
Schedule-Based Robotic Search for Multiple Residents
in a Retirement Home Environment

Markus Schwenk and Tiago Vaquero and Goldie Nejat
Autonomous Systems and Biomechatronics Laboratory

Department of Mechanical and Industrial Engineering, University of Toronto
5 King’s College Road, Toronto, ON, Canada M5S 3G8

markus.schwenk@mail.utoronto.ca, {tvaquero, nejat}@mie.utoronto.ca

Abstract
In this paper we address the planning problem of a robot
searching for multiple residents in a retirement home
in order to remind them of an upcoming multi-person
recreational activity before a given deadline. We in-
troduce a novel Multi-User Schedule Based (M-USB)
Search approach which generates a high-level-plan to
maximize the number of residents that are found within
the given time frame. From the schedules of the resi-
dents, the layout of the retirement home environment
as well as direct observations by the robot, we obtain
spatio-temporal likelihood functions for the individual
residents. The main contribution of our work is the de-
velopment of a novel approach to compute a reward
to find a search plan for the robot using: 1) the like-
lihood functions, 2) the availabilities of the residents,
and 3) the order in which the residents should be found.
Simulations were conducted on a floor of a real retire-
ment home to compare our proposed M-USB Search
approach to a Weighted Informed Walk and a Ran-
dom Walk. Our results show that the proposed M-USB
Search finds residents in a shorter amount of time by
visiting fewer rooms when compared to the other ap-
proaches.

1 Introduction
The health and quality of life of older adults living in long-
term care facilities can be improved by these individuals en-
gaging in stimulating recreational activities such as playing
games, playing musical instruments, doing crossword puz-
zles, or reading (Menec 2003). These types of activities can
delay age-related health decline (Bath and Deeg 2005) and
prevent social isolation (Findlay 2003), which could poten-
tially decrease the risk of dementia in elder adults (Wilson
et al. 2007). However, the lack of these activities in elder-
care facilities (PriceWaterCoopers LLP 2001) exists due to a
shortage of healthcare workers (Sharkey 2008), which could
be aggravated in the near future due to the rapid growth of
the elderly population (Centre for Health Workforce Stud-
ies 2006). Socially assistive robots have been shown to be
a promising technology to assist the elderly and to sup-
port caregivers in eldercare facilities (Oida et al. 2011;
McColl, Louie, and Nejat 2013).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our research focuses on the development of socially as-
sistive robots that can autonomously organize and facilitate
group-based recreational activities for the elderly. In this
paper, we address the planning problem of a robot search-
ing for multiple residents in a retirement home environment
in order to invite and remind them of an upcoming multi-
person recreational activity. The robot’s objective is to max-
imize the number of residents it finds in a given time frame
before the activity starts. During the search, the robot has to
consider that the residents have their own schedules which
contain appointments in different rooms of the environment,
during which the residents are not always available for in-
teraction with the robot. Based on these schedules, the robot
also considers the order in which the residents have to be
found to avoid searching for unavailable people. We intro-
duce a novel Multi-User Schedule Based (M-USB) Search
method which plans the robot’s search for a set of non-static
residents in a known, structured environment within a given
time frame based on the residents’ daily schedules.

Robotic search for people in structured environments has
been investigated in the literature for different scenarios.
For example, in (Elinas, Hoey, and Little 2003), the robot
HOMER was designed to deliver messages one at a time to
a particular person in a workspace environment. The robot
stored a likelihood function for each person’s location and
performed a best-first search. The search consisted of vis-
iting the nearest location to the robot based on the likeli-
hood function for a particular person. If the person was not
found, the robot iteratively visited other rooms until either
the person was found or all regions had been visited. For
these scenarios, a person was assumed to be at a static loca-
tion in the environment. The search for multiple static tar-
gets in an indoor environment has been addressed in (Lau,
Huang, and Dissanayake 2005). A dynamic programming
approach was used to plan the search on a topological or-
dered graph, using a probability distribution which models
the probability of meeting one of the targets in a given room
at a given time. In (Tipaldi and Arras 2011), a robot’s ability
to blend itself into the workflows of people within human
office environments was addressed. The authors developed
spatial affordance maps to learn spatio-temporal patterns of
human activities. A Markov Decision Process (MDP) Model
was used to generate a robot’s path through the environment
to maximize the probability of encountering a person.
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Uniquely our work addresses the robotic search problem
of finding a specific set of multiple moving residents in a
retirement home setting considering their individual daily
schedules. Such schedule-based multi-user search for non-
static people has not yet been addressed in the literature.
To address this problem, we obtain spatio-temporal likeli-
hood functions for every resident of the retirement home.
We propose an approach to generate these resident likeli-
hood functions as a composition of: 1) the residents’ sched-
ules, 2) direct observations by the robot in the environment,
and 3) the layout of the environment. To do this, a weighting
is applied to the above sources of information based on their
time-dependent certainties of predicting a person’s location.
The main contribution of our work is the development of
an MDP planner that uses a novel approach to compute the
reward to determine the robot’s search plan for finding mul-
tiple residents using: 1) the resident likelihood functions, 2)
the availabilities of the individual residents, and 3) the order
in which the residents should be found.

