
Qualitative Planning with Quantitative Constraints
for Online Learning of Robotic Behaviours

Timothy Wiley and Claude Sammut
School of Computer Science and Engineering

University of New South Wales
Sydney, NSW 2052, Australia

{timothyw,claude}@cse.unsw.edu.au

Ivan Bratko
Faculty of Computer and Information Science

University of Ljubljana
Trzaska 25, 1000 Ljubljana, Slovenia

bratko@fri.uni-lj.si

Abstract

This paper resolves previous problems in the Multi-Strategy
architecture for online learning of robotic behaviours. The
hybrid method includes a symbolic qualitative planner that
constructs an approximate solution to a control problem. The
approximate solution provides constraints for a numerical op-
timisation algorithm, which is used to refine the qualitative
plan into an operational policy. Introducing quantitative con-
straints into the planner gives previously unachievable do-
main independent reasoning. The method is demonstrated on
a multi-tracked robot intended for urban search and rescue.

1 Introduction
For many complex robotic tasks, such as locomotion be-
haviours, it is preferable to learn the low-level controller ac-
tions. We focus on online approaches, that is, learning while
an agent performs a given task. A Multi-Strategy Architec-
ture (Figure 1) may be used for online learning of robotic
behaviours (Wiley, Sammut, and Bratko 2013a). A planner
uses a qualitative model of a robotic system to produce a
parametrised sequence of actions that complete a given task,
where the exact values of the parameters are found by a trial-
and-error learner. However, such planners required task spe-
cific knowledge to produce correct plans. The work in this
paper resolves the problem by introducing quantitative con-
straints into the planner. This addition, however, causes a
significant performance reduction.

Online learning has typically been tackled with some
form of reinforcement learning. The system performs a suc-
cession of trials, which initially fail frequently. As more ex-
perience is gained, the control policy is refined to improve
its success rate. In its early formulations (Michie and Cham-
bers 1968; Watkins 1989; Sutton and Barto 1998), reinforce-
ment learning worked well as long as the number of state
variables and actions was small. This is not the case for
robotic systems that have large, continuous and highly noisy
state spaces. Various approaches to alleviate this problem
include building a high-level model of the system to restrict
the search of a learner. Hand-crafted computer simulations
of robotic systems allow a large number of trials to be run.
With enough trials, robotic behaviours may be learnt such

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Qualitative 
Model

Qualitative 
Planner with 

QSIM

Refine 
Parameters

Parameterised &
Constrained

Action Sequence

Figure 1: Three stage architecture for learning robotic be-
haviours using a qualitative planner based on the QSIM al-
gorithm, and a quantitative trial-and-error learner.

as teaching a dog-like robot to jump (Theodorou, Buchli,
and Schaal 2010). Temporal data allows a learner to think
multiple steps ahead reducing the risk of immediate failure
and has been applied to office navigation tasks (Quintia et
al. 2010). A second stage of real-world learning may further
refine policies learnt in simulation and have been applied to
visual AUV Navigation (El-Fakdi and Carreras 2013).

Behavioural cloning observes the actions of expert hu-
mans using a robotic system to build a model that trains the
learner (Michie, Bain, and Hayes-Michie 1990). The model
may also be further refined in a second stage before training
the learner (Isaac and Sammut 2003), which has been ap-
plied complex non-linear tasks such as to learning to fly air-
craft (Šuc, Bratko, and Sammut 2004) and controlling com-
plex non-linear container crane (Šuc and Bratko 1999). Sys-
tem identification removes the expert human and uses ma-
chine learning to create a characterisation of the system be-
ing controlled. Reinforcement learning then produces a con-
troller and has applied to learn autonomous helicopter flight
(Buskey, Roberts, and Wyeth 2002; Ng et al. 2006). The
reinforcement learner’s policy may also be modelled (or ap-
proximated) by using a combination of neural networks and
a database of previously visited states. This has been ap-
plied to train a robot with articulated fins to swim (Lin et al.
2010), but does not scale well as the database grows.

