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Abstract

We present a new Markov Chain Monte Carlo (MCMC)
sampling algorithm for probabilistic programs. Our ap-
proach and tool, called R2, has the unique feature of
employing program analysis in order to improve the ef-
ficiency of MCMC sampling. Given an input program
P , R2 propagates observations in P backwards to ob-
tain a semantically equivalent program P ′ in which ev-
ery probabilistic assignment is immediately followed by
an observe statement. Inference is performed by a suit-
ably modified version of the Metropolis-Hastings algo-
rithm that exploits the structure of the program P ′. This
has the overall effect of preventing rejections due to pro-
gram executions that fail to satisfy observations in P .
We formalize the semantics of probabilistic programs
and rigorously prove the correctness of R2. We also em-
pirically demonstrate the effectiveness of R2—in par-
ticular, we show that R2 is able to produce results of
similar quality as the CHURCH and STAN probabilistic
programming tools with much shorter execution time.

1 Introduction
Probabilistic programs are “usual” programs (written in lan-
guages such as C, Java, LISP or ML) with two added fea-
tures: (1) the ability to draw values at random from distri-
butions, and (2) the ability to condition values of variables
in a program via observations. Unlike usual programs that
are run to produce outputs, the goal of a probabilistic pro-
gram is to model probability distributions succinctly and
implicitly. Inference for probabilistic programs is the prob-
lem of computing an explicit representation of the prob-
ability distribution implicitly specified by a probabilistic
program. Over the past several years, a variety of proba-
bilistic programming languages and inference systems have
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been proposed (Gilks, Thomas, and Spiegelhalter 1994;
Koller, McAllester, and Pfeffer 1997; Minka et al. 2009;
Pfeffer 2007a; Goodman et al. 2008; Kok et al. 2007).

Since probabilistic programs are executable, sampling can
be performed by repeatedly executing such programs. How-
ever, in the case of programs with a large number of ran-
dom variables (representing a multivariate distribution), and
observations (potentially representing low probability evi-
dence), naive execution results in frequent rejections (due to
generated states not satisfying observations), and an imprac-
tically large number of samples to infer the correct distribu-
tion. Consequently, efficient sampling techniques for prob-
abilistic programs are a topic of active research (Wingate
et al. 2011; Wingate, Stuhlmüller, and Goodman 2011;
Pfeffer 2007b; Goodman et al. 2008).

We present a new approach to perform Markov Chain
Monte Carlo (MCMC) sampling for probabilistic programs.
Our approach and tool, called R2, consists of the following
steps:

1. Propagation of observations back through the program
using the pre-image operation (Dijkstra 1976) and plac-
ing an observe statement immediately next to every prob-
abilistic assignment. This transformation preserves pro-
gram semantics (formally defined in Section 4), and helps
perform efficient sampling (defined in the next step).

2. Perform a modified Metropolis-Hastings (MH) sam-
pling (Chib and Greenberg 1995) over the transformed
probabilistic program. The modifications exploit the
structure in the transformed programs that observe state-
ments immediately follow probabilistic assignments, and
sample from sub-distributions in order to avoid rejections.

The above two steps prevent rejections due to executions
that fail to satisfy observations, and significantly improves
the number of accepted MH samples in a given time bud-
get. In contrast, previous approaches (Wingate, Stuhlmüller,
and Goodman 2011; Wingate et al. 2011; Pfeffer 2007b;
Goodman et al. 2008; Hoffman and Gelman 2013) have not
specifically addressed rejections due to failing observations.

In Section 3, we formalize the semantics of probabilistic
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1: bool earthquake, burglary, alarm, phoneWorking,
maryWakes,called;

2: earthquake = Bernoulli(0.001);
3: burglary = Bernoulli(0.01);
4: alarm = earthquake || burglary;
5: if (earthquake)
6: phoneWorking = Bernoulli(0.6);
7: else
8: phoneWorking = Bernoulli(0.99);
9: if (alarm && earthquake)
10: maryWakes = Bernoulli(0.8);
11: else if (alarm)
12: maryWakes = Bernoulli(0.6);
13: else
14: maryWakes = Bernoulli(0.2);
15: called = maryWakes && phoneWorking;
16: observe(called);
17: return burglary;

Figure 1: Pearl’s burglar alarm example.

