as the size of the inputs) and thus the
cost of actions depends on the state they are executed in.

We base our approach on a slight extension of the seminal
work on query optimization in IBM’s System R (Selinger
et al. 1979). In particular, we use the same physical plan
operators for access paths and joins and the associated cost
model developed in that paper. Also, we adopt their restric-
tion to linear (left-deep) query plans for conjunctive queries
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to simplify the presentation. For pipelined execution of con-
junctive queries left-deep plans are fully general (as they de-
scribe the fine-grained execution of all other plans). For non-
pipelined executions, the above is not true, but in practice the
optimality degradation is about 2% compared to the more
complex tree-like query plans (Bruno, Galindo-Legaria, and
Joshi 2010). Our own experiments generating bushy plans
(omitted for space) confirm these findings.

Our approach derives from our observation that optimized
information gathering is a cost-optimizing delete-free plan-
ning problem. We develop three somewhat diverse plan-
ning algorithms to address our query optimization problem:
a greedy delete-free algorithm, an optimal A* search, and
a greedy best-first search, together with a suite of domain-
specific heuristics. We analyze their properties and assess
their computational effectiveness. Of particular note is our
ability to generate query plans that are guaranteed optimal
on problems that are highly competitive to those reputed to
be solved to optimality by commercial systems.

Despite its maturity, query optimization remains a topic
of research with recent advances targeting heuristics for
query optimization (e.g., (Bruno, Galindo-Legaria, and
Joshi 2010)). The work presented here similarly provides
a unique and promising perspective on the development of
search techniques for query optimization.

2 Preliminaries
We begin with a review of necessary relational database
background and terminology. Conjunctive queries (CQ) in
SQL take the form

select x1, . . . , xk

from R1 r1, . . . , Rn

r

n

where C

where C is a conjunction of equalities of the form r

i

.a = x

l

with a an attribute (column) of the relation (table) R
i

. It can
be written as a predicate calculus comprehension:

{x1 . . . , xk | 9r1, . . . , rk, xk+1, . . . , xm.

R1(r1) ^ . . . ^Rn(rn) ^
V

Riaj(ri, xl)}

where, conceptually, R
i

(r
i

) atoms bind the variables r

i

to
record id’s of records in the instance of R

i

and R

i

a

j

are
binary relations that represent attributes of R

i

(attribute re-
lations). Note that the tuple variables (r

i

) are separate from
the value variables (x

j

). We allow some of the variables x
i

in the select list to be designated as parameters.
This representation of queries (and other artifacts such as

access path below) is essential to our encoding as it allows us
not only to specify the goal of our planning problem, but also
to capture partial progress towards that goal by utilizing the
above atomic formulas as fluents. This way, a query plan can
be incrementally constructed by simply recording the effects
of actions in terms of these fluents (rather than as explicitly
encoding the particular query plan).

2.1 Operators for CQ Query Plans
The query plans for conjunctive queries are responsible for
accessing data relevant to the query answers that are stored
in (possibly disk-based) data structures, called the access
paths. The results of these primitive operations are then

combined using join operators to form the ultimate query
plan. Indeed, the crux of query optimization for conjunctive
queries lies in the choice of appropriate access paths for the
relations involved in the query and in the ordering of how the
results of these operations are combined using joins—hence
this part of query optimization is often dubbed join-order
selection. Additional relational operators, such as selections
and projections are commonly not considered at this time—
either they are fully subsumed by joins (e.g., selections) or
can be added in post-processing (projections1).

Access Paths. The primitive relational operations are the
access paths (APs), operators responsible for retrieving the
raw data from relational storage (e.g., disks). Every user
relation (table) is typically associated with several access
paths that support efficient search for tuples based on var-
ious conditions, e.g., find all Employee tuples in which the
name attribute is “John”. Note that the access paths used
for search expect some of their attributes (the inputs) to be
bound (i.e., associated with a constant value obtained earlier
in the course of execution of the query plan). The access
paths for a relation R are described by triples of the form

name(r, x1, . . . , xk

) : hR(r) ^ C, {x
i1 , . . . , xik}i

where C is a conjunction of equalities (similar to those in
conjunctive queries) only using attributes of R and variables
r and x1, . . . , xk

out of which x

i1 , . . . , xik denote the input
parameters of this access method.