2 M-USB Search
The Multi-User Schedule Based Search presented in this
work is a planning procedure that provides a plan P∗ for
the robot to find as many people as possible from a given
set of target people in a given order within a defined time
frame. The retirement home environment is defined to con-
sist of several different regions which represent the topology
of the building (e.g., rooms and corridors). The plan P∗ will
include a sequence of actions which model the whole search
process. The possible actions are: drive which lets the robot
travel from one region to another; rest which lets the robot
rest for a short period of time; and search in which the robot
executes a low-level search procedure in a specific region
(e.g., frontier exploration, random walk). We use backwards
induction to compute P∗ based on a Markov-Decision Pro-
cess which models the search using the aforementioned ac-
tions. To obtain a reward for this MDP, we setup a likeli-
hood function for each person which models the probability
that the person is in a specific region at a given time of the
day. The likelihood functions of the individual residents are
combined to generate a reward which respects the target res-
idents’ availability constraints (obtained from their sched-
ules) and the order in which the residents should be found.

This paper will focus on the computation of the plan P∗.
This plan is to be executed by a mobile socially assistive
robot that can navigate the environment as well as detect and
recognize individual residents. We assume a local-search
routine already exists on the robot which allows the robot to
search for people in a given region. Once a person has been
detected, the robot has to compute a new plan (replanning).

Problem Setup
Environment. We model the environment as a set of re-
gions R ∈ RE (e.g. rooms, corridors, common areas) in
which the search takes place. For each region a room-class
is assigned, e.g. “Common Room”, “Bedroom”, “Corridor”,
or “Dining Hall”. The room-classes depend on the activi-
ties residents engage in when they are in these regions. Each

region can be represented as a polygon. The edges of this
polygon can be marked as “crossable” if there is no physi-
cal border at an edge (e.g. if the edge represents a doorway).
We define neighbours(R) to be all regions which share a
crossable edge with R, i.e., a person or a robot can walk
from R to any region Rn ∈ neighbours(R) without enter-
ing a third region. For each person p ∈ P, where P is the set
of all residents who are living in the environment, we assign
one region of the environment as solely that person’s: his/her
private room. Figure 1(a) shows an example environment.

Schedules and Availability of Residents. For each person
p ∈ P we consider a schedule which defines all his/her ap-
pointments on a given day. An appointment has a start time
and an end time, and is assigned to a region R in which it
takes place. We model the availability of each person p ∈ P
as function βp(t) such that βp(t) = 1 if p is available at time
t and βp(t) = 0 otherwise.

Search Query. When the robot receives a query q, it is to
find a set of residents p ∈ Pq ⊆ P within a given deadline
tmax. Query q also specifies the order in which the residents
should be found.

Setting up Resident Likelihood Functions
For each resident p ∈ P we can set up a likelihood function
L(p,R, t) which represents the probability that p is in re-
gion R at time t. This individual likelihood function is com-
posed of four different likelihood functions Lk(p,R, t), with
k ∈ {s, lkrl, l, env}, which we will introduce in the follow-
ing sections. As convention, we define 0 ≤ Lk ≤ 1 and∑
R
Lk(p,R, t) = 1 for each person p ∈ P and each likeli-

hood function Lk. A value Lk(p,R, t) = 1 means that the
person is in R at time t while Lk(p,R, t) = 0 indicates that
the person cannot be in the region at this time.