1: bool earthquake, burglary, alarm, phoneWorking,
maryWakes,called;

2: earthquake = Bernoulli(0.001);
3: burglary = Bernoulli(0.01);
4: alarm = earthquake || burglary;
5: if (earthquake) {
6: phoneWorking = Bernoulli(0.6);
7: observe(phoneWorking);
8: }
9: else {
10: phoneWorking = Bernoulli(0.99);
11: observe(phoneWorking);
12: }
13: if (alarm && earthquake){
14: maryWakes = Bernoulli(0.8);
15: observe(maryWakes && phoneWorking);
16: }
17: else if (alarm){
19: maryWakes = Bernoulli(0.6);
20: observe(maryWakes && phoneWorking);
21: }
22: else {
23: maryWakes = Bernoulli(0.2);
24: observe(maryWakes && phoneWorking);
25: }
26: called = maryWakes && phoneWorking;
27: return burglary;

Figure 2: Example after the PRE analysis.

programs and this is used to prove the correctness of R2
in Section 4. In Section 5, we empirically demonstrate the
effectiveness of R2. In particular, we compare R2 with the
CHURCH (Goodman et al. 2008) and STAN (Hoffman and
Gelman 2013) probabilistic programming tools on a number
of probabilistic program benchmarks—our empirical results
show that R2 is able to produce results of similar quality as
CHURCH and STAN with much shorter execution time.

Related work. There has been prior work on exploiting
program structure to perform efficient sampling, both in
the context of importance sampling and MCMC sampling.
BLOG (Milch and Russell 2006) uses program structure to
come up with good proposal distributions for MCMC sam-
pling. Wingate et al. (Wingate et al. 2011) use nonstan-
dard interpretations during runtime execution to compute
derivatives, track provenance, and use these computations

to improve the efficiency of MCMC sampling. Moldovan
et al. (Moldovan et al. 2013) introduce an MCMC al-
gorithm for estimating conditional probabilities from an
AND/OR tree for the probabilistic logic programming lan-
guage ProbLog (Raedt, Kimmig, and Toivonen 2007).

Pfeffer (Pfeffer 2007b) presents several structural heuris-
tics (such as conditional checking, delayed evaluation, ev-
idence collection and targeted sampling) to help make
choices during sampling that are less likely to get rejected
by observations during importance sampling. Chaganty et
al. (Chaganty, Nori, and Rajamani 2013) generalize these
techniques uniformly using pre-image transformations on
observations to perform efficient importance sampling for
straight-line programs.

Our work differs from this work in two broad ways. First,
we define pre-image as a separate transformation on whole
programs (as opposed to simple straight-line programs or
paths), and then use a suitably modified version of MH sam-
pling for the transformed programs. In contrast, Chaganty
et al. use a testing routine to collect straight-line programs
(without using pre-image transformation) and rejections can
happen during this process if testing is used, or expensive
symbolic execution techniques need to be used to split a pro-
gram into paths. Furthermore, splitting the program into in-
dividual paths can entail a huge compilation cost as well as
inefficient sampling code. Second, our sampler is based on
MH sampling that exploits knowledge from previous sam-
ples, whereas Chaganty et al. is based on importance sam-
pling that is agnostic to previous samples or states.

2 Overview
In this section, we informally explain the main ideas of R2.

Consider the probabilistic program shown in Figure 1,
originally from Pearl’s work (Pearl 1996). This program
has probabilistic assignment statements which draw values
from distributions. For instance, in line 2, the statement
“earthquake = Bernoulli(0.001)” draws a value from
a Bernoulli distribution with mean 0.001 and assigns it to
the variable x. The program also has an observe statement
“observe(called)” (line 16) that is used to condition the
value of the variable called—this statement blocks all ex-
ecutions of the program that do not satisfy the boolean ex-
pression (called = true) at line 16.

