
Minimising Undesired Task Costs in Multi-Robot Task
Allocation Problems with In-Schedule Dependencies

Bradford Heap and Maurice Pagnucco
School of Computer Science and Engineering

The University of New South Wales
Sydney, NSW, 2052, Australia

{bradfordh,morri}@cse.unsw.edu.au

Abstract
In multi-robot task allocation problems with in-
schedule dependencies, tasks with high costs have a
large influence on the total time required for a team of
robots to complete all tasks. We reduce this influence
by calculating a novel task cost dispersion value that
measures robots’ collective preference for each task. By
modifying the winner determination phase of sequen-
tial single-item auctions, our approach inspects the bids
for every task to identify tasks which robots collectively
consider to be high cost and ensures these tasks are al-
located prior to other tasks. Our empirical results show
this method provides a significant reduction in the total
time required to complete all tasks.

Introduction
To coordinate efficiently, distributed robots often use ex-
plicit communication techniques (e.g., auctions, coalitions)
to allocate tasks and ensure a global team objective is com-
pleted. This problem is known as multi-robot task allocation
(MRTA) and many variants are known to be NP-Hard (Kor-
sah, Stentz, and Dias 2013). Minimising the total task com-
pletion time is a common objective in these problems. For
example, consider a team of autonomous robots delivering
packages in an office-like environment. Each task represents
a package to be delivered. The cost to complete each task
is the time required for a robot to travel to the pickup point
and then the delivery point for a package. To complete all
tasks, robots may be required to deliver multiple packages
and may be constrained in the number of packages they can
carry at any time. When robots carry multiple packages, they
may take advantage of positive inter-task synergies, that is,
when the cost to complete two or more tasks in parallel is
lower than the cost to complete each task in isolation.

To minimise the total team cost to complete all tasks, it
is vital that robots are allocated tasks that minimise each
robot’s local costs. A common approach for minimising lo-
cal costs is greedy-based auctions which let robots bid for
tasks relative to the costs of completing their existing com-
mitments. Generally, this approach works well, however, it
is poor at identifying tasks that are considered undesirable
by all robots, e.g., tasks that have large completion times
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and/or poor inter-task synergies. These undesired tasks are
often the last to be allocated and can cause large increases
in the total team cost, resulting in task allocations where the
majority of tasks are completed quickly but the total task
completion time is high.

In this paper we propose the novel calculation of a Task
Cost Dispersion (TCD) Value which measures the robots’
collective preference for each task. Our method inspects all
robots’ bids to identify tasks for which robots have no strong
collective preferences. We then ensure that these tasks are
allocated before other tasks. Our empirical results show this
method reduces the total time taken to complete all tasks.

Problem Formalisation
MRTA problems vary widely and their scope includes prob-
lems where costs, tasks and robots may not be independent.
Tasks may be complex requiring other tasks to be completed
a priori and completion of some tasks may require multiple
robots to coordinate; robots may be constrained to a maxi-
mum number of tasks they can execute at any one time or
complete overall; and, task costs may change according to
a robot’s other task commitments. A recently published tax-
onomy classifies MRTA problems according to these differ-
ences (Korsah, Stentz, and Dias 2013). At the top level it
divides MRTA problems according to inter-task relatedness:

No Dependencies tasks are completed by individual robots
without inter-task synergies and dependencies.

In-schedule Dependencies tasks are completed by individ-
ual robots with intra-schedule dependencies. That is, task
costs are relative to a robot’s other task commitments.

Cross-schedule Dependencies tasks may need to be com-
pleted in unison with other robots and the costs are rela-
tive to robots negotiating the task completion order.

Complex Dependencies tasks may need to be decomposed
into subtasks with cross-schedule dependencies, each
robot’s costs is dependent upon the task decomposition
and tight cooperation with other robots.

In this paper we study problems with in-schedule de-
pendencies, for which multi-robot routing is considered the
standard testbed of this classification of MRTA problems
(Dias et al. 2006). We explore two different types of task
structures: elemental tasks (e-tasks) which require robots to
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visit a single point location t = lv and simple tasks (s-tasks)
which consist of multiple e-tasks and have constraints on the
task execution ordering. In our scenarios, s-tasks are tasks
with pickup lp and delivery ld locations, the structure of
these tasks is a tuple t = 〈lp, ld〉.