1.1 Multi-Strategy Learning
Building the above types of models generally requires strong
domain knowledge. However, most trial-and-error learning
systems are incapable of making use of general background
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knowledge, as humans do. For example, if we are learn-
ing to drive a car that has a manual gear shift, the instructor
does not tell the student, “Here is the steering wheel, the
gear stick, and the pedals. Play with them until you figure
out how to drive”. Rather, the instructor give an explicit se-
quence of actions to perform. To change gears, the instructor
might tell the student that the clutch has to be depressed si-
multaneously as the accelerator is released, followed by the
gear change, and so on. However, the instructor cannot im-
part the “feel” of the pedals and gear stick, or control the stu-
dent’s muscles so that the hands and feet apply the right pres-
sure and move at the right speed. This can only be learned
by trial-and-error. So despite having a complete qualitative
plan of actions, the student will still make mistakes until the
parameters of their control policy are tuned. However, with
no prior knowledge, learning would take much longer since
the student has no guidance about what actions to try, and
in what order to try them. Additionally, common physics
constraints can give a learner what might be described as
“common sense”, in that it can reason about the actions it
is performing. The background knowledge in the above ex-
ample was provided by a teacher, but some or all of it could
also be obtained from prior learning.

Hybrid learning frameworks have been proposed that use
qualitative background knowledge with multiple stages of
learning. Ryan (2002), used a symbolic qualitative plan-
ner to generate a sequence of parameterised actions, and a
second stage of reinforcement learning to refine the param-
eters. However, the system was limited to discrete domains.
Brown and Sammut (2011) used a STRIPS-like planner to
generate actions for a high-level motion planner. A con-
straint solver was added that used the actions to limit the
search of a motion planner that provided the parameters for
a low-level controller. This worked well because the robot in
the experiments was wheeled and only needed to drive over
a flat surface, but is not appropriate for more complex tasks.
Sammut and Yik (2010) proposed a Multi-Strategy Learning
Architecture for complex low-level control actions, using
a classical planner to produce a sequence of parameterised
qualitative actions. The parameter values were bounded by
a constraint solver and refined by a trial-and-error learner.
Given a qualitative description of the phases of walking cy-
cle, a stable gait for a 23 degree of freedom bipedal robot
was learnt in 46 trials, averaged over 15 experiments (Yik
and Sammut 2007). However, the planner was highly spe-
cialised for that particular task. We generalised this ar-
chitecture (Wiley, Sammut, and Bratko 2013a) (Figure 1)
to address the need for a highly specialised planner. The
STRIPS-like action model was replaced with a qualitative
model that specified the robot and its interaction with the
environment with qualitative constraints. The planner and
constraint solver were combined by using Qualitative Simu-
lation (QSIM) (Kuipers 1986) to reason about the effect of
performing actions, and automatically constrain the action
parameters. The revised approach made progress toward re-
moving domain specific knowledge from the planner, how-
ever, the purely qualitative information was not sufficient in
all cases. The planner could produce sequences of actions
that were physically impossible to execute.

We extend our previous work by introducing quantitative
constraints into the planning process, to prevent the plan-
ner from producing impossible solutions. However, the use
of quantitative constraints have significant performance im-
pacts on the planner. This performance impact is analysed.

1.2 Related work in Qualitative Planning
Planning with Qualitative Reasoning has been previously
investigated through planning architectures for Qualitative
Process Theory (QPT) (Aichernig, Brandl, and Krenn 2009;
Forbus 1989; Hogge 1987). The dynamics of a system are
modelled by qualitative constraints in the form of Quali-
tative Differential Equations (QDEs), and the planner uses
STRIPS-like actions to add and remove QDEs from the
model to search through potential states until the desired
goal is found. For example, a Water Tank may be mod-
elled with an out-flow pipe, in-flow pipe and a valves on
each pipe. Actions open or close the valves which add and
remove constraints that govern the rate of change in the level
of water in the tank. This technique has been adapted for
live monitoring tools to predict state of dynamic system and
allow a reactive controller to maintain the system (DeJong
1994; Drabble 1993). However, these actions do not contain
parameters sufficient for the trail-and-error learner.