The meaning of a probabilistic program is the probabil-
ity distribution over output values returned by the program
with respect to the implicit probability distribution that the
program represents. In this example, the variable burglary
is returned by the program and we are interested in esti-
mating its probability distribution. Naive sampling, which
corresponds to repeatedly running the program can result in
rejected samples leading to wasteful computation and sub-
sequently loss in efficiency.

R2 is a sampling algorithm that can exploit the structure
that is present in probabilistic programs in order to improve
the efficiency and convergence of sampling. R2 consists of
two main steps: (1) First, a PRE analysis, which hoists all
conditions in observe statements to probabilistic assignment
statements (using pre-image analysis) is applied to transform
the input probabilistic program, and (2) next, inference is

2477



x ∈ Vars
uop ::= · · · C unary operators
bop ::= · · · C binary operators
ϕ,ψ ::= · · · logical formula

E ::= expressions
| x variable
| c constant
| E1 bop E2 binary operation
| uop E1 unary operation

S ::= statements
| skip skip
| x = E deterministic assignment
| x ∼ Dist(θ̄) probabilistic assignment
| observe (ϕ) observe

| S1;S2 sequential composition
| if E then S1 else S2 conditional composition
| while E do S1 loop

P ::= S return E program

Figure 3: Syntax of PROB.

performed on the transformed program using a modified MH
sampling algorithm that avoids rejecting samples by using
truncated proposal distributions.

For the program shown in Figure 1, R2 first performs the
PRE analysis in order to obtain the transformed program
shown in Figure 2. Intuitively, the PRE analysis computes
conditions under which the observe statement in line 16 can
be satisfied. For instance, the PRE analysis determines that to
satisfy observe(called) in line 16, the program state must
satisfy maryWakes&&phoneWorking at line 15 (which we
will call a pre-image).

The PRE analysis is essentially a backward analysis, and
it places, next to each probabilistic assignment, the propa-
gated pre-image as an observe statement. For instance, right
after each probabilistic assignment for maryWakes, the PRE
analysis introduces the observe statement with the predicate
maryWakes&&phoneWorking. This can be seen in Fig-
ure 2, which is the program obtained by applying the PRE
analysis to Pearl’s burglar alarm example. An interesting
consequence is that if every probabilistic assignment in Fig-
ure 2 is executed such that the resulting sample satisfies the
observe statement immediately following it, then the origi-
nal observe statement in line 16 of Figure 1 is guaranteed to
be satisfied.

In Section 5, we show that the PRE analysis is semantics
preserving (in other words, the probability distributions of
burglary in the programs shown in Figures 1 and 2 are
equal)—this is crucial for proving the correctness of R2.

Next, R2 performs sampling over the transformed pro-
gram in order to compute the probability distribution of
burglary. This is done by using a modified version of the
MH sampling algorithm that truncates the distribution in
each probabilistic assignment statement with the condition
in the observe statement following it. More precisely, in the
modified MH algorithm (described in Section 4), both the
proposal distribution and the target density function at each
probabilistic assignment statement are modified to use trun-
cated distributions. This ensures that the values drawn from
the truncated distributions are such that every program exe-
cution is a valid one (that is, the execution satisfies all ob-
serve statements), thus avoiding wasteful rejected samples.

Though the example used in this section is a loop-free
program and uses only discrete distributions, our techniques
work for programs with loops, and programs that use con-
tinuous distributions. Loops with an a priori fixed iteration
count can be trivially handled by unrolling the loop. For gen-

eral loops with unknown iteration counts, the PRE analysis
can still be done if the user supplies a loop invariant. More
details can be found in Section 4.

3 Probabilistic Programs
Our probabilistic programming language PROB is a C-like
imperative programming language with two additional con-
structs:

1. The probabilistic assignment statement “x ∼ Dist(θ̄)”
draws a sample from a distribution Dist with a vector of
parameters θ̄, and assigns it to the variable x. For instance,
“x ∼ Gaussian(µ, σ2)” draws a value from a Gaussian
distribution with mean µ and variance σ2, and assigns it
to the variable x.