For problems with e-tasks, robots are classed as single-
task (ST), that is a robot can only execute one task at a time
and capacity constraints may apply to the total number of
tasks a robot can execute. This is a variant of the multiple
travelling salesman problem (Bektas 2006). For problems
with s-tasks, robots may also be of type multi-task (MT).
This class of robot is able to execute multiple tasks in par-
allel. A robot is considered to be executing a task when it
begins travelling to a task’s pickup location until it reaches
its delivery location. Robots may also be constrained in the
number of tasks that they are able to execute in parallel.
These constraints are representative of real robots which
may have a fixed maximum number of items that they can
carry. In the operations research domain this problem is re-
ferred to as the Vehicle Routing Problem with Pickup and
Delivery (Desaulniers et al. 2002).

We follow (Koenig et al. 2007) to define a solution to
this type of MRTA problem. Given a set of robots R =
{r1, . . . , rm} and a set of tasks T = {t1, . . . , tn}. A par-
tial solution to the MRTA problem is given by any tuple
〈Tr1 , . . . , Trm〉 of pairwise disjoint task subsets:

Tri ⊆ T with Tri ∩ Tri′ = ∅, i 6= i′, ∀i = 1, . . . ,m

Each task subset Tri is then assigned to a single robot ri ∈
R. To determine a complete solution we must find a partial
solution with all tasks assigned to task subsets:

〈Tr1 . . . Trm〉 with ∪ri∈R Tri = T

Each robot always has private knowledge of its current
location and can calculate the cost λ to travel between loca-
tions. The cost to travel between any two locations is equal
across all robots. The robot cost λri(Tri) is the minimum
cost for an individual robot ri to visit all locations Tri as-
signed to it. Synergies between tasks assigned to a robot may
be less than (positive synergy), or greater than (negative syn-
ergy) the sum of the individual costs for each task:

λri({t}) + λri({t′}) 6= λri({t} ∪ {t′})

Synergies allow robots to calculate costs for additional tasks
relative to their current commitments.

Team objectives are used to provide additional guidance
in the search for solutions to the task allocation that meet
certain criteria. Lagoudakis et al. discuss team objectives
in detail and their application to MRTA (Lagoudakis et al.
2005). In this work we use the MiniMax team objective:
min maxri∈Rλri(Tri), as this team objective reflects our de-
sire to minimise the total task completion time.

Related Work
Solutions to MRTA problems can be found using centralised
methods, such as, mixed integer programming (Koenig et
al. 2007) or graph partitioning (Liu and Shell 2011). How-
ever, in all but the simplest problems, centralised methods

are not efficient for MRTA (Dias and Stentz 2000). In addi-
tion, the information required by the centralised controller in
decision making introduces large, and generally impractical,
communication overheads into the system.

A number of common approaches for solving MRTA
problems are based on distributed market-based auction al-
gorithms (Dias et al. 2006). A standard auction is composed
of three phases: the initial phase in which an auctioneer in-
forms the robots of the tasks for auction; a bidding phase
in which each robot evaluates the tasks for auction and re-
sponds with bids representing the costs to complete each
task; and, a winner determination phase in which the auc-
tioneer determines the winner for each task. In a MRTA
auction every robot bids on the set of tasks available and
is awarded tasks according to their bids. Bids are calculated
using bidding rules which enable individual robots to mea-
sure the costs of tasks relative to the team objective. Ad-
ditionally, some auction algorithms allow inter-task syner-
gies to be considered during bid calculations. Furthermore,
auctions can be run without any centralised auctioneer if all
robots send all bids to each other and in parallel perform the
same winner determination routine (Lagoudakis et al. 2005).

The Contract Net Protocol (CNP) is the foundation of
many market-based systems (Smith 1980). Originally used
in distributed computing, this protocol considers a system
with no central control and describes a framework that cov-
ers the three auction phases. The CNP has been applied to
the MRTA domain through the M+ scheme. Robots are as-
signed tasks one at a time. They are able to indicate tasks
they wish to complete in the future and other robots are able
to make counter offers (Botelho and Alami 1999). However,
this approach gives no guarantees on the solution bounds.

