
A Scheduler for Actions with Iterated Durations

James Paterson, Eric Timmons and Brian C. Williams
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Building 32-224, Cambridge, MA 02139

{paterson, etimmons, williams}@mit.edu

Abstract

A wide range of robotic missions contain actions that
exhibit looping behavior. Examples of these actions in-
clude picking fruit in agriculture, pick-and-place tasks
in manufacturing and search patterns in robotic search
or survey missions. These looping actions often have
a range of acceptable values for the number of loops
and a preference function over them. For example, dur-
ing robotic survey missions, the information gain is
expected to increase with the number of loops in a
search pattern. Since these looping actions also take
time, which is typically bounded, there is a challenge
of maximizing utility while respecting time constraints.
In this paper, we introduce the Looping Temporal Prob-
lem with Preference (LTPP) as a simple parameterized
extension of a simple temporal problem. In addition,
we introduce a scheduling algorithm for LTPPs which
leverages the structure of the problem to find the op-
timal solution efficiently. We show more than an or-
der of magnitude improvement in run-time over current
scheduling techniques and framing a LTPP as a MINLP.

Introduction
There is a growing need for autonomous robotic systems that
can perform patterned search or mapping tasks. Unmanned
Aerial Vehicles (UAVs) are being used to map agricultural
land to provide farmers with crop estimates and locate areas
of disease (Bryson et al. 2010), while Autonomous Under-
water Vehicles (AUVs) do patterned search of the sea floor
to search for hydrothermal vents and other interesting scien-
tific events (Ferri, Jakuba, and Yoerger 2008). Search-and-
rescue missions are another common area where UAVs per-
form patterned search (Goodrich et al. 2008). Aside from
searching and mapping, there is a need for robots that can
perform repetitive tasks, such as manufacturing pick-and-
place tasks on an assembly line.

In all these tasks, timing and scheduling are crucial. For
example, if Sentry (a Woods Hole Oceanographic Institute
AUV) is mapping the ocean floor (Kinsey et al. 2011), it
needs to ensure completion of tasks by designated time
points to ensure the mission is completed before the battery

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

runs out. Missions like these are often scheduled off-line, re-
sulting in fixed schedules during execution time. However,
temporal disturbances happen in any real-world mission and
we would like systems that are robust these disturbances, de-
grading gracefully while preserving as much utility as pos-
sible rather than abruptly dropping entire tasks.

Previous work supports looping behaviors such as fixed
search patterns during autonomous robotic scouting mis-
sions, but does not allow for the selection of parame-
ters during scheduling (Bernardini et al. 2013). Elsewhere,
execution algorithms have been explored that automati-
cally perform scheduling, resource assignment and contin-
gency selection, by making decisions on-line (Conrad and
Williams 2011; Shah, Conrad, and Williams 2009; Morris
and Muscettola 2005). However, these methods have not ad-
dressed looping actions. Scheduling problems such as Tem-
poral Constraint Satisfaction Problems with Preference (TC-
SPPs) (Dechter, Meiri, and Pearl 1991) allow disjunctive
temporal constraints and preference functions on time and
disjunctive bounds, but they do not allow representation
of looping ranges, or specifying preference over the num-
ber of loops without specifying a disjunctive bound and a
utility value for each loop. Work in the mathematical opti-
mization community on Mixed-Integer Non-linear Programs
(MINLPs), allow maximization of a preference function,
while satisfying real and integer constraints. While optimal
scheduling problems can be expressed as a MINLP program,
it is often unintuitive to do so.

In this paper, we present the Looping Temporal Problems
with Preference (LTPP) as a means to handle loops in a tem-
poral network, by a parametric extension to STPs (Dechter,
Meiri, and Pearl 1991), combined with a preference over the
number of loops. We also present a scheduler for the LTPP
that produces an optimal schedule containing the number of
loops to perform within each looping action and the times
of when to perform them. This scheduler draws from tech-
niques used to solve STPs, as well as Branch and Bound
techniques from MINLP problems. While this work focuses
on off-line scheduling of LTPPs, the resulting schedule may
be dispatched on-line (Conrad and Williams 2011), provid-
ing some robustness to temporal disturbances. Finally, we
present empirical results to show an improvement in run-
time of more than an order magnitude over current sched-
ulers and framing a LTPP as a MINLP.