Base File (scan and record fetch): In the basic setting, for
each relation R we always have two access paths:

RScan(r, x1, . . . , xk) : hR(r) ^Ra1(r, x1) ^ . . . ^Rak(r, xk), {}i
RFetch(r, x1, . . . , xk) : hR(r) ^Ra1(r, x1) ^ . . . ^Rak(r, xk), {r}i

where a1, . . . , ak are all the attributes of R; these two paths
are used to retrieve all tuples of a relation R and to retrieve
a particular tuple given its tuple id (note that the tuple id r

is the input to the access path and has to be bound before a
record can be fetched).

Indices: In addition to the basic access paths we typically
have additional access paths, called indices, that are used to
speed up lookups for tuples based on certain search condi-
tions (that are again captured by specifying inputs for the
access path). Note also that the indices typically store only
a few attributes of the indexed relation (the remaining ones
can be retrieved using the Fetch access path). We capture
this by declaring an access path

RxxxIndex(r, Y ) : hR(r) ^ C,Xi

for each index on R (called generically xxx here) where C

is a conjunction of attribute relations (for attributes of R), is
X a set of names of variables that correspond to parameters
of the index (the search condition), and Y is a set of variables
that correspond to the attributes actually stored in the index
(typically X = Y ).

1While we do not explicitly deal with duplicates in this presen-
tation, all the techniques are fully compatible with SQL’s duplicate
semantics for conjunctive queries.
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Example 1 Given a relation Emp(Id, Name, Boss)

we will have the following access paths:

EmpScan(r, x1, x2, x3) : hEmp(r) ^
EmpId(r, x1) ^ EmpName(r, x2) ^ EmpBoss(r, x3), {}i

EmpFetch(r, x1, x2, x3) : hEmp(r) ^
EmpId(r, x1) ^ EmpName(r, x2) ^ EmpBoss(r, x3), {r}i

EmpNameIndex(r, x1, x2) : hEmp(r) ^
EmpId(r, x1) ^ EmpName(r, x2), {x2}i

EmpIdIndex(r, x1) : hEmp(r) ^ EmpId(r, x1), {x1}i

that allow retrieving all employee records, finding a record
by record id, finding record ids using employee id, and find-
ing record ids using employee name, respectively. Note that
EmpNameIndex has an extra variable x1 for Id; we will
see later how this can be used for so-called index only query
plans. Note also how the right-hand sides, the logical de-
scriptions of the access paths correspond to atoms in our
conjunctive query representation.

Join Operators. To combine the results of access path in-
vocations into query results, join operators (on) that essen-
tially implement conjunctions are used. We consider the fol-
lowing two implementations of these operators:
Nested Loops Join (NLJ): The most basic join operator is
based on the idea that for each tuple retrieved from its left
argument it probes its right argument to find matching tu-
ples. When the right argument is an access path with an in-
put parameter present in the above tuple, the value is passed
to the access path to facilitate search (in this case the join is
often called the IndexJoin).
Merge Sort Join (MSJ): Another approach to implementing
the join operator is to sort each of its arguments on the join
attribute and then merge the results. While algorithmically
preferable, the overhead of sorting often makes this method
inferior to the plain NLJ. On the other hand, knowledge of
order properties of the underlying access paths may allow
the sorting step to be avoided.

Many other join implementations and algorithms have
been investigated, such as the Hash join (based on creating
a temporary hash-based index); these are handled similarly
to the above two (and are omitted here).

Example 2 For the query:

select x1, x2 from Emp e

where e.Id = x1 and e.Name = x2

we expect the following query plans, based on whether x1

or x2 (or neither) is a supplied query parameter:
• None: EmpScan(r, x1, x2, x3)
• x1: EmpIdIndex(r, x1) onNLJ EmpFetch(r, x1, x2, x3)
• x2: EmpNameIndex(r, x1, x2)

Note that the last plan is an index-only plan. Also note
that replacing EmpFetch access path that retrieves employee
records based on record id by three paths, one for each em-
ployee attribute, would simulate how column stores execute
queries. This relies on our representation of queries and ac-
cess paths using tuple ids and attribute relations; indeed,
this representation supports many advanced features that
go far beyond textbook approaches and often generalizes

hard-coded solutions present in production relational sys-
tems, such as distinguishing between clustered/unclustered
indices, use of index-intersection plans, etc.