In contrast, optimal solutions to the MRTA problem can
be found using a single-round combinatorial auction where
each robot is allocated at most one disjoint subset of tasks.
To generate optimal solutions, robots calculate bids for every
possible subset of tasks with inter-task synergies considered.
This method is NP-complete and the computation tends to be
intractable. It is therefore, not feasible for anything but the
smallest scenarios (Berhault et al. 2003).

Sequential single-item (SSI) auctions offer a middle
ground and solve MRTA problems with bounded solution
costs over multiple bidding rounds. In each auction round,
each robot calculates bids for all unallocated tasks and sub-
mits bids for every task on offer. The robot that bid the
lowest for any task is then awarded that task, such that
the overall team cost increases the least according to the
team objective. Despite this, SSI auctions are not guaran-
teed to generate optimal solutions even if the robot costs
are calculated optimally (Tovey et al. 2005). However, so-
lutions generated relative to a variety of team objectives are
bounded (Lagoudakis et al. 2005), they run in polynomial
time (Koenig et al. 2006), and have been shown experimen-
tally to perform very well (Tovey et al. 2005).

In this work we modify the winner determination phase
of SSI auctions to reduce the influence of undesired tasks.
A distributed algorithm for standard SSI auctions is given
in Figure 1. This algorithm assumes a set of robots are sup-
plied with a map of the environment, have perfect locali-
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function SSI-Auction (T̄ ,Tri , ri, R)
Input: T̄ : the set of tasks to be assigned

Tri : the set of tasks presently assigned to robot ri
ri: the robot
R: the set of robots

Output: Tri : the set of tasks assigned to the robot ri

1: while (T̄ 6= ∅)
2: /* Bidding Phase */
3: for each task t ∈ T̄
4: βtri ←CalcBid(Tri ,t);
5: Send(β, R) | B ←

⋃
i

Receive(βi, R);

6: /* Winner Determination Phase */
7: for each task t ∈ T̄
8: M t

r′ ← arg min(r′∈R) Bt;
9: (r′, t)← arg min(r′∈R,t∈T̄ ) M ;

10: if ri = r′ then
11: Tri ← Tri ∪ {t};
12: T̄ ← T̄\{t};

Figure 1: Algorithm for Sequential Single-Item Auctions.

sation, error free communication, and do not break down.
These constraints are applied to enable us to focus on the
auction process alone. A SSI auction begins and continues
while there are unassigned tasks (Line 1). During the bid-
ding phase (Lines 3-5) each robot calculates bids for ev-
ery unassigned task and sends these bids to all other robots.
The function CalcBid takes robot ri’s set of previously as-
signed tasks Tri and the task t to be bid on and uses a bid-
ding rule to calculate a bid cost (Line 4). Each bid is a triple
β = 〈ri, t, bλ〉 of a robot ri ∈ R, a task t ∈ T and a bid cost
bλ. For the MiniMax team objective, each robot’s bid cost is
the cost to complete all previously allocated tasks plus the
cost for the additional task bλ = λri({Tri ∪ t}). Robots
send their bids and receive bids from all other robots in par-
allel (Line 5). The winner determination phase (Lines 6-12)
consists of each robot finding the task with the lowest bid
across all submitted bids. First the lowest bid for each task
M t
r′ is determined (Lines 7-8), from this the lowest over-

all bid is determined (Line 9) and the task awarded to the
bidding robot (Lines 10-11). Ties are broken in an arbitrary
manner. All robots then remove the awarded task from the
set of unassigned tasks and the next round begins (Line 12).

A key strength of SSI auctions is their ability to build upon
inter-task synergies during each bidding round. However,
when robots have few tasks allocated, each robot’s bids have
a greedy bias towards tasks that are close to their initial lo-
cations. While this makes intuitive sense — as these nearby
tasks have low costs relative to a robot’s initial location —
these initial task allocations have a large influence over the
bid costs and preferences for other tasks and, without any
ability to reallocate tasks, may result in large overall team
costs. To address this, a variety of further improvements and
extensions to SSI auctions have been studied which mod-
ify the bidding and winner determination phases of the auc-
tion process, trading off allocation time against overall team

t1
2

t2
1 + ε

r1
1− ε

t3
1 r2

Figure 2: MRTA problem with three e-tasks and two robots.