2. The observe statement “observe(ϕ)” conditions a dis-
tribution with respect to a predicate or condition ϕ that
is defined over the variables in the program. In particu-
lar, every valid execution of the program must satisfy all
conditions in observe statements that occur along the ex-
ecution.
The syntax of PROB is formally described in Figure 3.

A program consists of statements and a return expression.
Variables have base types such as int, bool, float and double.
Statements include primitive statements (skip, determinis-
tic assignment, probabilistic assignment, observe) and com-
posite statements (sequential composition, conditionals and
loops). We omit the discussion of arrays, pointers, structures
and function calls in the language since their treatment does
not introduce any additional challenges to the definition of
the semantics of PROB.

The semantics of PROB is described in Figure 4. A state
σ of a program is a (partial) valuation to all its variables.
The set of all states (which can be infinite) is denoted by
Σ. We also consider the natural lifting of σ : Vars ⇀ Val
to expressions σ : Exprs → Val. We make this lifting a
total function by assuming default values for uninitialized
variables. The definition of the lifting σ for constants, unary
and binary operations is standard.

The meaning of a probabilistic statement S is the prob-
ability distribution over all possible output states of S for
any given initial state σ. It is standard to represent a prob-
ability distribution on a set X as a function calculating the
expected value of f w.r.t. the distribution onX for any given
return function f ∈ X → [0, 1], where [0, 1] is the unit in-
terval (i.e., the set of real numbers between 0 and 1, inclu-
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• Unnormalized Semantics for Statements
JSK ∈ (Σ→ [0, 1])→ Σ→ [0, 1]

JskipK(f)(σ) := f(σ)

Jx = EK(f)(σ) := f(σ[x← σ(E)])

Jx ∼ Dist(θ̄)K(f)(σ) :=
∫
v∈Val

Dist(σ(θ̄))(v)× f(σ[x← v]) dv

Jobserve(ϕ)K(f)(σ) :=

{
f(σ) if σ(ϕ) = true

0 otherwise
JS1;S2K(f)(σ) := JS1K(JS2K(f))(σ)

Jif E thenS1 elseS2K(f)(σ) :=

{
JS1K(f)(σ) if σ(E) = true

JS2K(f)(σ) otherwise

Jwhile E doSK(f)(σ) := supn≥0 Jwhile E don SK(f)(σ)

where
while E do0 S = observe(false)

while E don+1 S = if E then (S; while E don S) else (skip)

• Normalized Semantics for Programs
JS return EK ∈ (R→ [0, 1])→ [0, 1]

JS return EK(f) :=
JSK(λσ. f(σ(E)))(⊥)

JSK(λσ. 1)(⊥)

where ⊥ denotes the empty state.

Figure 4: Denotational Semantics of PROB.

sive). Thus, the denotational semantics JSK(f)(σ) gives the
expected value of return function f ∈ Σ → [0, 1] when S
is executed with initial state σ. The semantics is completely
specified using the rules in Figure 4.

The skip statement merely applies the return function f
to the input state σ, since the statement does not change
the input state. The deterministic assignment statement first
transforms the state σ by executing the assignment and then
applies f . The meaning of the probabilistic assignment is the
expected value obtained by sampling v from the distribution
Dist, executing the assignment with v as the RHS value,
and applying f on the resulting state (the expectation is the
integral over all possible values v). The observe statement
functions like a skip statement if the expression ϕ evaluates
to true in the initial state σ, and returns the value 0 other-
wise. The sequential and conditional statements behave as
expected and the while-do loop has a standard fixpoint se-
mantics.

Due to the presence of non-termination and observe state-
ments, the semantics of statements shown in Figure 4 is un-
normalized. The normalized semantics for programs is ob-
tained by appropriately performing the normalization oper-
ation as shown in the second part of Figure 4. The ⊥ in the
figure is a default initial state. Note that the exact initializa-
tion does not matter as all programs that we consider are
closed programs with no inputs.

4 The R2 Algorithm
In this section, we describe the two main steps of R2: (1)
The pre-image analysis, and (2) the MH sampling algorithm.