Schedule Analyzer. We model Ls(p,R, t) using the
schedule of resident p. Assuming that with a probability of
0 ≤ pa ≤ 1 the person participates in an appointment de-
fined in the person’s schedule, we set Ls(p,R, t) = pa for
the time frame of the appointment for the region assigned
to this particular appointment and Ls(p,R, t) = (1−pa)

|RE |−1 for
all other regions. For any time tk between two appointments
where the last appointment ends at time tk−1 and the next
appointment starts at tk+1, we define αk−1 = tk+1−tk

tk+1−tk−1

and αk+1 = tk−tk−1

tk+1−tk−1
. If there is no next appointment, we

set αk+1 = 0 and αk−1 = 1. If there is no previous appoint-
ment, the values become αk+1 = 1 and αk−1 = 0. We can
then define the value of the likelihood function to be:
Ls(p,R, tk) =

αk−1 ·
∑

R′∈RE

Ls(p,R′, tk−1) · pm(R′,R, p, tk − tk−1)+

αk+1 ·
∑

R′∈RE

Ls(p,R′, tk+1) · pm(R,R′, p, tk+1 − tk)

(1)
at time tk. pm(R1,R2, p,∆t) is the probability that person p
has moved from region R1 to region R2 in the time frame of
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(a) Example Scenario and Simulation Envi-
ronment Setup
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Figure 1: (a) The map of the simulated retirement home with the rooms: dining hall (A), games room (B), TV-room (C), garden
(D), nurse station (E), family visit room (F) and shower rooms (G). All other rooms are private rooms and corridors. The
shading of the regions indicates the current reward for each region (dark: high, light: low) of an example scenario. The current
generated plan has the robot (R) driving to the TV-room (C) where it starts a local search. (H) shows the crossable edges (doors)
in the scaled portion of the environment. (b) Weights for one person. At 12 pm the person has a one-hour appointment which
gives the schedule a higher weight at this time. (c) Priority function for four residents who are all available in the considered
time frame.

∆t. The value can be obtained from the person’s speed and
the distance between the two regions.

Last Known Resident Location. To be able to take into
account when the robot last detected a person earlier that
day who it is currently searching for, we set up a database
which stores the time tpd and region Rpd of the last detection
of the person p. Using a simple motion model of the resident,
this information can be used to generate Llkrl(p,R, t). As
done for the Schedule Analyzer, we define the probability
pm(R1,R2, p,∆t) that person p has moved from region R1

to region R2 in a time frame of ∆t. We can then define:

Llkrl(p,R, t) = pm(Rpd,R, p, t− t
p
d). (2)

If the person has not been previously detected, we assign a
uniform distribution Llkrl(p,R, t) = 1

|RE | .

Learned Behaviour. A person’s behaviour, which is not
defined in the schedule (e.g., a person often takes a walk in
the garden after lunch) but which has been learned by the
robot based on its observations is also stored by the robot
as Ll(p,R, t). Ll(p,R, t) is obtained by evaluating the fre-
quency of the event “person p has been detected in region R
at time t” and is initialized as a uniform distribution.

Environment. The topology of the environment can be
used to generate Lenv(p,R, t). Assuming that a person will
spend most of her/his spare time either in her/his private
room or in the common rooms, we model this likelihood
function in a way that it assigns a higher value to the com-
mon rooms and the person’s private room than to the other
regions.

Pre-computation. Since the schedules, the topology of
the environment, and the learned behaviour remain the same

once they are provided to the robot at the beginning of a day,
Ls(p,R, t), Ll(p,R, t), and Lenv(p,R, t) can be computed
before a search query is received. Llkrl(p,R, t) is computed
dynamically when the query is received.

Combining the Likelihood Functions for one Person.
The four likelihood functions Lk(p,R, t) can be combined
to generate L(p,R, t). As the certainties with which the four
likelihood functions can predict a resident’s location differ
(e.g., the Last Known Resident Location will have high un-
certainty when the person has not been detected for several
hours, and the Schedule Analyzer will have high certainty
when the person has an appointment), a weighting func-
tion can be used. The certainty of one likelihood function
Lk(p,R, t) can be represented by its variance:

Var(Lk(p,R, t)) =
1

|RE |
·
∑
R∈RE

[
Lk(p,R, t)− 1

|RE |

]2
.