2.2 Cost Model
The optimality of a query plan is judged with respect to a
cost model based on summary (statistical) information about
the relations and the access paths. We collect:
• for every relation R (table): the number of tuples and, for

each attribute, the number of distinct values;
• for each access path (index): the cost (disk pages read) of

retrieving all the tuples that match the access path’s input
parameters (reading the whole data set if none);

These estimates are then combined, using arithmetic formu-
las associated with particular join algorithms, to estimate the
cost and cardinality of partial query plans (in disk page reads
and numbers of tuples). Accurate estimates of query costs
are essential and are the key to the planners ability to find
query plans that are optimal in reality, i.e., when query plans
are executed. Our model is based on a System-R style cost
model (Selinger et al. 1979) to illustrate the approach; more
advanced cost models can be easily used as well.

3 Mapping into PDDL Actions
We map join-order selection to an automated planning prob-
lem by combining the choice of the next access path with the
appropriate implementation of the join operation in a single
PDDL action (note that this is sufficient for our left-deep
plans). We use the fluents nds-R, has-R, and bound

to capture the fact that the query needs to access a certain
relation, that the current query plan has already accessed a
certain relation, and that a variable has been bound to a value
in the current plan, respectively.

3.1 Nested Loop Joins
First considering plans that use NLJ only (note that this also
covers index-join based plans in the cases where NLJ is cou-
pled with an index access path). For each AP
hRAP, R(r) ^Ra1(r, x1) ^ . . . ^Rak(r, xk), {xi1 , . . . , xil}i

there is an action:
ACTION NLJ-RAP

pre: nds-R(?r), nds-Ra1(?r, ?x1), . . . , nds-Rak(?r, ?xk),

bound(?xi1 ), . . . , bound(?xil
)

post: has-R(?r), has-Ra1(?r, ?x1), . . . , has-Rak(?r, ?xk),

bound(?x1), . . . , bound(?xk)

Note that the pre- and postconditions of these actions ensure
that the precondition (as a conjunction) logically implies the
actual access path (as a predicate) that, in turn, implies the
postcondition. This condition must be satisfied by all actions
corresponding to access paths. Next, for the query:

{x1 . . . , xk | 9r1, . . . , rk, xk+1, . . . , xm.

R1(r1) ^ . . . ^Rn(rn) ^
V

Rai(ri, xl)}

we have an initial state s0 such that:
nds-R1(r1), . . . ,nds-Rn(rn) 2 s0

nds-Rai(ri, xl) 2 s0 for all conjuncts in
V

Rai(ri, xl), and
bound(xj) 2 s0 for all parameters of the query;
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and a goal G such that:

has-R1(r1), . . . , has-Rn(rn) 2 G and
has-Rai(ri, xl) 2 G for all conjuncts in

V
Rai(ri, xl).

Observe that the initial state’s set of nds- atoms is identi-
cal to the given query, that each action invocation only adds
has- atoms whose conjunction is implied by the nds-

atoms (cf. the invariant above required for all actions), and,
when the goal is reached, the has- atoms contain all atoms
of the original query. This yields the required equivalence.

Example 3 For the query in Example 2, assuming x1 is a
parameter, we have a possible plan:

hNLJ-EmpIdIndex(r, x1),NLJ-EmpFetch(r, x1, x2, x3)i

Note that the initial NLJ “joins” with a single tuple of pa-
rameters, in this example with the value for x1. This then
corresponds to exploring the following sequence of states:
1. nds-Emp(r), nds-EmpId(r, x1), nds-EmpName(r, x2), bound(x1)

2. nds-Emp(r), nds-EmpId(r, x1), nds-EmpName(r, x2),

bound(x1), has-Emp(r), has-EmpId(r, x1), bound(r)

3. nds-Emp(r), nds-EmpId(r, x1), nds-EmpName(r, x2),

bound(x1), has-Emp(r), has-EmpId(r, x1), bound(r)

has-EmpName(r, x2), has-EmpBoss(r, x3), bound(x2), bound(x3)

Another plan is hEmpScan(r, x1, x2, x3)i . This produces the
following sequence of states:
1. nds-Emp(r), nds-EmpId(r, x1), nds-EmpName(r, x2), bound(x1)

2. nds-Emp(r), nds-EmpId(r, x1), nds-EmpName(r, x2),

bound(x1), has-Emp(r), has-EmpId(r, x1), has-EmpName(r, x2),

has-EmpBoss(r, x3), bound(x2), bound(x3)

This plan is however, less efficient given our cost model.