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2330

Autonomous Scouts for Search and Rescue
Using aerial vehicles to gather information for search-
and-rescue (Goodrich et al. 2008) or search-and-tracking
(Bernardini et al. 2013) missions is an area of active re-
search. Many of the search strategies employed in these
missions may be modelled with looping actions and this
work provides a way to autonomously choose the number of
loops, while adhering to temporal constraints. As an illustra-
tive example of a scouting mission with looping actions and
to help explain our algorithm for solving LTPPs, we intro-
duce an example from the search-and-rescue domain.

Consider the following example, where two hikers have
not reached their destination on time. From the topology of
the area and the route they were expected to take, they are
most likely to be in Area A, Area B, or on the path between
the two areas (See Figure 1). In order to locate the hikers, a
UAV is sent out to perform a search. Suppose that a higher-
level planner has, based on the geometry of the search ar-
eas, decided to use a lawnmower search pattern in Area A,
a star search pattern in Area B, and path-following on the
path between the two areas. The lawnmower pattern can be
represented as a looping action with each pass representing
a loop, while the star pattern is a looping action with each
triangle as a loop.

Given the dynamics of the UAV and the size of the ar-
eas, each loop in lawnmower pattern can be performed in
a controllable duration between 2 and 5 minutes and each
loop in the star pattern between 3 and 4 minutes. The length
of the path between Area A and B can be flown in 3 to
7 minutes. Given flight altitude restrictions and the sen-
sor’s field-of-view on board, the system determines that the
UAV has to perform between 5 and 20 loops in Area A,
and at least 5 loops in Area B. Based on prior beliefs and
expected information gain, there is also a preference over
the number of loops to perform in each area. These are
fA(NA) = 10 log (NA) for the lawnmower pattern and
fB(NB) = 2NB for the star pattern, where N denotes the
number of loops. Since the number of loops cannot be frac-
tional, these functions are discrete. Finally, information is
required from Area A and the path within 35 minutes, and
the UAV has a maximum flight time of 50 minutes. Figure 1
summarizes this information.

This problem can be encoded using a LTPP. Looping ac-
tions, constrained by time, are represented by looping tem-
poral constraints (LTCs) in the LTPP. Path-following and
time constraints such as the overall mission duration and
reaching Area B before 35 minutes can also be represented
as a looping action with only one loop. The preference func-
tions map the numbers of loops in each LTC to a utility value
and a global preference function calculated the overall utility
of the mission.

The optimal solution to this problem would be to perform
7 loops in Area A and 11 loops in Area B.

Problem Statement
We define a new class of problem called the Looping Tem-
poral Problem with Preference (LTPP) as an encoding of a
problem containing temporal actions with loops. Our encod-

Figure 1: Search for two missing hikers.

ing contains the minimal variables and constraints that are
sufficient to determine the number of loops and durations.
Using our encoding, a looping program can be mapped to
an LTPP in a straight forward manner.
Definition 1: A LTPP is a triple < X,C, F > where:

• X is a set of events representing points in time.

• C is a set of looping temporal constraints (LTCs) between
pairs of events as defined in Definition 2.

• F is a function that maps local utility values from the
LTCs to a global utility value.

Definition 2: A looping temporal constraint (Cij) is a re-
peated simple temporal constraint between two time events,
xi and xj , and is specified by a tuple < Nij , δij , fij(Nij) >
where:

• δij is a simple temporal constraint between the start and
end times of one iteration and is of the form δij ∈
[δijl, δiju], δij ∈ R+.

• Nij is an integer number of loops between the events xi
and xj and is constrained in the range:Nij ∈ [Nijl, Niju],
Nij ∈ Z+.

• fij(Nij) is a monotonic preference function that maps the
number of loops Nij to a utility value.

Since the choice of number of loops affects the temporal
duration per loop in the final schedule, we specify prefer-
ence over the number of loops only and not the temporal
durations. This can be interpreted as a preference level for
each loop duration.

The solution method proposed in this paper restricts the
global preference function F to a monotonic function (that
may be non-convex), i.e. when given any range over the
number of loops, the preferred solution to each loop variable
is always at one extreme of its range. In the experimentation
section, we focus on one class of preference functions that
exhibits this property. In this class of preferences, the local
functions are monotonic and produce positive, real numbers.
The global preference function then combines the local pref-
erences using any combination of the + and × operators.