Tr1 = ∅ Tr1 = {t1} Tr1 = {t2} Tr1 = {t3}
t1 3 + ε - 3 + ε 5− ε
t2 1 + ε 3 + ε - 3− ε
t3 1− ε 5− ε 3− ε -

Table 1: Task bid costs for robot r1 with prior commitments.

costs (Koenig, Keskinocak, and Tovey 2010).
One particular extension which seeks to overcome this

problem, without modifying the bidding process, is regret
clearing. In this extension, the winner determination phase
of each auction round is modified such that the difference be-
tween the lowest and second lowest bids for any task which
increase the overall team cost are maximised. The objective
of this modification is, in each auction round, to allocate the
task for which any robot has the strongest preference over
all other robots. Despite the bounds for standard SSI auc-
tions not applying to regret clearing, empirical evaluation
indicates this approach works well for allocating tasks ac-
cording to the MiniMax team objective with and without ca-
pacity constraints (Koenig et al. 2008).

Identifying Undesired Tasks
SSI and other sequential and greedy-based auction schemes,
by design, prefer tasks with low costs. While these ap-
proaches are good at locally minimising the majority of each
robot’s task costs, certain tasks may have high costs and the
allocation of these relative to other tasks can have a large
impact on the overall team cost. Additionally, many of these
approaches fail to consider alternative task allocation per-
mutations in scenarios with tasks that are strongly preferred
by multiple robots or tasks for which no robot has a strong
preference.

Consider a simple MRTA problem with three e-tasks and
two robots in a line (Figure 2). In this example, it is easy to
see that, for both robots, with no existing task commitments,
task t1 has the highest cost and task t3 the lowest cost. The
optimal solution to this problem for the MiniMax team ob-
jective is Tr1 = {t1, t2}, Tr2 = {t3} which yields a cost of
3 + ε. For this problem, when no other tasks are allocated,
any greedy-based auction algorithm will allocate task t3 to
robot r1 which (a) immediately deviates from the optimal
solution and (b) causes all other task costs to rise for robot
r1. This shows us that, despite task t3 having a low cost and
a high preference among the robots, it has poor inter-task
synergies among other tasks (Table 1). In contrast, task t1
has high costs but high inter-task synergies. For instance, if
robot r1 was allocated task t1 before any other tasks, r1’s
cost for task t2 rises to 3+ε but the relative increase in over-
all cost is 0 (as robot r1’s overall cost is already 3 + ε).

Unfortunately, avoiding team costs being heavily influ-
enced by tasks with poor inter-task synergies, is not as sim-
ple as determining the tasks with highest costs and allocating
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t1
1

t2
1 + ε

r1
3− ε

t3
3 r2

Figure 3: MRTA problem with modified task costs.

them first — although this idea contributes to the basis of our
approach — as this can also easily result in poor solutions.
For instance, in Figure 3 we modify the previous example’s
task costs. In this new scenario, if we allocate tasks by taking
the maximum of the lowest bids for each task, task t3 would
still be allocated to robot r1 in the first bidding round. This
allocation would again deviate from the optimal solution and
cause an increase in robot r1’s costs to complete other tasks.
Furthermore, this approach ignores any robot’s strong pref-
erences (low bids) for certain tasks, e.g., in this example,
robot r1 has the strongest preference for task t2.

A possible approach for overcoming these problems,
which trades off individual task preferences with inter-task
synergies, is for each robot to calculate bids for each task
according to the influence this task allocation would have
on the subsequent costs of all remaining unallocated tasks.
Returning to the first example MRTA problem, allocating
task t2 to robot r1 would have the smallest maximum in-
crease in costs for other tasks (Table 1). However, if this ap-
proach was to be used in an auction algorithm, the number
of calculations required per bid is increased by a factor of
|T |, which in many cases would cause a substantial increase
in the computation time for each bid. As an alternative, we
seek to use each robot’s preference for each task, which is
supplied to us in the bidding phase of SSI auctions, to de-
termine tasks that robots collectively find undesirable. In the
following section, we explore a number of approaches that
inspect the bids from all robots for all tasks and use this to
measure the collective preferences for each task.