Pre-Image Analysis
The pre-image analysis propagates predicates from
observe statements backward through the program using
a particular variant of the pre-image operator PRE (Di-
jkstra 1976) for deterministic programs. We describe the
transformation for various statement types in Figure 5. The

PRE(x = E, ϕ) = (x = E, ϕ[E/x])

PRE(skip, ϕ) = (skip, ϕ)

PRE(S1;S2, ϕ) = let (S′2, ϕ
′) = PRE(S2, ϕ) and

let (S′1, ϕ
′′) = PRE(S1, ϕ′) in

(S′1;S′2, ϕ
′′)

PRE(if E then S1 = let (S′1, ϕ1) = PRE(S1, ϕ) and

else S2, ϕ) let (S′2, ϕ2) = PRE(S2, ϕ) in

(if E then S′1 else S′2,
(E ∧ ϕ1) ∨ (¬E ∧ ϕ2))

PRE(observe (ψ), ϕ) = (observe(ψ), ϕ ∧ ψ)

PRE(x ∼ Dist(θ̄), ϕ) = (x ∼ Dist(θ̄); observe(ϕ), ∃x.ϕ)

PRE(while {ψ} E doS, ϕ) = let (S′, ψ′) = PRE(S, ψ) in

assert(E ∧ ψ′ =⇒ ψ);

assert(¬E ∧ ϕ =⇒ ψ);

(while {ψ} E doS′, ψ)

Figure 5: Given a statement S and a predicate ϕ defined over
program variables, PRE(S, ϕ) is a pair (Ŝ, ϕ̂) where Ŝ maps
every sample statement with a pre-image predicate (via an
observe statement immediately following the sample state-
ment), and ϕ̂ is a pre-image of ϕ over S. We assume that
every while statement is annotated with a loop invariant ψ.

operator is carefully designed to have the property that the
transformed program is equivalent to the input program,
and it helps identify samples that are going to be rejected by
observe statements early in the execution.

We formally state the definition of the PRE operator, and
show that the PRE operator does not change the semantics of
the input program. More precisely, the operator PRE(S, ϕ)

returns a pair (Ŝ, ϕ̂), where Ŝ is a program transformation
of S such that every sample statement in Ŝ is immediately
followed by an observe statement with a corresponding pre-
image predicate. Suppose we have that PRE(S, true) =

(Ŝ, ϕ̂). We show that the statements S and Ŝ are semanti-
cally equivalent.

The PRE of a predicate ϕ with respect to an assignment
statement x = E is defined to be ϕ[E/x]) (this denotes the
predicate obtained by replacing all occurrence of x in ϕwith
E). The PRE operator does nothing with skip statements
(and it propagates the input predicate), and it treats sequen-
tial and conditional composition in the usual way, as one
would expect any pre-image operator to work.

The PRE of a predicate ϕ with respect to the statement
observe(ψ) is the conjunction ϕ and ψ. The PRE opera-
tor treats probabilistic assignments like nondeterministic as-
signments, using existential quantification of the assigned
variable. However, in addition, the PRE operator adds an
extra observe statement observe(ϕ) which is placed im-
mediately after the probabilistic assignment. Intuitively, the
condition ϕ is propagated by the PRE operator to another
equivalent observe statement right next to each probabilistic
assignment. The goal of this observe statement is to pre-
cisely reject those states that will be rejected by the original
observe statements in the program.

The PRE operator on a while-do loop uses an user-
provided annotation ψ, which is a special kind of loop in-
variant that is guaranteed not to block any runs that will be
accepted by observe statements after the loop. As long as
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the conditions E ∧ ψ′ =⇒ ψ and ¬E ∧ ϕ =⇒ ψ are sat-
isfied by the annotated loop invariant ψ (where (S ′, ψ′) =
PRE(S, ψ)), we can show (see below) that the program pro-
duced by the PRE operator is equivalent to the input pro-
gram.