In the robotics domain, Troha and Bratko (2011) used
planning with QSIM to train a small two-wheeled robot to
push objects into a given location. The robot first learnt the
qualitative effects of pushing a given object, then planned a
sequence of actions to place the object at a desired position
and orientation. However, their system was specialised to
learning the effects of pushing objects. Mugan and Kuipers
(2012) developed the QLAP (Qualitative Learner of Action
and Perception) framework. Each action sets the value of a
single variable. A small quantitative controller is learnt for
each action that triggers further actions, creating a hierarchy
of linked actions. Tasks are performed by triggering appro-
priate high-level actions. The hierarchy lacks modularity as
actions are strongly linked. If the configuration of the robot
or environment changes the entire tree must be re-learnt.

2 Application Domain
The task of traversing rough terrain typically found in the
field of Urban Search and Rescue, such as steps, staircases
and loose rubble, is a complex control task. The iRobot man-
ufactured Negotiator (Figure 2), typical of those used in the
field, contains a main set of tracks to drive the robot and
sub-tracks, or flippers, that can re-configure the geometry of
the robot to climb over obstacles. The planner must choose
the best sequence of actions to overcome terrain obstacles
without becoming stuck.

Solving autonomous terrain traversal by reinforcement
learning is an active field of research. Tseng et al. (2013)
reduced the search space for learning to climb a staircase by
using modes (such as“align” and “climb”) that restrict the
choice of action. Gonzalez et al. (2010) specifically mod-
elled slip to improve the accuracy of an active drive con-
troller. Finally, Vincent and Sun (2012) tackled the problem
of climbing a step (or box) by first training a reinforcement
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(a) Approach 1 (b) Approach 2, Part 1 (c) Approach 2, Part 2

Figure 2: Climbing a Step using one of two approaches. Approach 1 (a) driving forward. Approach 2 (b, c) driving in reverse.
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Figure 3: Negotiator and the step climbing task.

learning using a simulator. However, these approaches do
not easily generalise if the task or robot is changed.

Following these approaches, we apply our planner to the
step climbing task. This task is more complex than it may
appear and requires skills essential to traversing other terrain
such as stairs and rubble. The Negotiator must configure it-
self to climb an obstacle that is higher than its main tracks
using two broad approaches (Figure 2), sometimes requiring
a lengthy sequence of actions. In Approach 1 the flippers are
raised above the step before the robot drives forward. Ap-
proach 2 is significantly more complex. The robot reverses
up to the step then, by supporting the it’s weight on the flip-
pers, the base is raised and placed on the step. The flippers
are reconfigured and the robot reverses onto the step. Tack-
ing Approach 1 is favourable to Approach 2 as the process
of supporting the robot’s weight on the flippers is very un-
stable. However, Approach 1 cannot be used if the step is
too high. Thus, a planning system should prefer Approach 1
when possible, but also be able to determine when Approach
2 is the only way to climb the step. Further, in Approach 1 it
is undesirable for the Negotiator to “fall” from a height onto
the step as this may damage the robot. Additionally, the
robot may not have enough traction to push itself onto the
step unless the flippers provide additional grip. Both prob-
lems require the flippers to be lowered onto the step before
it is traversed. This reasoning was not possible when only
qualitative information was used in the planner.

Variable Landmarks Description
posx [.., x0, xstep, xgoal,..] Robot x-position
posy [ymin, y0, ystep, ymax] Robot y-position
posfx [xmin, x0, xstep, xmax] Flipper x-position
posfy [ymin, y0, ystep, ymax] Flipper y-position
posbx [xmin, x0, xstep, xmax] Base x-position
posby [ymin, y0, ystep, ymax] Base y-position
θf

[
−π,−π

2
, 0, π

2
, π

]
Flipper angle

θb
[
−π,−π

2
, 0, π

2
, π

]
Base angle

hd [−π, 0, π] Heading
v [vmin, 0, vmax] Velocity

Table 1: Qualitative Variables for the Negotiator. Special
landmarks such as x0 and xstep are shown in Figure 3..

2.1 Qualitative Model for Climbing the Step
The Qualitative Model for the Negotiator and its interac-
tions with the environment for the step climbing task are
described by qualitative constraints which express relations
between qualitative variables. Each variable is described by
a magnitude relative to landmark values in the variable’s do-
main, and a direction (increasing, decreasing or steady) of
the change in the variable’s magnitude over time. Special
control variables affect changes in the qualitative state dur-
ing simulation, and map directly to operations executable on
the robot. Table 1 summarises the variables and their land-
marks, including state variables. The control variables for
Negotiator are the angle of the flippers (θf ), the velocity (v)
and heading (hd). Figure 3 shows all of the variables in rela-
tion to the Negotiator and the step climbing task. The robot
starts at posx = x0, and must climb the step to arrive at
posx = xgoal.