3.2 Adding Merge Sort Joins
While we could naively add MSJ to the above approach,
we would miss opportunities arising from additional under-
standing of ordered properties of the access paths in order to
avoid unnecessary sorting steps in the plan. We use the flu-
ent asc(x) to indicate that the values of the variable x are
sorted (ascending) in the output of the (current) query plan
(again we use only single-variable orderings, but extending
to other interesting orders is a mechanical exercise). Note
that unlike, e.g., the bound fluent, the sorted property of a
variable may disappear after executing the next join, causing
the encoding to lose its delete-free character.

To take advantage of order of access paths and results of
partial query plans we use the following three actions that
correspond to sorting the result of the current query plan,
to merge-joining with an appropriately ordered access path,
and to merge-joining with an access path that was sorted
prior to the join, respectively:
ACTION Sort-on-?x: (sort current result on x)

pre: bound(?x)

post: asc(?x),¬asc(?y) for all other variables ?y

ACTION MJ-on-?x-AP : add a merge-join on variable x

with access path AP, assuming AP is also sorted on x.

pre: bound(?x), asc(?x)
post: effects of AP as for NLJ,¬asc(?y) for non-?x variables

ACTION MSJ-on-?x-AP : add a sort-merge-join on vari-
able x with access path AP, when AP is not sorted on x.

pre: bound(?x), asc(?x)

post: effects of AP as for NLJ,¬asc(?y) for non-?x variables

We also add asc(x) to the initial state for each bound vari-
able x. (This is sound since there is only a single “tuple” of
parameters and constants.)

Finally, for a given query problem, we take an initial de-
scription of the problem instance, together with the schemas
described here, and generate a query-specific PDDL plan-
ning instance. In addition to the information in the schemas,
each individual action has an action cost that is a com-
putation that relies on the variable bindings in the current
state and as such is context specific. While PDDL supports
context-specific action costs, few planners actually accom-
modate them, we therefore solve the above described prob-
lems using domain-specific solvers presented in Section 4.

In particular, the cost of our actions (that represent join-
ing the next access path to the current query plan) depends
on the number of tuples so far, captured as size(s) for the
current state s, the size and structure of the relation to be
joined, and the particular join algorithm. These values are
used to estimate the cost and size in successor states.

4 Generating Query Plans
In the previous section, we saw how to encode the join-order
query optimization problem in terms of a PDDL initial state,
goal, and a set of PDDL action schemas that are translated,
together with their cost model, into a set of instance-specific
ground actions. We refer to the problem of generating a
query plan with the NLJ PDDL encoding as a J-O query-
planning problem and when augmented with MSJ APs as a
J-O+ query-planning problem. By inspection:

Proposition 1 J-O query planning is a delete-free planning
problem.

Proposition 2 J-O query optimization is a context-sensitive
cost-optimizing delete-free planning problem.

Proposition 3 J-O+ query planning is not a delete-free
planning problem and as such, J-O+ query optimization is
simply a context-sensitive cost-optimizing planning prob-
lem.

There have been numerous studies on the complexity and
parameterized complexity of planning including (Bylander
1994; Chen and Giménez 2010; Bäckström et al. 2012).

Theorem 1 Finding a J-O query plan can be realized in
polynomial time but J-O and J-O+ query optimization are
NP-hard.

The proof follows from the fact that monotonic planning is
polynomial-time while delete-free optimal planning is NP-
Hard (Bylander 1994). This is consistent with results for
query optimization, which is recognized to be NP-hard in
all but very restricted cases (Ibaraki and Kameda 1984).

Building on this correspondence to delete-free planning
and in light of recent advances in cost-optimizing delete-free
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planning (e.g., (Gefen and Brafman 2012; Haslum, Slaney,
and Thiébaux 2012; Pommerening and Helmert 2012)) we
propose three algorithms together with a suite of domain-
dependent heuristics for generating optimized query plans.
The first algorithm, DF, exploits the delete-free nature of
our problem, greedily generating cost-minimizing delete-
free plans. The second is a classical A* algorithm, which
we ran with three different admissible heuristics. The third,
GR, is a greedy best-first search that does not consider par-
tial plan cost in its evaluation function, but that uses an ad-
missible heuristic, together with cost, in order to do sound
pruning. The latter two algorithms can be guaranteed to pro-
duce optimal plans under certain conditions, which is no-
table relative to the state of the art in query planning.