In practice (and for our benchmarks), most loops in prob-
abilistic programs have fixed deterministic iterations and can
be unrolled into non-loopy code—this is precisely what the
R2 implementation does. For unbounded loops, R2 bounds
the loops (if the loop invariant is not supplied) and computes
the PRE transformation. Automatically inferring the loop in-
variant ψ for a probabilistic loop is interesting future work,
and for the rest of the paper, we will assume the availability
of such invariants.

Definition 1 The function f : Σ → [0, 1] satisfies ϕ, if
∀σ.f(σ) 6= 0 =⇒ σ(ϕ) = true.

The following lemma is used to prove the correctness of
the algorithm.

Lemma 1 Let (Ŝ, ϕ̂) = Pre(S, ϕ). Then for any f satisfy-
ing ϕ, we have JSK(f) = JŜK(f), and JSK(f) satisfies ϕ̂.
Proof: We prove the lemma by induction on the structure of
S.
•When S is skip:
The lemma holds trivially.

•When S is x = E :
We have Ŝ = S and ϕ̂ = ϕ[E/x]. If JSK(f)(σ) =
f(σ[x← σ(E)]) 6= 0, then we have σ[x ← σ(E)](ϕ) =
true. Thus we have

σ(ϕ̂) = σ(ϕ[E/x]) = σ[x← σ(E)](ϕ) = true .

•When S is x ∼ Dist(θ̄):
We have Ŝ = (x ∼ Dist(θ̄); observe(ϕ)) and ϕ̂ = ∃x. ϕ.
Since f satisfies ϕ, one can easily show JSK(f) = JŜK(f).
If JSK(f)(σ) =

∫
v∈Val

Dist(σ(θ̄))(v)× f(σ[x← v]) dv 6=
0, then we have v such that f(σ[x ← v]) 6= 0 and thus
σ[x← v](ϕ) = true. Thus we have

σ[ϕ̂] = σ[∃x. ϕ] = true .

•When S is observe(ψ):
We have Ŝ = S and ϕ̂ = ϕ ∧ ψ. One can easily see that
Jobserve(ψ)K(f) satisfies ϕ ∧ ψ.

•When S is S1;S2:
We have Ŝ = Ŝ1; Ŝ2 with (Ŝ2, ϕ

′) = Pre(S2, ϕ) and
(Ŝ1, ϕ̂) = Pre(S1, ϕ

′). By the induction hypothesis, we
have JS2K(f) = JŜ2K(f) and JS2K(f) satisfies ϕ′. Again
by the induction hypothesis, we have JS1K(JS2K(f)) =

JŜ1K(JS2K(f)) and JS1K(JS2K(f)) satisfies ϕ̂. Thus we have
JSK(f) = JŜK(f) and JSK(f) satisfies ϕ̂.

•When S is if E thenS1 elseS2:
We have

Ŝ = if E then Ŝ1 else Ŝ2 and ϕ̂ = (E ∧ ϕ1) ∨ (¬E ∧ ϕ2)

with (Ŝ1, ϕ1) = Pre(S1, ϕ) and (Ŝ2, ϕ2) = Pre(S2, ϕ).
By the induction hypothesis, we have JS1K(f) = JŜ1K(f)

and JS1K(f) satisfies ϕ1. Again by the induction hypothe-
sis, we have JS2K(f) = JŜ2K(f) and JS2K(f) satisfies ϕ2.
Thus we have JSK(f) = JŜK(f). Suppose JSK(f)(σ) 6= 0.
If σ(E) = true, then we have JS1K(f)(σ) 6= 0 and
thus σ(ϕ1) = true. If σ(E) 6= true, then we have
JS2K(f)(σ) 6= 0 and thus σ(ϕ2) = true. So, we have
σ(ϕ̂) = σ((E ∧ ϕ1) ∨ (¬E ∧ ϕ2)) = true.