2331

Figure 2: The search-and-rescue mission framed as a LTPP.

A simple temporal constraint is a special case of a loop-
ing temporal constraint, where the number of loops is 1.
As these can be easily extracted from the set of all loop-
ing temporal constraints C, we will refer the set of simple
temporal constraints as STC ⊆ C, with temporal bounds
dij ∈ [dijl, diju], dij ∈ R+ and the set of remaining loop-
ing temporal constraints as LTC ⊆ C.
Given these definitions, the search-and-rescue example is
framed as a LTPP in Figure 2. The global preference func-
tion F combines the two local preference functions using
the + operator, i.e. F = (10 log (NA) + 2NB).

Note that loops are atomic, and the system can not arbi-
trarily exit a loop in its middle. Consequently, the loop vari-
ables are restricted to be integer and thus a looping temporal
constraint (LTCij) between two time events xi and xj can
not simply be written as xj−xi ∈ [Nlij×δlij , Nuij×δuij],
since the integer constraint on Nij causes a disjunctive tem-
poral bound between xi and xj . For example the LTC:
{Nij ∈ [1, 2]; δij ∈ [3, 4]} ≡ {[3, 4] ∨ [6, 8]}

has a temporal gap between 4 and 6.
An optimal solution to a LTPP is an integer assign-

ment to each LTC looping variable N, that maximizes the
global preference function, while satisfying all temporal
constraints.

Related Work
Candidate solution methods exist in the scheduling and
mathematical optimization communities for solving a Loop-
ing Temporal Problem with Preference (LTPP).

First, for loops with finite bounds, the loops in a LTPP
can be encoded in a Temporal Constraint Satisfaction Prob-
lem with Preference (TCSPP) (Peintner and Pollack 2004)
or a Disjunctive Temporal Problem with Preference (DTPP)
(Peintner and Pollack 2004; Stergiou and Koubarakis 2000),
where each loop forms a disjunctive temporal bound be-
tween two events and the preference function over the num-
ber loops can be split into one function for each of the dis-
junctive bounds. For example, the lawnmower pattern in
Area A of the search-and-rescue example could be framed
as in Figure 3. However, a LTPP is inefficient to solve in the
TCSPP framework as TCSPP solvers break the disjunctive
constraints into component STPs to solve. Compared to a
TCSPP or DTPP, the LTPP also allows a clean way of spec-
ifying looping ranges such as “anything more than”, by set-
ting infinity as an upper bound (such as the pattern in Area
B of the original search-and-rescue mission example).

Figure 3: The TCSPP representation of a looping action.

The LTPP contains a mixture of integer and real-valued
constraints, as well as a maximization over non-linear,
non-convex functions. Thus, the second candidate solution
method is to frame the problem as a Mixed-Integer Non-
linear Program (MINLP). MINLPs are among the class of
theoretically difficult problems that are NP-complete. Solu-
tion methods for solving MINLPs include Outer Approx-
imation methods (Abhishek, Leyffer, and Linderoth 2010;
Fletcher and Leyffer 1994), Branch-and-Bound (B&B) (Be-
lotti et al. 2009; Quesada and Grossmann 1992), Gener-
alized Benders Decomposition (Geoffrion 1972) and Ex-
tended Cutting Plane methods (Westerlund et al. 1998).
These approaches generally rely on the successive solutions
of closely related Non-linear Program (NLP) problems. In
particular, B&B starts out forming a pure continuous NLP
problem by relaxing the integer constraints on the discrete
variables. The LTPP can compiled to a MINLP as in Fig-
ure 4.

maximize : subject to :

F ({Nij}) Nijδijl ≤ xj − xi ≤ Nijδiju
∀ i, j Nijl ≤ Nij ≤ Niju

Nij ∈ Z+

∀ i, j

Figure 4: The MINLP encoding of a LTPP.

Note that although the MINLP encoding in Figure 4 will
find the optimal values for the loop ranges, it will not provide
bounds for executing the temporal events as a scheduling
technique would.