Winner Determination with Collective
Preferences

A winner determination algorithm that is well informed and
considers a large number of task allocation permutations is
vital to minimising the overall team cost. Standard winner
determination in SSI auctions is simplistic and selects the
lowest overall bid for any task without consideration for
other robots who may also have a high preference for this
task. While regret clearing seeks to improve on this by se-
lecting the robot and task with the largest difference in pref-
erence over all the second highest bidding robot, this ap-
proach still only focuses on preferences of two robots and
not the collective desires of the whole team.

In contrast, approaches that attempt to allocate multiple
tasks to multiple robots at the same time suffer from addi-
tional complexities in bid formation and winner determina-
tion. For instance, in combinatorial auctions, to determine
the optimal allocation, after each robot has calculated bids
for every subset of tasks, an exhaustive search of every tuple
of pairwise disjoint combinations that are valid problem so-
lutions is required. As this is generally impractical, robotics
researchers have developed strategies to bid on limited sub-
sets of tasks, such as, bidding on bundles of n or fewer

targets (Berhault et al. 2003; Sandholm 2002), or forming
greedy bids on bundles with low path costs (Berhault et al.
2003). However, even if the number of bids is reduced and a
near optimal solution is accepted, winner determination still
remains NP-complete (Sandholm 2002).

In SSI auctions, during the bidding process, every robot’s
individual preferences for each unallocated task is calcu-
lated. These task preferences include the costs to complete
each task relative to each robot’s previously allocated tasks.
Using these task preferences, we can modify the winner de-
termination phase of SSI auctions to calculate a TCD value
for each task and then assign the task with the highest TCD
value to the robot that bid the lowest for this task.

Each task’s TCD value is a measure of the robots’ collec-
tive preference for this task. A low TCD value indicates a
task for which many robots have high preference, and a high
value indicates a task which few robots desire. By allocat-
ing tasks according to the highest TCD value, we ensure that
tasks which robots collectively find undesirable are allocated
before tasks for which many robots have strong preferences.
Formally, lines 7 - 9 of the SSI algorithm presented in Figure
1 are removed and replaced with:

for each task t ∈ T̄
M t

r′ ← calcDispersion(R, t, Bt);
(r′, t)← arg max(r′∈R,t∈T̄ ) M ;

The new function CalcDispersion takes all the bids for a
task Bt and returns a single replacement bid M t

r′ . This re-
placement bid continues to be a tuple M t

r′ = 〈ri, t, bλ〉 of a
robot ri ∈ R, the task t and a bid cost bλ. In our replacement
bid, the bidding robot is the robot that originally bid the low-
est for this task, ri ← arg min(r′∈R) Bt. The replacement bid
cost bλ is the TCD value for the task.

Any function that measures the robots’ collective prefer-
ences for a task (more formally the distribution of bids) can
be used as a metric for calculating TCD values. In our em-
pirical evaluations we explore a number of different standard
statistical measures which seek to balance robot’s individual
preferences and the collective team preferences:

Minimum Bid (TCD-Min) By using the minimum bid for
each task bλ ← arg min(Bt) as a task’s TCD value, the
next task assigned is the task for which every robot has
the collective weakest preference. This method is good
at identifying undesirable tasks, however, as analysed in
the previous section, is poor at identifying tasks for which
robots have strong preferences.

Average Bid (TCD-Avg) Calculating the average bid for
each task bλ ← average(Bt) enables all robots’ prefer-
ences to contribute to the TCD value. In this approach,
the TCD value can be heavily influenced by robots with
strong or weak preferences and, when these two extremes
in preferences are both present, they may cancel each
other out, thereby making it difficult to distinguish be-
tween tasks for which all robots have neither strong or
weak preferences and those for which the preferences are
highly divided.