•When S is while {ψ} E doS0:
We have Ŝ = while {ψ} E do Ŝ0 and ϕ̂ = ψ with
(Ŝ0, ψ

′) = Pre(S0, ψ). To show the lemma, it suffices to
show that for any n,

◦ Jwhile E don S0K(f) = Jwhile E don Ŝ0K(f); and

◦ Jwhile E don S0K(f) satisfies ψ.
We prove this by induction on n. It holds trivially for the
base case. For the step case, we need to show:

(1) Jif E thenS0; while E don S0 else skipK(f)

= Jif E then Ŝ0; while E don Ŝ0 else skipK(f); and

(2) Jif E thenS0; while E don S0 else skipK(f) satisfiesψ.

By the induction hypotheses we have

JS0K(Jwhile E don S0K(f)) = JŜ0K(Jwhile E don S0K(f))

= JŜ0K(Jwhile E don Ŝ0K(f)),

from which (1) follows. Again by the induction hypothe-
ses, we have that JS0K(Jwhile E don S0K(f)) satisfies ψ′.
To show (2), suppose

Jif E thenS0; while E don S0 else skipK(f)(σ) 6= 0 .

If σ(E) = true, we have JS0K(Jwhile E don S0K(f))(σ) 6=
0 and thus σ(ψ′) = true. Since E ∧ ψ′ ⇒ ψ, we have
σ(ψ) = true. If σ(E) 6= true, we have f(σ) 6= 0 and thus
σ(ϕ) = true. Since ¬E∧ϕ⇒ ψ, we have σ(ψ) = true.

The following theorem proves that the PRE operation is
correct.

Theorem 1 For any probabilistic program S return E , we
have

JS return EK = JŜ return EK

for (Ŝ, ) = PRE(S, true).

Proof: For any return function f , we have JSK(f) = JŜK(f)
by Lemma 1 since f satisfies true. Thus by definition we
have JS return EK = JŜ return EK.

Metropolis-Hastings Sampling
We show that the PRE transformed probabilistic program
can be profitably used for efficient MCMC sampling. The
PRE transformation places an observe statement next to ev-
ery probabilistic assignment statement, and in this section
we show how to use this structure to improve the efficiency
of MCMC sampling.

The Metropolis-Hastings or MH algorithm (Chib and
Greenberg 1995) takes a probability or target density P (x̄)
as input and returns samples that are distributed according to
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this density. These samples can be further used to compute
any estimator such as expectation of a function with respect
to the target density P (x̄). Two key components of the MH
algorithm are:

1. For every probabilistic assignment statement “x ∼ P ”,
where x is a variable which takes its values from a distri-
bution P , the proposal distributionQ(xold → xnew) which
is used to pick a new value xnew for the variable x by ap-
propriately perturbing its old value xold.

2. The parameter β that is used to decide whether to accept
or reject a new sampled value for x, and is defined as fol-
lows:

β = min

{
1,
P (xnew)×Q(xnew → xold)

P (xold)×Q(xold → xnew)

}
The sample is accepted if a random value drawn from the
uniform distribution over [0, 1] is less than β, otherwise it
is rejected.
Let P|ϕ denote the truncated distribution that results from

restricting the domain of the distribution P to a predicate ϕ.
That is, if ϕ(x) is false, then P|ϕ(x) = 0. Otherwise, if ϕ(x)
is true, then P|ϕ(x) = P(x)/Z, where Z is an appropri-
ate normalization factor. R2 employs the following modified
MH steps:

1. For every sample statement and observation “x ∼
P ; observe(ϕ)”, the proposal distribution Q|ϕ(xold →
xnew) is truncated according to the condition ϕ.

2. The parameter β is defined as follows (note that both the
target and proposal distributions are truncated):

β = min

{
1,
P|ϕ(xnew)×Q|ϕ(xnew → xold)

P|ϕ(xold)×Q|ϕ(xold → xnew)

}
The modified MH algorithm on the transformed program

is easily shown to be equivalent to the standard MH algo-
rithm, since the probabilistic assignment statement x ∼ P
followed by the statement observe(ϕ) is equivalent to the
statement x ∼ P|ϕ. Since the proposal distribution is trun-
cated according to the condition ϕ, we have that samples
produced by the modified MH algorithm always satisfy the
observe statement observe(ϕ) immediately following the
probabilistic assignment, and hence there is no possibility
of rejection.