4.1 Fast Delete-Free Plan Exploration
Algorithm DF computes plans that do not include sorting
actions. For certain problems, this precludes DF from find-
ing optimal solutions, but the costs of the plans it finds are
guaranteed to be upper bounds on the optimal cost allowing
them to be used as initial bounds for A* and GR.

The decision not to allow sorting actions means that in
any state s, a subset of all actions can be efficiently deter-
mined that will move the planner towards the goal. We call
such actions useful and denote the set of useful and applica-
ble actions in state s as A

u

(s). In more detail, an action is
useful in a state s if it adds a has or bound fluent which
is not in s. The algorithm proceeds by heuristically generat-
ing sequences of useful actions which achieve a goal state.
Throughout its fixed runtime, it remembers the best such
plan generated. Clearly DF does not guarantee to compute

Algorithm 1 DF
⇡⇤  hi; c⇤  inf
while not time out do

s s0; c 0; ⇡  hi
while G 6✓ s do

if random fraction of 1  0.9 then
a a

0 2 A

u

(s) with minimal resulting size,
breaking ties with action cost

else
a a

0 2 A

u

(s) randomly selected with a
likelihood inversely proportional to the
resulting size and then action cost

c c+ cost(a); ⇡  ⇡ + a

if c � c⇤ then break
s s [ add(a)

if c < c⇤ then c⇤  c; ⇡⇤  ⇡

return ⇡⇤ and c⇤

an optimal query plan, but it has the capacity to generate a
multitude of plans very quickly. In practice, our Python im-
plementation of DF can generate hundreds to thousands of
candidate plans per second.

4.2 A*
We use an eager A* with a variety of domain-dependent ad-
missible heuristics. The code is based on the eager search

algorithm in Fast Downward (Helmert 2006). The pri-
mary difference from existing heuristic-search planning al-
gorithms is that, as our action costs are context-dependent,
we compute them lazily when expanding a state. While this
increases the cost of expanding each state, it eliminates the
need to pre-compute actions with all possible costs, which
is prohibitively expensive.

To reduce memory requirements, an bound can be used
with the algorithm to prevent generated nodes with f values
exceeding the bound from being added to the open list.

We now examine the three heuristics that were used with
this algorithm and show their admissibility and consistency
and therefore the optimality of the solutions returned by A*.
The first heuristic, h

blind

evaluates a state s as follows:
• h(s) = 0, if G ✓ s; and
• h(s) = 1, otherwise.

Proposition 4 The heuristic h

blind

is admissible and con-
sistent for the query-planning problems we consider.

The next heuristic, h

admiss

evaluates a state s by count-
ing the number of unsatisfied relations and assuming that
size(s) and all subsequent states is 1 to get a lower bound
on the cost of achieving the goal.

In a given state s let R(s) be the unsatisfied relations and
R

I

(s) be the (partially) unsatisfied relations for which we
have a bound tuple id – i.e. those relations for which a partial
index action has been executed, which can be satisfied with
a fetch action.
h

admiss

evaluates a state s as follows:
• h(s) = 0, if G ✓ s, and
• h(s) = |R

I

(s)|+P
r2R(s)\RI(s)

max(1, ceil(log200(pages(R))))

Proposition 5 The heuristic h
admiss

is admissible and con-
sistent for for the query-planning problems we consider.

To prove Proposition 5, note that the minimum cost of satis-
fying any relation R is 1 when we can execute a fetch action
on R (i.e., R 2 R

I

(s)) and otherwise the cost is at least
max(1, ceil(log200(pages(R)))). h

admiss

is monotone be-
cause whenever we execute an action a, resulting in state s0,
|R

I

(s0)|  |R
I

(s)| and |R(s0)|  |R(s)|.
The final heuristic that we used, h

admissLA

builds upon
the h

admiss

heuristic by performing one step of look ahead
to take into account the size of the current state s. Let A

u

(s)
be the set of applicable and useful actions in state s, includ-
ing sort actions. h

admissLA

evaluates a state s as follows:
• h(s) = 0, if G ✓ s, and
• h(s) = min

a2Au(s)c(a) + h

admiss

(s [ add(a))

Proposition 6 The heuristic h

admissLA

is admissible and
consistent for the query-planning problems we consider.