Qualitative constraints are expressed as Qualitative Dif-
ferential Equations (QDEs) which place restrictions on the
magnitude and direction of change of variables. For exam-
ple, the monotonicity constraint M+(x, y) requires that di-
rection of change for x and y are equal, for instance, if x is
increasing y also increases. Qualitative constraints are ex-
tended to Qualitative rules which define preconditions that
indicate conditions under which each constraint in the model
applies. That is, the constraints that govern the behaviour
of the robot change depending on the robot’s configura-
tion or the region of environment. For example, the angle
of the robot’s body with respect to the ground, θb depends
on the angle of the flippers, θf . In some regions, the an-
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Figure 4: An instance of Qualitative Planning, calculating
the transition function (s0, aj) → {s1} for one sequence of
states produced by QSIM.

gles are monotonically constrained (M+(θf , θb)), inversely
constrained (M-(θf , θb)), or are unrelated (θb = 0 as θf
changes). The full qualitative model for the Negotiator and
step climbing task is provided in our previous work (Wiley,
Sammut, and Bratko 2013b).

3 Qualitative Planning
The Qualitative Planner uses the classical state-action tran-
sition function (si, aj) → {si+1} where performing action
aj in state si leads to a set of successor states {si+1}. Each
state si is a qualitative description of the robot’s configura-
tion and location with the environment. An action is defined
in relation to operations executable on the robot. An action
aj is a qualitative value (magnitude and direction) for every
control variable (CV Qar), defined below. The result of per-
forming a action aj in state si is calculated by executing the
Qualitative Simulation algorithm (QSIM).

aj := {CQV ar1 = Mag/Dir, . . .}

Given an initial qualitative state, the execution
of QSIM produces sequences of qualitative states
[(q0, t0), . . . , (qn, tn)] that the system may evolve through
over a variable length of time (where state qi occurs at
time ti). The execution may produce multiple sequences,
each of varying length. QSIM uses the qualitative rules to
determine which sequences are possible, that is, allowable
under the qualitative model. Typically, control variables
which govern how the state of a system evolves over time,
may freely change value during simulation. The remaining
variables may only take values allowable under the model
and the operational restrictions of QSIM.

A single instance of qualitative planning is depicted in
Figure 4. Given a chosen state si and action aj , an execution
of QSIM is seeded with si. For the execution, the value of
each control variable is fixed to the value defined in aj . Each
successor state si+1 for the action is the terminal state qn of
each sequence produced by QSIM. Therefore, a plan is the
sequence of actions and states (s0, a0)→ . . .→ sgoal from
the initial state s0 to the goal state sgoal. The sequences pro-
duced by QSIM in calculating the effect of each action is dis-
carded, as this precise sequence of states is not required by
the Multi-Strategy Architecture. The trial-and-error learner,
when optimising the parameters of the actions in a plan, will
find the optimal sequence of states necessary to solve the
task. In fact, the sequence of states produced by QSIM may
be suboptimal.

3.1 Quantitative Constraint Propagation
As landmarks in the model are purely qualitative, the planner
cannot deduce, for instance, that Approach 1 to climbing the
step cannot be used if the height of the step is too great. In
fact, the planner would think it was possible to climb a one
kilometre high wall! This deficiency of qualitative reason-
ing is addressed by assigning, in the model, known quan-
titative values to landmarks and applying quantitative con-
straints (Berleant and Kuipers 1997) to the magnitude’s of
variables as successor states are calculated.

For monotonic constraints, such as M+(θf , θb), interval
arithmetic (Hyvönen 1992) places quantitative upper and
lower limits on the possible value of variables. For in-
stance, if the qualitative state of the above variables is θf =
−π2 ..0/inc, θb = π

2 ..π/inc, and the variables have quan-
titative lower bounds (in degrees) of −45 and 135 respec-
tively, then in the next successor state the variables are quan-
titatively bound by θf = −45..0, θb = 135..180.