(3)
For each likelihood functionLk, we introduce the weightwk
at time t:

wk(t) =
Var(Lk(p,R, t))∑
k

Var(Lk(p,R, t))
(4)

where
∑
k

wk(t) = 1. The final combined likelihood function

is defined to be:

L(p,R, t) =
∑
k

wk(t) · Lk(p,R, t). (5)

Figure 1(b) shows an example of the four weights.

Modelling the Transition System
The objective is to find a sequence of actions the robot
should execute in order to find as many persons as possible
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Figure 2: The transition system for an arbitrary region k with neighbours l1, . . . , ln. Being in state s′k, the robot can either rest
one time step, start a full search sequence or a drive sequence to one of the neighbouring regions li with i = 1, . . . , n which
leads to state s′li . Search sequences and the rest action in region k lead to s′k.

in Pq within the given deadline tmax. We model the search
as a Markov Decision Process. We discretize time using time
steps of duration ∆t which is the execution time for each in-
dividual action. The M-USB Search is modelled to consist
of three possible action sequences the robot can perform in
each region: 1) rest in which the robot rests for one time
step, 2) search in which the robot performs a local search
within the region, and 3) drive in which the robot drives
to one of the neighbouring regions. Since the time it takes to
perform a local search within a region depends on the geom-
etry of the region, we introduce Tsk to represent the number
of time steps ∆t a search within region Rk takes. For region
Rl ∈ neighbours(Rk), we define Tdk,l as being the number
of time steps the transition between Rk and Rl takes.

The states s ∈ S of the MDP represent the states of the
robot, which depend on the region the robot is in and the
current action sequence it is performing. We define the fol-
lowing sets of states Ssk and Sdk to contain all states during
the search and drive sequences for each region Rk ∈ RE :

1. Ssk = {searchtk} with 0 ≤ t < Tsk − 1, and

2. Sdk =
⋃

Rl

{
drivetk,l

}
with 0 ≤ t < Tdk,l − 1, Rl ∈

neighbours(Rk).
In addition to the aforementioned states within the search
and drive sequences, we define the state s′k for each region
Rk as the robot’s state: 1) after a region has been entered
by any drive sequence, 2) after the rest action has been ex-
ecuted, 3) after the full search sequence of Rk has been ex-
ecuted, or 4) when the robot is creating a new plan when
being in Rk. The set of all possible states for region Rk is
defined to be:

Sk = {s′k} ∪ Ssk ∪ Sdk. (6)
We define the following robot actions α for each region

Rk ∈ RE :
1. Ark = {restk},
2. Ask = {searchtk} with 0 ≤ t < Tsk, and

3. Adk =
⋃

Rl

{
drivetk,l

}
with 0 ≤ t < Tdk,l, Rl ∈

neighbours(Rk).

For each region Rk, the set of all possible actions is:

Ak = Ark ∪ Ask ∪ Adk. (7)

Transitions between the states describe how a robot state
changes when it performs a particular action. In particular,
the successor succ(α) of action α is defined as the state
which follows α. The overall transition system is shown in
Figure 2.

For each action a time-dependent reward R(α, t) is as-
signed. This reward is evaluated to compute the plan P∗
and depends on the region in which the action is per-
formed. Therefore, we define a region to each action: R =
region(α). For each action α in Ark and Ask, we define
region(α) = Rk. For each pair of neighbouring regions
Rk and Rl, we define Td,crossk,l to be the number of time
steps after which the region Rl is entered during a drive se-
quence from Rk to Rl. We then define region(α) = Rk if
t < Td,crossk,l and region(α) = Rl if t ≥ Td,crossk,l for each
drive action α.

Attractivities of Actions. Assuming that during a search
the probability that a person who is in the searched region
is detected is different from the probability that a person is
detected while the robot is just driving between two regions
or resting in one region, we define an attractivity δ(α) with
0 ≤ δ(α) ≤ 1 for each action α. This attractivity depends on
the geometry of the region R = region(α). We define the
attractivity δ(αs) = A(region(αs))