To see that Proposition 6 holds, see that h
admissLA

has a
value for non-goal states that is the minimum over all suc-
cessors of the cost to reach that successor s0 and the admis-
sible and monotone estimate given by h

admiss

from s

0.

Theorem 2 If A* terminates on a query-planning problem
of the type we consider, then it returns an optimal solution.
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We observe that our dynamic cost can be seen just as a proxy
for a large number of ground actions with fixed-costs, hence
the theorem follows as the heuristics are consistent.

4.3 Greedy Best-First Search
This algorithm GR is an eager greedy best-first search that
uses the same heuristics and code-base as A*. The main
difference between GR and A* is that GR orders the states
on its open list solely on the basis of their heuristic values,
that is by the function f(s) = h(s). Expanded states s are
pruned when g(s) + h(s) exceeds the current bound. Since
this algorithm is greedy, the first solution it finds may not be
optimal. However, in this case, as the search progresses bet-
ter solutions will be found and the current bound tightened.

Theorem 3 Pruning an expanded state s when g(s) + h(s)
exceeds the current bound does not rule out optimal solu-
tions.

The proof is based on observing that the bounds are sound
and heuristics admissible. Therefore every state s in the se-
quence of states visited by an optimal plan s0, ..., sk, will
have g(s) + h(s) less than or equal to the current bound and
not be pruned. The next theorem follows as Theorem 3 im-
plies that if the search space is exhausted an optimal solution
will have been found (or none exists).

Theorem 4 If GR terminates on a query-planning problem
of the type we consider, then it returns an optimal solution.

5 Evaluation
Our experiments attempt to address the quality of plans gen-
erated and the performance of the proposed algorithms. Un-
fortunately, there are no benchmarks that measure the per-
formance of query optimizers and comparing runtimes of the
plans generated on database benchmarks does not contribute
to addressing this issue as our plans are optimal or nearly
optimal. Moreover, algorithms used in commercial query
planners and the associated cost models are proprietary, nor
is there an interface allowing execution of alternative plans,
making a meaningful comparison impossible.

With this information in hand, the purpose of our exper-
iments was 1) to evaluate the relative effectiveness of the
different approaches to query plan search and plan optimiza-
tion that we examined , and 2) to get some sense of whether
AI automated planning techniques held some promise for
cost-based join order optimization, in particular, relational
database query optimization more generally, and beyond
that to the general problem of optimizing the quality of in-
formation gathering from disparate sources.

We evaluated 3 different algorithms: DF, our delete-free
planning algorithm, A*, our A* search algorithm, and GR,
our greedy search algorithm. The latter two algorithms
were each evaluated with three different heuristics: h

blind

,
h

admiss

, and h

admissLA

. Our specific purpose was twofold.
First, we aimed to determine how many problems each of
A* and GR could solve optimally. Second, and more prag-
matically, we aimed to determine the quality of the plans
found by DF and A* as a function of time.

Figure 1: Percentage of problems solved optimally by A*
and GR with h

admissLA

(2GB, 30 min time out).

We tested our planning systems on randomly generated
database schemata and queries. Each generated schema con-
sists of tables with between 2 and 10 attributes. Each table
has a random size of between 10k and 500k tuples and 200
tuples are assumed to fit into a page of memory. The first
attribute of every table is assumed to be the primary key and
has a number of distinct values equal to the table size. Every
other attribute has a random number of distinct values up to
10% of the table size.

Every query has a given number of relations R =
5, 10, ..., 60 and a given number of variables V = 1.2, 1.5,
or 2 times R. Every query has 3 variables set as constants
and 10 other variables selected (less if there is not enough
variables). For each relation in the query there is a 10%
chance of reusing an existing table, otherwise a new table is
used. Variables are randomly assigned to relations and we
ensure that queries are connected. Ten problem instances
were generated for each R and V . All experiments were run
on a 2.6GHz Six-Core AMD Opteron(tm) Processor with
2GB of memory per experiment.

In addition to the experiments that follow, we ran experi-
ments with typical shaped queries such as star queries, chain
queries, etc. and saw consistent results to those reported be-
low. We also ran a suite of experiments with simplified cost
models where we quantized the costs into fixed-cost “buck-
ets,” producing a standard PDDL that we could run with an
off-the-shelf planner. Unfortunately, the error propagation
during query cost estimation was so poor, or alternatively
the number of buckets we had to create to maintain accuracy
so large, that such an approach proved infeasible. Finally,
we developed methods for generating so-called bushy plans.
Details of these algorithms are beyond the scope of this pa-
per, but results showed little optimality degradation.