Median Bid (TCD-Mid) By taking the median of each
task’s bids bλ ← median(Bt) we are able to remove the
influence that extremely strong or weak preferences have
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on the collective preferences of the robots. This approach,
however, only analyses the bids of at most two robots.
The robot who will be assigned the task — through ini-
tially bidding the lowest for it — if this bid is deemed the
winner, has no influence over the TCD value. Therefore,
while the TCD-Mid value may be representative of the
‘general’ view of all robots, the robot assigned the task
may not have a strong preference for the task.

Bid Range (TCD-Rng) Using the range between the high-
est and lowest bids for a task bλ ← arg max(Bt)− arg
min(Bt) allows us to determine how varied the prefer-
ences for a task are. A low range suggests a task for which
all robots have strong preference, whereas, a high range
suggests a task that at least one robot has a strongly weak
preference. While this approach enables the robot that will
be awarded the task to contribute to the replacement bid
cost, the value can be highly influenced by a single robot’s
weak preference and does not allow us to determine if
other robots have high preferences for this task.

Maximum Bid Delta (TCD-Dlt) If we take the difference
between the lowest and second lowest bids bλ ← arg
min(Bt\t)− arg min(Bt) we can determine tasks for
which individual robots have a strong preference. This
approach is similar to regret clearing with the difference
that, for the MiniMax team objective, regret clearing uses
‘increased bids’ which also consider the overall team cost
for the current allocation to select the bid delta that in-
creases the team cost the least (Koenig et al. 2008).

Experiments
We evaluate each TCD value calculation method on a vari-
ety of MRTA problems with in-schedule dependencies. We
compare the overall team costs for each method to the costs
obtained using standard SSI auctions and regret clearing.

Our simulated test world resembles an office-like environ-
ment with 16 rooms. Each room contains four doors that are
independently opened or closed to allow or restrict travel be-
tween rooms (Figure 4). Robots can only travel through open
doors and they cannot open or close doors. In each experi-
ment configuration, it is guaranteed that there is at least one
path between each room and every other room. This envi-
ronment has become the standard testbed in recent literature
(Koenig et al. 2007; 2008).

We repeat each experiment on 25 randomly generated
configurations of opened and closed doors, with 10 robots
and 60 tasks. In each configuration, each robot starts in a
different random location and every robot is supplied a map
of the environment at a resolution of 510x510 grid units. A
grid unit covers a 5cm by 5cm area of space and gives an
overall simulated space of 25.5m by 25.5m.

We test six different MRTA problem formulations with in-
schedule dependencies. The first two of these problems use
single-task (ST) robots and e-tasks with and without max-
imum task capacity constraints. These two configurations
have been used previously to test SSI-based auction algo-
rithms (Koenig et al. 2007; 2008). The third problem uses
ST robots with s-tasks without capacity constraints. The fi-
nal three problems use multi-task (MT) robots with s-tasks

Figure 4: Simulation of robots in an office-like environment.

and parallel task execution constraints of three, five and un-
limited tasks. These later four problem configurations are
extensions of the previous tests to represent problems with
pickup and delivery.

The mean team costs for each of these six problems are
presented in Table 2. Across the ST robot results we make
the following observations: allocations using TCD-Min val-
ues do not decrease the team cost relative to standard SSI
auctions; for problems with e-tasks, allocations using TCD-
Avg, TCD-Rng, and TCD-Dlt values result in lower final
team costs than both standard SSI auctions and regret clear-
ing; for s-tasks no TCD value calculation method produces
lower average costs than SSI auctions; and across all three
ST robot problems, allocations using TCD-Rng values pro-
duce costs that are nearest to the costs generated using stan-
dard SSI auctions.

The results for MT robot problems show all TCD value
calculation approaches produce lower team costs than stan-
dard SSI auctions. However, only allocations using TCD-
Avg or TCD-Mid values produce costs that are lower than
SSI auctions with regret clearing. Overall, across each tested
MRTA problem types (excluding ST robots with s-tasks),
task allocations using either TCD-Avg or TCD-Mid values
consistently outperform all other approaches tested.