It is interesting to note the above modification to the
MH algorithm can also be applied to other variants such as
Hamiltonian Monte Carlo (Neal 2010) which suggests that
the PRE transformation can be used profitably by other prob-
abilistic programming tools such as CHURCH (Goodman et
al. 2008) and STAN (Hoffman and Gelman 2013).

5 Empirical Evaluation
In this section, we empirically evaluate R2 and compare
it with two state-of-the-art probabilistic programming tools
CHURCH and STAN over a number of benchmarks. All ex-
periments were performed on a 2.5 GHz Intel system with
8 GB RAM running Microsoft Windows 8. R2 is imple-
mented in C++ and uses the Z3 theorem prover (de Moura

Figure 6: Evaluation results.

and Bjorner 2008) in order to represent and manage pre-
image predicates. We evaluated R2 on the following bench-
marks:

• Letter1, Letter2: These are programs representing the
probabilistic model for a student getting a good reference
letter (Koller and Friedman 2009).

• NoisyOR: Given a directed acyclic graph, each node is a
noisy-or of its parents. Find the posterior probability of a
node, given observations (Kiselyov and Shan 2009).

• BurglarAlarm: This is an adaptation of Pearl’s exam-
ple (Pearl 1996) where we want to estimate the probability
of a burglary having observed a phone call (see Figure 1).

• HIV: This is a multi-level linear model with interaction
and varying slope and intercept (Hoffman and Gelman
2013).

• Chess: This is skill rating system for a chess tourna-
ment consisting of 77 players and 2926 games (Herbrich,
Minka, and Graepel 2006).

• Halo: This is a skill rating system for a tournament con-
sisting of 31 teams, with at most 4 players per team, and
465 games played between teams (Herbrich, Minka, and
Graepel 2006).

The benchmarks Letter1, Letter2, NoisyOR and
BurglarAlarm are toy models, whereas the benchmarks
HIV, Chess and Halo are larger models used in real-word
applications.

Figure 6 summarizes the results obtained by running
CHURCH, R2 and STAN over the seven benchmarks. The
execution time is in seconds and shown in the figure using
a logarithmic scale. R2 produces results with shorter exe-
cution time than CHURCH and STAN (all tools were run so
that they produced the correct answer up to three signifi-
cant digits). This difference can be attributed primarily to the
PRE transformation described in Section 4. For the HIV and
Halo benchmarks, CHURCH does not produce an answer
and times out after one hour. STAN times out after one hour
on the Halo benchmark. The STAN results for the bench-
marks Letter1, Letter2, NoisyOR and BurglarAlarm
are missing as it does not support models with discrete la-
tent variables (Stan Development Team 2013).
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It is important to note that R2 is at least 50 times faster
than QI (Chaganty, Nori, and Rajamani 2013) on these
benchmarks (with QI timing out on the Chess and Halo
benchmarks). This improvement in performance is due to
the fact that R2 is able to improvise based on its current
state in order to move into regions of high density.

It is also interesting to note that for the HIV benchmark,
STAN performs better than R2. One of the reasons for this
is that STAN is based on Hamiltonian Monte Carlo sam-
pling (Neal 2010) which enables it to generate samples from
areas of high probability. In contrast, R2 exhibits the diffu-
sive behavior of random walks and moves slowly from one
high probability region to another. As future work, we would
like to extend the sampling technique in R2 to Hamiltonian
Monte Carlo sampling (as described in Section 4).

6 Conclusion
We have presented a tool R2 that is based on a new MCMC
algorithm for efficiently sampling from probabilistic pro-
grams. A unique feature of our algorithm is that it uses ideas
from program analysis such as pre-image computation to
avoid rejection due to conditioning in the program.

We have formalized the semantics of probabilistic pro-
grams and rigorously proved the correctness of R2. Our ex-
perimental results are also encouraging—we show that R2
is able to produce results of similar quality as state-of-the-
art probabilistic programming tools such as CHURCH and
STAN with much shorter execution time.
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