5.1 Experiment 1: Optimal Plans
An upper bound B on plan cost was produced by running
DF for 5 seconds and then A* and GR were run with the
initial bound B with a time limit of 30 minutes. Running
DF for longer than 5 seconds, to get tighter initial bounds,
did not allow more problems to be solved optimally.

Summarizing the results of this experiment, h
blind

was
ineffective in finding optimal solutions beyond 5 relations.
h

admiss

was somewhat effective up to 10 relations with
both A*, and GR, solving up to 50% of instances optimally.
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Figure 2: Ratio of the best plan cost found by a given time
to the known optimal cost for problem instances with R =
10 and V = 20 for DF and GR. GR used the h

admissLA

heuristic and all approaches had 2GB, 2 min time out.

h

admissLA

was more successful, optimally solving most in-
stances with 10 relations and some larger instances. Prob-
lems with a higher V/R ratio are somewhat easier than those
with a low ratio. The performance of A*, and GR with this
heuristic is summarized in Figure 1 (in color). Notably, our
planners generate optimal query plans of a size competitive
with those reputed to be solved by commercial systems.

While our heuristics h

admiss

and h

admissLA

effectively
direct the planner towards a goal state, they ignore the size
of states between the current state and the goal. Unfortu-
nately, our experiments showed that a full k-step lookahead
heuristic was too costly to be effective.

5.2 Experiment 2: Fast High-Quality Plans
In many settings, a query plan must be found in seconds.
Given that our optimal algorithms do not scale acceptably,
we also experimented with several sub-optimal, any time al-
gorithms. In these experiments we ran DF and GR with no
initial bounds. Each algorithms was run for a total time of 2
minutes and plans were recorded as they were produced.

An important question about these algorithms is how the
quality of the plans found compares to the optimal. We only
have optimal solutions for the smaller problems instances
that could be optimally solved by DF and GR. Figure 2
(in color) shows a representative sample of these results us-
ing the h

admissLA

heuristic. Encouragingly, it shows that
for most problems, the sub-optimal algorithms closely ap-
proach the optimal quality within a second. On the smaller
problems, for which we could generate optimal solutions,
DF more quickly approached high-quality solutions.

As well as comparing DF and GR to the optimal solu-
tions, we performed extensive experiments to compare them
to each other. Figure 3 (in color) shows the costs of the best
plans found by DF and GR with all three heuristics after 0.5

Figure 3: The costs of the best plans found by GR and DF
after 0.5 and 5 seconds for all problem instances in our ex-
periment set. Problems that could not be solved by an algo-
rithm were assigned a cost of 105 in that case.

and 5 seconds for all instances in our experiment set.
When the runtime is short, GR generally finds plans that

are better than those found by DF, often by several orders of
magnitude. As the experiment time increases, the quality of
best plans found by DF improve relative to those found by
GR. As expected, GR with the h

blind

heuristic fails almost
all problems, usually running out of memory before any so-
lutions are found. Over all run times there is a significant
group of problems for which GR fails to compete with DF.

This pattern of performance is not surprising. GR initially
performs better than DF because the h

admissLA

heuristic
is more informative than the action selection heuristic em-
ployed by DF. However, the greedy nature of GR means
that expansions made early in the search can commit the al-
gorithm to low quality parts of the search space.

6 Summary
We proposed a novel encoding that supported the character-
ization of join-order query planning as a (near) delete-free
planning problem. A challenge of join-order optimization
is that the cost models are context sensitive: the cost of an
operation crucially depends on properties of its (often in-
termediate) inputs (E.g., the cost of a join is a function of
the size its inputs). Sacrificing context sensitivity results in
inaccuracy that confounds the optimization. We developed
delete-free, A*, and best-first search planning algorithms
and domain-dependent heuristics for generating optimized
query plans. Our experimental results were promising. Our
planners could generate optimal query plans of a size that is
highly competitive with those reputed to be solved by com-
mercial systems. Further, our sub-optimal algorithms found
near-optimal plans within few seconds. The work presented
here is an interesting application for AI planning and one
that pushes the boundary of (largely absent) techniques for
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context-sensitive cost-based planning.
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