Approach

Drawing from techniques used by TCSPP, DTPP and B&B
MINLP solvers, our approach solves the LTPP by casting
the original problem as a series of STPs, relaxing the inte-
grality requirements at each step and checking consistency.
Where our approach differs from current scheduling tech-
niques, is that is can handle infinite loops, by employing a
domain filtering technique to prune loop ranges and then it
searches through the remaining state-space by checking con-
sistency of STPs that encompass ranges of loops rather than
a single loop value combination. The consistency checks are
performed incrementally and a tight heuristic is used to min-
imise changes between consistency checks.

2332

Domain Filtering
The DOMAINFILTER algorithm (Algorithm 1) reduces the
solution state-space by pruning out loop ranges that can
never form part of a solution. In the example presented ear-
lier, one of the loop ranges can take on a value between 5 and
∞. However, an infinite number of loops cannot form part
of the solution as the mission is constrained to take less than
50 minutes. Reducing the loop ranges to a space of possible
solutions greatly reduces the search space that the BOUND-
SEARCH algorithm (Algorithm 2) has to search through.

DOMAINFILTER extends the all-pairs shortest path
method to readily prune loops in the LTPP at each itera-
tion. For simplicity, the pseudo code for the extension to the
Floyd-Warshall algorithm (Cormen et al. 2001) is shown in
Algorithm 1, but the implementation for benchmarking uses
an extension to Johnson’s algorithm (Cormen et al. 2001).

Algorithm 1: DOMAINFILTER

Input: A LTPP < X,C, F >.
Output: A LTPP, with loop ranges tightened to remove

inconsistent solutions.
Algorithm

1 STP ← makeSTP (LTPP)
2 for xk ∈ X do
3 for xi ∈ X do
4 for xj ∈ X do
5 if (d(xi, xk) + d(xk, xj)) < d(xi, xj) then
6 d(xi, xj)← (d(xi, xk) + d(xk, xj))
7 Cij ← pruneLoops(Cij , d(xi, xj))
8 d(xi, xj)← reT ighten(d(xi, xj), Cij)

9 for xi ∈ X do
10 if d(xi, xi) < 0 then
11 return nil

12 return LTPP

DOMAINFILTER begins by forming a STP from a LTPP
(line 1), by relaxing the integer constraint on the loop ranges,
thus forming a STC from each LTC as follows:

LTC : N ∈ [Nl, Nu]; δ ∈ [δl, δu], N ∈ Z+, δ ∈ R+

⇒ STC : d ∈ [Nl × δl, Nu × δu], d ∈ R+

If the STC between event x1 and event x2 has the bound
d ∈ [dl, du], then d(x1, x2) is the distance edge from x1 to
x2 (equal to du) and d(x2, x1) is the distance edge from x2
to x1 (equal to −dl).

The algorithm runs exactly the same as the Floyd-
Warshall algorithm until line 7. At this point, if the
algorithm tightens a bound on the STC (line 6), the loop
range of the corresponding LTC may be tightened too as
any loop number whose corresponding temporal bound
falls outside the tightened STC bound is infeasible and can
be pruned. This is done by the pruneLoops() function in
line 7. The pruneLoops() function accepts the tightened
STC bound d(xi, xj) and the corresponding LTC, Cij with
N ∈ [Nl, Nu] and δ ∈ [δl, δu]. If d(xi, xj) is a lower-bound

in the STC, it tightens loop ranges as in the left equation
below, and if d(xi, xj) is an upper-bound, it tightens as in
the right equation:

Nl ≥ ceil(|d(xi,xj)
δu
|), Nu ≤ floor(|d(xi,xj)

δl
|).

The floor() and ceil() operators ensure the loop range
bounds remain integer, but since these operator further
tighten the loop range bounds, the relaxed STC bound
d(xi, xj) needs to be tightened once more. This is done by
reT ighten() (line 8) by tightening d(xi, xj) according to
the left equation if d(xi, xj) is a lower-bound or to the right
equation if d(xi, xj) is an upper-bound:

min(d(xi, xj), Nu × δl), min(d(xi, xj), Nl × δu)

The loop pruning process may be more clearly understood
by noting that since δ is a deterministic range, the largest
number of loops that would fall within the tightened tempo-
ral bound d ∈ [dl, du], would be when N × δl ≤ du, and
the smallest number of loops within the range d would be
N × δu ≥ dl.

If the STP contains a negative cycle (line 10), we return
nil (line 10) as it is inconsistent and thus the original LTPP is
also inconsistent as each STC temporal range encompassing
the entire corresponding LTC temporal range.