−1 for each search ac-
tion αs with A(region(αs)) being the area of region(αs).
We define δ(αr) = a · δ(αs) with 0 < a ≤ 1 for each rest
action and δ(αd) = b · δ(αs) with 0 < b ≤ 1 for each drive
action. If the robot detects residents with higher probability
while driving then b > a holds; a > b holds otherwise.
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Modelling the Order and Availability of Residents
The order in which the residents should be found is given
and has been obtained from the persons’ schedules to avoid
searching for unavailable residents. The robot should try to
keep this order if possible. However, if the robot can max-
imize the number of people found by changing the order,
it can also do so. To search for the residents p ∈ Pq in
the given order we introduce a priority function πp(t) with
0 ≤ πp(t) ≤ 1 for each person p ∈ Pq and apply the follow-
ing constraints: ∑

p∈Pq

πp(t) · βp(t) = 1 ∀t (8)

and
tmax∫
t0

πp(t) · βp(t) dt =
tmax − t0
|Pq|

∀p. (9)

We model πp(t) to provide a high priority in the time interval
assigned to the resident p based on the given order. However,
to allow the robot to search for other residents p′ ∈ Pq dur-
ing this time interval, we allow πp′(t) 6= 0 when βp′(t) = 1.
Figure 1(c) shows such a priority function for four peopleA,
B, C, and D to be searched in this order.

Finding P∗

In order to find the set of residents within the given deadline,
we define a reward for each action of the MDP model of
the search. The reward is based on the resident likelihood
functions and the availabilities of the residents in Pq , the
aforementioned priority functions and the attractivities:

R(α, t) = δ(α)·
∑
p∈Pq

πp(t)·βp(t)·L(p, region(α), t). (10)

Since a deadline is given, the search evolves to be a finite
horizon MDP which can be solved using simple backwards
induction (Tipaldi and Arras 2011). In particular, the utility
Ut(s) is evaluated for each possible state s at time t using
the Bellman equation:

Ut(s) = max
α

[R(α, t) + γ · Ut+1(succ(α))] (11)

where α is any action that can be taken from s and γ is a
factor with 0 ≤ γ ≤ 1 which provides a weighting for the
relation between the importance of rewards which are earned
in the near and in the far future. A policy Πt(s) can be iden-
tified which assigns the action α which has to be taken in
order to maximize the collected reward given t and s:

Πt(s) = arg max
α

[R(α, t) + γ · Ut+1(succ(α))]. (12)

For the last time step we initialize the utilities to be 0 for
each state. A plan can be obtained given both a policy and a
state s0, where s0 is the initial state the robot is in when plan-
ning. We set s0 = s′k with Rk being the region the robot is
currently in. To avoid endless search loops, we use a greedy
approach for the plan generation by introducing a number
of new regions k for the robot to search prior to the robot
searching a region again. We set the rewards for a search ac-
tion α to be zero when region(α) will be contained within
the next k regions that will be searched when taking action
α.

3 Simulated Experiments
Simulation Setup
To test the performance of the M-USB Search, we use a sim-
ulator we have developed to simulate a robot in a realistic
retirement home environment. The simulation was executed
on a Ubuntu machine with an AMD A10-5700 Processor
and 12GB RAM.

Simulation Environment. We created a map of a floor in
a retirement home with 25 residents. The map consists of
the residents’ private rooms, two common rooms (TV-Room
and Games Room), one Dining Hall, two Shower rooms, one
Nurse Station, one Room for Family visits, and an outdoor
Garden. All residents have their own unique schedules for
the day. These schedules contain three meal times, breakfast
(8 am-9 am), lunch (12 pm-1 pm), and dinner (6 pm-7 pm)
during which the residents are available for the robot to in-
teract with them. In addition, each schedule includes one 1-
hour activity during which the residents are also available for
interaction (e.g., walk and reading) and 2 to 4 appointments
during which they must not be disturbed (e.g., doctor’s visit).
In his/her spare time, each resident visits random rooms at
random times. A probability of pmiss = 0.1 is given for the
residents not participating in their scheduled activities and
behaving as if they have spare time. The map used for these
experiments is shown in Figure 1(a).

Performance Comparison. We compare the performance
of our M-USB Search to both a Weighted Informed Walk and
a Random Walk approach for the problem of a robot finding
a group of residents within a deadline in the retirement home
setting in order to remind them of an upcoming group-based
recreational activity. The robot uses a speed of v = 0.6 m/s
and can detect all people in a range of r = 1.8 m with respect
to the robot. The investigated search algorithms are:

1. Random Walk. The robot chooses a random room in the
map, drives to this room, and starts a local search in the
room. This is repeated until all target residents are found
or until the deadline is reached.