Bounds from interval arithmetic are combined with en-
suring the arithmetic consistency of sum, mult and deriv
constraints. For example, the x-position of the flipper posfx
is determined by the constraint sum(posx, scalefx, posfx)
where scalefx := [−flength, 0, flength] is a scaling factor
bounded by the length of the flipper (flength). Qualitatively,
the instantiation sum(x0, flength, xgoal) is legal. That is,
the qualitative model allows the robot to be at the initial po-
sition before the step, and the flipper to be at the goal, which
in most real-world problem is impossible. With quantitative
constraints such instantiations are removed.

To demonstrate the effects of using quantitative con-
straints on the sequences of actions produced by the plan-
ner, experiments were conducted that changed three factors:
quantitative constraints were optionally enabled, the height
of the step was gradually increased when quantitative con-
straints were enabled, and heading of the Negotiator in the
initial state was either forward (facing the step with hd = 0)
or reverse (facing away from step with hd = π). For refer-
ence, other quantitative landmarks used in the experiments
include the start location x0 = 0 (the origin), step x-location
xstep = 100 cm, the goal xgoal = 200 cm, and Negotiator’s
dimensions of the flipper (30 cm) and base (60 cm) length.
The sequence of actions produced by the planner for each
experiment is listed in Table 2. Without quantitative con-
straints, the planner uses Approach 1 and does not prevent
the robot falling onto the step. With quantitative constraints,
and a low step height, Approach 1 is used, but with addi-
tional actions to prevent falling. With a higher step height,
Approach 2 is used as the planner deduces Approach 1 can-
not be used, and with a step height that is impossible to high
to climb, no plan is found.

Therefore, quantitative constraints are essential to produc-
ing the correct plan. Importantly, the quantitative constraints
allow the same qualitative model regardless of the dimen-
sions of the step or starting location of the robot.

3.2 Efficient Planning
The qualitative model of the Negotiator and step climbing
task has an upper bound of 2×108 distinct qualitative states.
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Quant. Enabled Step height Start Direction Plan
No - forward 3*
No - reverse 3*†
Yes 20 cm forward 3
Yes 20 cm reverse 3†
Yes 50 cm forward 4
Yes 100 cm forward -

Table 2: The calculated plan with varying configurations of
the model and planner. Plan numbers refer to the Table num-
ber showing the plan. (*) plans use the qualitative-only ver-
sion of the plan in the table, and (†) plans include an addi-
tional action to first turn the robot to face the step.

Action Action (Control variable values)
No. v hd θf
1 vmax/std 0/std −π

2
..0/dec

2 vmax/std 0/std −π
2
..0/std

3 vmax/std 0/std −π
2
..0/inc

4 0/std 0/std −π
2
..0/std

Table 3: Sequence of actions from the planner following Ap-
proach 1 with a step height of 20 cm. The plan produced
with the qualitative-only planner omits Action 3.

While not every state is valid, a brute force search of the
state space is not sufficient, especially since using QSIM’s
slow generation of successor states for a model of this scale
creates a bottleneck in performance.

To allow a more intelligent cost-based search, Wiley,
Sammut, and Bratko (2013a) proposed calculating the cost
of each state in the planner si using the typical cost function
(as in the A* Algorithm (Hart, Nilsson, and Raphael 1968))
c(x) = g(x)+h(x) with an immediate cost g(x) for each ac-
tion and an estimate h(x) of the cost to reach the goal. The
immediate cost is the number of states in the intermediate
sequence for the action. The estimate is provided by Quali-
tative Magnitude Distance (QMD). The QMD estimates the
minimum number of qualitative states that are required for a
single variable to transition from one value (Mag1/Dir1) to
another (Mag2/Dir2). The QMD is defined by:

QMD(Li, Lj) = 2 + 2 ∗ lands(Li, Lj)
QMD(Li..Li+1, Lj) = 1 + 2 ∗ lands(Li, Lj)
QMD(Li, Lj ..Lj+1) = 1 + 2 ∗ lands(Li, Lj+1)