The run-time complexity of the Johnson’s Algorithm ver-
sion of DOMAINFILTER is O(X2 logC +XC).

Although the network of the relaxed STP corresponding
to the LTPP returned by DOMAINFILTER is consistent, no
solution to the LTPP is guaranteed. The relaxation of the in-
teger constraint on the loop variables to form a STP from
a LTPP encompasses all looping temporal ranges, but also
adds temporal ranges that lie between the loop temporal
ranges and that don’t exist in the original LTPP. Figure 5
shows an example of an inconsistent solution after running
DOMAINFILTER, where the range of loops for each LTC is
tightened from [1, 5] to [1, 2]. Although the network of the
relaxed STP is consistent and the loops ranges have been
pruned, no solution exists to the LTPP, since there is a re-
quirement of 4.5 for the overall duration, whereas the du-
ration of every looping constraint needs to be an integer of
exactly 1 or 2 in this case.

Running DOMAINFILTER on the search-and-rescue ex-
ample, results in a large reduction domain of looping ranges.
The loop range of the lawnmower pattern is reduced from [5,
20] to [5, 16] and the loop range of the star pattern is reduced
from [5,∞) to [5, 12].

Searching for the Optimal Solution
After running DOMAINFILTER to reduce the search-space,
BOUNDSEARCH (Algorithm 2) takes a best-first approach
to search through the remaining space of loop ranges for an
optimal, integer assignment to the looping variables, given
the global preference function. It explores the search space
by incrementally checking consistency over ranges of pos-
sible loop combinations, pruning large spaces of inconsis-
tent combinations. When loop range combinations are con-
sistent, our algorithm splits them into narrower combina-

2333

Figure 5: After running DOMAINFILTER, no solution is
guaranteed.

tions until an integer solution is found. It uses an admissible
heuristic to guide the search and expands the search tree in
best-first order. Thus, the first consistent, integer assignment
to the LTPP loop ranges is guaranteed to be the optimal so-
lution.

The search tree for the first three iterations of the algo-
rithm running on the search-and-rescue problem (Figure 6)
is used to help explain BOUNDSEARCH.

BOUNDSEARCH begins with an initial candidate on the
queue. Each candidate, D is a node in the search tree and is
a tuple < L,H,P,C >, where L is a list of loop ranges to
check consistency over,H is the maximum utility obtainable
from that combination of loop ranges (used as the admissi-
ble heuristic), P is the parent of D, and C is the LTC that
was split to produce D from P . The initial candidate (D1)
contains the entire search-space.

Since the global preference function F is monotonically
increasing, the maximum utility H for any candidate is
found by simply evaluating F at the maximum loop range
for each Li ∈ L. In the example (Figure 6), HD1 =
fA(16) + fB(12) = 52.

The Incremental Consistency Checker ITC is initialized
(line 4) with a STP that is formed from the LTPP by relaxing
all integer constraints on the looping variables (line 3). For
the Rescue Mission example, ITC would be initialized to the
STP corresponding to D1 in Figure 7.

Then, within each iteration, BOUNDSEARCH removes the
best candidateD from the queue (according toH) (line 6). If
D is found to be consistent, it is split into two children can-
didates that each contain a subset of the state-space of possi-
ble loop combinations (line 11). In Figure 6, D1 is found to
be consistent, and is split into two candidates, D2 and D7.
Only one loop interval is split to ensure the two children en-
capsulate all the possible loop combinations of the parent.
The LTC loop interval that adds the most utility to the over-
all preference function is chosen as the one to split, in order
to guide the search to the optimal solution faster.

In the process of splitting from a parent candidate, only
one constraint C is modified to form each child (see Fig-
ure 7) and for each child, this constraint is saved (lines 11-
13). Because a tight heuristic is used, we know that one of
the children will be the next-best candidate on the queue

Algorithm 2: BOUNDSEARCH

Input: A LTPP with a LTC loop ranges pruned by
DOMAINFILTER.

Output: A LTPP schedule, with integer assignments to
each LTC loop range.