2. Weighted Informed Walk. Similar to the Random Walk,
the Weighted Informed Walk algorithm picks a random
room, drives there and starts a search in this room. How-
ever, a higher weighting is given to a resident’s private
room and common rooms. Namely, a weighting technique
is applied to identify the importance of the regions accord-
ingly to their room-classes. The algorithm also considers
the last k regions it has searched and does not search them
again before k = 4 other regions have also been searched.

3. M-USB Search. The proposed M-USB Search is used
with a time discretization of ∆t = 10 s. The schedule an-
alyzer uses ∆t = 30 s and the database in which the robot
saves the learned behaviour operates with ∆t = 300 s.
The attractivities for the actions are δ(αd) = 0.9 · δ(αs)
and δ(αr) = 0.7 · δ(αs). For Eqs. (11) and (12) γ = 0.99
is used. For the greedy M-USB Search the reward of an
action α is set to zero when the room region(α) is con-
tained in the next 4 searched regions.
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Figure 3: Comparison Results: (a) mean search time per person, (b) number of visited regions during the search and (c) planning
time needed to compute a plan when receiving a query.

Local Search in a Region. As our focus in this paper is
on the high-level search to regions, for this comparison all
aforementioned search approaches used the same random
walk local search approach when they were searching within
the region. The search time in the individual rooms was set
to one second per squared meter.

The Search Queries. Each search approach was tested
with ten different search queries q, which consisted of a
robot finding N = |Pq| residents with N = 5, 10, 15, 20, 25
during two separate times of the day. The start times were
chosen such that the robot searched for residents in a time
frame encompassing cases where residents had appoint-
ments, activities and spare time. For all searches, the robot
started in the Games Room and had a deadline of 2 hours
to complete a search. Each query was repeated 5 times per
search approach. The time t0 indicates the time when the
query was received.

Search Performance and Runtime
The performance metrics for the comparison are the mean
search time per person and the number of visited regions
during the search procedure. We also measure the pre-
computation time Tp needed at software start-up to create
the MDP model and load the learned behaviour, and set up
the three likelihood functions Ls, Ll, and Lenv . This time
is independent of the number of residents to be found, since
Ls, Ll, and Lenv are computed for every person. We also
measure the planning times T dN for the single plans which
are computed when a query is received. N is the number of
residents to be found and d is the duration of the resulting
plan which is the time we are looking into the future. For
the initial plan this time is two hours. We include plans gen-
erated with re-planning the search when a person has been
found.

Results and Discussion
The comparison results are presented in Figure 3. Figure
3(a) shows that our M-USB Search is the fastest search ap-
proach, while the Random Walk is the slowest. The results

show that the use of the persons’ schedules, learned be-
haviours as well as the topology of the environment, and the
attempt to keep the search order in the proposed approach
lowers the mean search times. The Weighted Informed Walk
has better results than the Random Walk due to the consid-
eration of the layout of the environment but requires more
time to find the residents than the M-USB Search. The Ran-
dom Walk does not use any prior knowledge and therefore
is the slowest approach. Figure 3(b) shows that the number
of visited regions during the search is also the lowest for the
M-USB Search compared to the two other approaches. The
measured mean pre-computation time during system start-
up for our approach was Tp = 40.82 s. The planning time
needed when a query was received can be seen in Figure
3(c). It is linear for the number of residents for which the
plan has to be generated since Llkrl and the reward have to
be computed N times. The time is also linear for the plan
execution time since the reward and the policy have to be
computed for every time step during backwards induction.
In general, the pre-computation times are very short (e.g. we
measure a mean of 7 s for N = 25 and d = 120).

4 Conclusion

In this paper we address the problem where a robot is
searching for multiple non-static residents within a retire-
ment home environment. We have developed the M-USB
Search planning procedure which generates a high-level-
plan to maximize the number of residents that are found
within a given time frame. We obtain spatio-temporal likeli-
hood functions for the individual residents using the sched-
ules of the residents, the layout of the retirement home envi-
ronment as well as direct observations by the robot. The M-
USB search method uses a novel approach to compute the
reward to determine the robot’s search plan for finding mul-
tiple persons. We have compared our M-USB search method
to a Weighted Informed Walk search and a Random Walk
search for the proposed problem. Our results showed that the
M-USB Search can find the residents in a shorter amount of
time by visiting a fewer number of rooms.
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