QMD(Li..Li+1, Lj ..Lj+1) = 2 ∗ lands(Li, Lj+1)

where lands(Li, Lj) is the number of landmarks in the do-
main of the variable between landmarks Li and Lj . For ex-
ample, for θf , QMD(0/std, π/std) = 4 as θf transitions
through the states 0..π2 /inc, π2 /inc and π

2 ..π/inc.
Therefore, the estimate for a state to the goal must be

accumulated across all variables in the state. Two heuris-
tics are MaxQMD (the maximum QMD of all variables)
and TotalQMD (the sum of the QMD’s for all variables).
MaxQMD always underestimates the cost, as trivially, the
minimum number of states required to reach the goal can
be no less than the number of states required for any vari-
able to reach its desired value. TotalQMD typically over-
estimates the cost, but allows the planner to favour states
where a greater number of variables are closer to their goal.

Action Action (Control variable values)
No. v hd θf
1 0/std 0..π

2
/inc 0/dec

3 0/std π/std −π
2
..0/dec

8 vmax/std π/std − 3π
2
..− π/dec

9 vmax/std π/std − 3π
2
..− π/std

10 0/std π/std − 3π
2
..− π/inc

14 vmax/std π/std 0..π
2
/inc

15 vmax/std π/std 0..π
2
/dec

17 0/std π/std 0/std

Table 4: Sequence of actions from the planner with quantita-
tive constraints enabled and a step height of 50 cm, follow-
ing Approach 2. Actions where control variables transition
through a sequence of landmarks have been removed. Ac-
tions 1-2 rotate the robot, 3-7 raise the base, 8-9 place the
base on the step, and 10-14 reconfigure the robot to reverse
onto the step in 15-17.

It was previously found that the choice of heuristic is
based on amount of domain specific knowledge known
about the goal state (Wiley, Sammut, and Bratko 2013a). If
little is known, MaxQMD should be used, and TotalQMD
should be used if the value of most variables is known. This
conclusion is re-evaluated under the addition of quantitative
constraints.

4 Performance
To evaluate the impact of quantitative constraints, experi-
ments were conducted that compared the performance of
the existing qualitative-only planner to the planner extended
with quantitative constraints. The experiments were con-
ducted using the step climbing task. As both the choice
of heuristic and specification of the goal state greatly im-
pacted the performance of the qualitative-only planner (Wi-
ley, Sammut, and Bratko 2013a), the experiments consid-
ered different combinations of the heuristic and goal. The
results of the experiments are summarised in Table 5.

The experiments were conducted using a Prolog imple-
mentation of the qualitative planner, QSIM (Bratko 2011),
and A* (Hart, Nilsson, and Raphael 1968) to provide a basic
search. For each experiment, the robot was initially station-
ary, on the ground before the step, with the flippers directed
toward the step, (posx = 0, hd = 0, v = 0). The ex-
periments are grouped by the variables specified in the goal
state. For each goal state, the choice of heuristic and the
type of planner (with quantitative constraints optionally en-
abled) was varied. In the first set of experiments, the step
height was set to 10 cm to ensure that a plan following Ap-
proach 1 was found. This was necessary to ensure com-
parisons could be made as the qualitative-only planner ran
out of memory when attempting to find plans following Ap-
proach 2. Finally, for reference a set of experiments was
conducted with a step height of 30 cm. The performance of
the planner is compared by the number of inferences Prolog
evaluates to find a plan as it is independent of variations in a
specific CPU. However, the number of inferences increases
proportionally to total execution speed, and the number of
operations performed in calculating successor states and the
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Goal Variables Approach Qualitative Quantitative
v posx posfx posbx θf MaxQMD TotalQMD MaxQMD TotalQMD
x x 1 4.17× 107 1.48× 108 1.28× 109 1.47× 109

x x x 1 4.18× 107 1.51× 108 1.15× 109 3.17× 108

x x x 1 9.25× 108 1.99× 108 3.80× 108 2.03× 108

x x x 1 4.83× 107 9.78× 107 1.70× 109 1.35× 109

x x x x x 1 9.26× 108 1.37× 108 3.71× 108 1.05× 108

x x 2 - - 1.80× 109 2.19× 109

Table 5: Experimental Results. The number of inferences evaluated by the Prolog implementation of each combination of the
planner type and heuristic for each specification of the goal state.