Initialization:
1 D ← makeCandidate(LTPP)
2 priorityQ← {D}
3 STP ← makeSTP (LTPP)
4 ITC ← initializeITC(STP)

Algorithm:
5 while priorityQ 6= ∅ do
6 D ← pop(priorityQ)
7 C ← getModifiedConstraint(D)
8 if consistentITC?(ITC, C) then
9 if integerAssignment?(D) then

10 return makeSolution(LTPP, D)
else

11 {children,C} ← split(D)
12 for child in children do
13 setModifiedConstraint(child, C)
14 setParent(child, D)

15 addToQ(priorityQ, {children})
else

16 P ← parent(peek (priorityQ))
17 resetITC(P)

18 return nil

and thus when it is popped off the queue, we check con-
sistency incrementally by simply modifying ITC with the
single constraint C.

The algorithm continues splitting candidates and narrow-
ing the possible loop combinations of each candidate. If an
inconsistent candidate is found (D3), it is pruned, removing
all its possible loop combinations from the search space. At
this stage ITC is in an inconsistent state and it is reset to
the consistent state it was in for the parent (D2) of the next-
best candidate on the queue (D4) (line 17). Then, at the next
iteration of the algorithm, consistency is checked by simply
modifying ITC again with the single constraint C that was
altered when D4 was formed from D2.

Figure 7 shows how only one constraint is modified while
splitting a parent candidate into two children.

If BOUNDSEARCH keeps splitting loop ranges until an
integer loop combination is found (i.e. the lower and upper
bound of each loop range is the same), it assigns the candi-
date loop values to the LTPP and runs Johnson’s algorithm
to calculate the bounds on the temporal events X , before
returning it as the optimal schedule (line 10). If BOUND-
SEARCH loops until the queue is empty, no solution is pos-
sible to the LTPP and nil is returned (line 18).

Empirical Validation
To validate our approach, we compare BOUNDSEARCH to
a TCSPP encoding using a best-first component STP search

2334

Figure 6: The search tree after three iterations of the search-
and-rescue problem. Looping ranges are marked A and B to
denote the two search areas. Candidates are labeled in the
order they are checked for consistency and the solution is
shown as a double circle node.

Figure 7: STP representation of candidates after the first
split. The loop range that adds the most to the overall utility
is [5, 12] and it is split to [5, 8] and [9, 12]. Since each loop
has a temporal duration of δB ∈ [3, 4], STCs of [5 × 3, 8 ×
4] and [9 × 3, 12 × 4] are formed.

(COMPSTP), as well as to a MINLP encoding using SCIP
as a solver (Achterberg 2009). COMPSTP is similar to the
way a TCSPP would be solved on this problem instance
using preference levels (Peintner and Pollack 2004). For
BOUNDSEARCH and COMPSTP, the DOMAINFILTER al-
gorithm was run before the search process.

Setup
We benchmarked the above methods on LTPPs modelling
single vehicle missions, with looping actions interleaved
with actions that move between locations or perform some
task. The missions are constrained by an overall temporal
constraint between the start and end events, as well as other
temporal constraints on events in the mission.

Since the difficulty of the problem increases with the size
of the state-space, we test performance as we increase the
number of looping actions (LTCs). The LTCs are each of the
form: {N ∈ [5, 20]; δ ∈ [5, 10]; f(N) = a.N}, where a
is a random number between 0 and 5. The overall temporal
constraint was generated randomly to ensure the solution is
varied throughout the state space of possible solutions over

Figure 8: Run Time comparisons between COMPSTP, SCIP
and BOUNDSEARCH.

multiple runs. Simple temporal constraints (STCs) denoting
non-looping activities were randomly interleaved between
event pairs with probability 0.2. A non-linear global prefer-
ence function was created by generating a random expres-
sion tree, combining pairs expressions using + and × oper-
ators with equal probability.

Each data point represents the medians of the data for 100
runs. If the median was above the cut-off time of 20 minutes,
that data point was not plotted.

Results
Since BOUNDSEARCH checks consistency over ranges of
loops and prunes large parts of the state-space, it shows
multiple orders of magnitude improvement in run-time over
COMPSTP above 7 looping constraints (Figure 8). We also
show an order of magnitude improvement in run-time over
SCIP at 11 looping constraints and above. This is largely
due to efficient constraint propagation to reduce the state
space during domain-filtering and tailoring our algorithm
to use a monotonic global preference function. It must be
mentioned that SCiP can handle non-monotonic functions,
which Bound search does not in its current capacity.