To measure the strength of these results, we form the hy-
pothesis that modifying the winner determination phase of
SSI auctions to select tasks with the maximum TCD value
calculated using either the average or median of all submit-
ted bids produces lower overall team costs than standard SSI
auctions or regret clearing for the MiniMax team objective.
To validate this hypothesis, we perform one-sided Wilcoxon
signed-rank tests for the results of each of the six MRTA
problem types to measure the statistical significance of our
results. For each test, the null hypothesis is defined as:

H0 : µλAverage/Median ≥ µλSSI/Regret

and alternative hypothesis as:

H1 : µλAverage/Median < µλSSI/Regret

For the first problem with ST robots, e-tasks and no ca-
pacity constraints, allocations using TCD-Avg values have
statistical significance of 0.94, and using TCD-Mid values,
statistical significance of 0.98 over standard SSI auctions.
However, compared to allocations with regret clearing nei-
ther approach produces statistically significant lower costs.
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Single-Task Robots SSI Regret TCD-Min TCD-Avg TCD-Mid TCD-Rng TCD-Dlt
E-Tasks No Constraints 707 671 816 668 662 737 637
E-Tasks Max Capacity 6 1258 1270 1431 1096 1202 1250 1214
S-Tasks No Constraints 4005 4260 4310 4191 4167 4084 4229

Multi-Task Robots SSI Regret TCD-Min TCD-Avg TCD-Mid TCD-Rng TCD-Dlt
S-Tasks 3 Parallel Task Limit 2591 2344 2422 2294 2216 2422 2353
S-Tasks 6 Parallel Task Limit 2249 1945 2013 1869 1862 2047 1976
S-Tasks No Constraints 2080 1885 1971 1826 1825 1945 1887

Table 2: Mean Team Costs—bolded costs are lower than corresponding SSI and Regret Clearing costs.

Figure 5: Boxplot of results distribution for e-tasks.

For the second problem (ST robots, e-tasks with maximum
task capacity constraints) allocations using TCD-Avg values
are statistically significant at 0.999 for both SSI and regret
clearing, however, allocations using TCD-Mid values are not
significant at the 0.95 threshold. This suggests that, overall,
for problems requiring ST robots and e-tasks, allocations us-
ing TCD-Avg values produce the lowest costs.

For problems with MT robots and s-tasks even stronger
statistical validity was measured. For all problems, statisti-
cal significance results greater than 0.999 were recorded for
TCD values calculated with either average or median task
costs when compared to standard SSI auctions. And when
compared to regret clearing, the two approaches measured
statistical significance in a range from 0.92 - 0.999.

As noted in the previous section, TCD values calculated
with average costs are prone to heavy influence by weak
preferences and values calculated using median bid values
ignore strong preferences. While strong statistical signifi-
cance results describe the average behaviour of each method,
we are further interested in the relative distribution of the re-
sult set. In Figure 5 we plot the result distribution for ST
robots with e-tasks and no capacity constraints, and in Fig-
ure 6 for MT robots with s-tasks and no capacity constraints.

The first of these plots shows that allocations generated
with TCD-Mid values are heavily skewed towards lower
costs compared to the other task allocation approaches.
However, outlying high cost results cause the average cost

Figure 6: Boxplot of results distribution for s-tasks.

for allocations using TCD-Mid values to be very close to
those using TCD-Avg values (662 vs 668). This plot also
shows that, while statistical significance testing showed no
difference between regret clearing and TCD-Mid values, the
distribution skew of each respective results differ substan-
tially. The second distribution plot shows the clear benefit of
using either TCD-Avg or TCD-Mid values for task alloca-
tion problems with s-tasks and MT robots. Additionally, it
shows standard SSI auctions perform poorly on this type of
problem, which is a type of problem that SSI auctions have
not previously explored.

Conclusion and Future Work
In this paper we have shown the benefits of using the collec-
tive information contained across all bids in SSI auctions. By
calculating a task cost dispersion value for each task we have
ensured that tasks that are collectively undesired by robots
are allocated before tasks which are more strongly preferred.
Our empirical results have shown that this approach lowers
the team cost for the MiniMax team objective when com-
pared to SSI auctions.

In future work, focus should be given to constructing
TCD value calculation functions for other team objectives.
Additionally, further study of auctions for problems with
pickup and delivery is essential as this is currently under-
represented in the literature.
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