cost-based search.
The results show three key trends. First, the planner ex-

tended with quantitative constraints performs, at best, on par
with the qualitative-only planner when all variables are spec-
ified in the goal state. Although the quantitative constraints
reduces the total number of possible states to search through,
in practice specifying most variables in the goal state causes
both planner to evaluate a similar sequence of states dur-
ing the search. The difference is that with quantitative con-
straints, the plans are physically possible to execute. the
reduction is not overly significant, and the planner still eval-
uates a similar set of states. However, the use of quantitative
constraints introduces a degradation in performance if few
variables are specified in the goal state. The reason for this
performance is that although the the qualitative-only plan-
ner “cheats”. Consider the step climbing task. The variables
posbx and posfx are largely unbound and appear in few of
the qualitative rules in model. Without quantitative con-
straints the planner “cheats”, for example, by leaving posbx
unchanged from its value in the initial state. This allows
the planner find a solution significantly faster, as changing
posbx activates different rules placing additional restrictions
on other variables, limiting the number of valid states. To a
lesser extent this is that case for posfx, however, the variable
is forced change in value for a successful plan.

Secondly, the comparative performance between the
MaxQMD and TotalQMD heuristics is similar for the two
types of planners. That is, as more variables are introduced
MaxQMD performs comparatively worse than TotalQMD.
However, certain variables such as θf , posbx and posfx have
greater influences on the comparative differences, indicating
these are “critical variables” to successfully solving the task.
Consider the impact of changing θf which influences a num-
ber of other variables including posfx. Frequently, chang-
ing θf makes no progress toward the goal. Without θf in the
goal, MaxQMD focuses on the variables changes that lead
to the goal, which TotalQMD is unable to exploit. However
with θf in the goal MaxQMD gets hung up on changes in
that variable, which TotalQMD is better able to ignore.

Finally, quantitative constraints enables the planner to find
a result with a step height of 30 cm. This further demon-
strates the necessity for quantitative constraints. The same
trends for the performance of the heuristic noted above have
been observed with plans following Approach 2.

Therefore it would be ideal to use quantitative constraints,
the TotalQMD heuristic and have all “critical variables” in-
cluded in the goal state. However, to ensure domain specific

reasoning is not introduced into planning, this may not be
possible. Consider specifying posbx in goal. If xgoal is far
enough from xwall, the goal should be posbx = xstep..xgoal.
However, if the step is short, the base will overhang the
step with the goal posbx = x0..xgoal. This reasoning is
domain specific and is disallowed. More generally, with-
out detailed domain specified reasoning, the variables which
have the greatest impact cannot be known, thus it cannot be
ensured those variables are specified in the goal. Therefore,
it can only be concluded that quantitative constraints ensure
the plan can be executed on the robot but cause significant
performance issues.

5 Future Work
The Prolog implementation is still inefficient, and in some
experiments could not find a solution. ASPQSIM, is a more
efficient implementation of QSIM and the qualitative plan-
ner using Answer Set Programming (Wiley, Sammut, and
Bratko 2014). However, efficiently introducing quantitative
constraints into ASPQSIM is an unsolved problem.

The sequence of actions generated by the planner is only
a general guide to how to climb the step. The actions are
parameterised, which only specify the magnitude for con-
trol variables and non-uniform time intervals during which
each action is executed. The precise parameter values will
be found by trial-and-error learning, such a simple form of
Markov-Chain Monte Carlo (MCMC) sampling of the pa-
rameter space (Andrieu et al. 2003). The plan restricts the
learner’s trials to a much narrower range of parameter values
than it would if some form of Reinforcement Learning were
applied naively. This method was successfully used to learn
the parameters for a bipedal gait (Sammut and Yik 2010).

6 Conclusion
This work resolves previous problems within the three stage
Multi-Strategy architecture for learning robotic behaviours,
specifically by removing the need to introduce domain spe-
cific knowledge into the planner. Quantitative constraints
have been added to a qualitative planner that enables the
system to reason about the effect of performing actions and
determine when a sequence of actions cannot be executed
due to particular features of the robot or the environment.
However, the benefit of using quantitative constraints comes
at a significant cost, especially in keeping domain specific
information out of the planner.
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