Although empirical results suggest exponential growth in
run-time of BOUNDSEARCH as looping actions increase,
BOUNDSEARCH find a solution extremely quickly (under
1 second) for problems containing 7 looping constraints or
less, allowing it to be used in mobile, online robotic missions
of this size.

Contributions
In this paper we presented the Looping Temporal Problem
with Preference (LTPP), as a formalism for framing schedul-
ing problems that contain looping actions and preferences
over them. We then presented a scheduling algorithm that
finds the number of loops for each looping action to maxi-
mize a global preference function of the looping variables.
Finally, we showed how our algorithm leverages the struc-
ture in the LTPP to improve run-time over best-first compo-
nent STP search and MINLP solvers.

References
Abhishek, K.; Leyffer, S.; and Linderoth, J. 2010. Filmint:
An outer approximation-based solver for convex mixed-
integer nonlinear programs. INFORMS Journal on comput-
ing 22(4):555–567.

2335

Achterberg, T. 2009. Scip: solving constraint integer pro-
grams. Mathematical Programming Computation 1(1):1–
41.
Belotti, P.; Lee, J.; Liberti, L.; Margot, F.; and Wächter, A.
2009. Branching and bounds tighteningtechniques for non-
convex minlp. Optimization Methods and Software 24(4-
5):597–634.
Bernardini, S.; Fox, M.; Long, D.; and Bookless, J. 2013.
Autonomous search and tracking via temporal planning. In
Twenty-Third International Conference on Automated Plan-
ning and Scheduling.
Bryson, M.; Reid, A.; Ramos, F.; and Sukkarieh, S.
2010. Airborne vision-based mapping and classification
of large farmland environments. Journal of Field Robotics
27(5):632–655.
Conrad, P. R., and Williams, B. C. 2011. Drake: An effi-
cient executive for temporal plans with choice. Journal of
Artificial Intelligence Research 42(1):607–659.
Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2001.
Introduction to Algorithms. MIT Press and McGraw-Hill,
2nd edition. chapter 25.3, “Johnson’s algorithm for sparse
graphs”, 636–640.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artificial Intelligence 49:61–95.
Ferri, G.; Jakuba, M. V.; and Yoerger, D. R. 2008. A
novel method for hydrothermal vents prospecting using an
autonomous underwater robot. In Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on, 1055–
1060. IEEE.
Fletcher, R., and Leyffer, S. 1994. Solving mixed integer
nonlinear programs by outer approximation. Mathematical
programming 66(1-3):327–349.
Geoffrion, A. M. 1972. Generalized benders decomposition.
Journal of optimization theory and applications 10(4):237–
260.
Goodrich, M. A.; Morse, B. S.; Gerhardt, D.; Cooper, J. L.;
Quigley, M.; Adams, J. A.; and Humphrey, C. 2008.
Supporting wilderness search and rescue using a camera-
equipped mini uav. Journal of Field Robotics 25(1-2):89–
110.
Kinsey, J.; Yoerger, D.; Jakuba, M.; Camilli, R.; Fisher, C.;
and German, C. 2011. Assessing the deepwater horizon
oil spill with the sentry autonomous underwater vehicle. In
The 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 261–267.
Morris, P. H., and Muscettola, N. 2005. Temporal dynamic
controllability revisited. In AAAI, 1193–1198.
Peintner, B., and Pollack, M. 2004. Low-Cost Addition
of Preferences to DTPs and TCSPs. In Proceedings of the
Nineteenth National Conference on Artificial Intelligence.
Menlo Park, CA: AAAI Press. 723–728.
Quesada, I., and Grossmann, I. E. 1992. An lp/nlp
based branch and bound algorithm for convex minlp opti-
mization problems. Computers and Chemical Engineering
16(10):937–947.

Shah, J. A.; Conrad, P. R.; and Williams, B. C. 2009. Fast
distributed multi-agent plan execution with dynamic task as-
signment and scheduling. In ICAPS.
Stergiou, K., and Koubarakis, M. 2000. Backtracking al-
gorithms for disjunctions of temporal constraints. Artificial
Intelligence 120:81–117.
Westerlund, T.; Skrifvars, H.; Harjunkoski, I.; and Pörn, R.
1998. An extended cutting plane method for a class of non-
convex minlp problems. Computers and Chemical Engi-
neering 22(3):357–365.

2336

