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Abstract

Inference in large scale graphical models is an important task
in many domains, and in particular probabilistic relational
models (e.g. Markov logic networks). Such models often ex-
hibit considerable symmetry, and it is a challenge to devise
algorithms that exploit this symmetry to speed up inference.
Recently, the automorphism group has been proposed to for-
malize mathematically what ”exploiting symmetry” means.
However, obtaining symmetry derived from automorphism is
GI-hard, and consequently only a small fraction of the sym-
metry is easily available for effective employment. In this pa-
per, we improve upon efficiency in two ways. First, we in-
troduce the Cluster Signature Graph (CSG), a platform on
which greater portions of the symmetries can be revealed and
exploited. CSGs classify clusters of variables by projecting
relations between cluster members onto a graph, allowing for
the efficient pruning of symmetrical clusters even before their
generation. Second, we introduce a novel framework based
on CSGs for the Sherali-Adams hierarchy of linear program
(LP) relaxations, dedicated to exploiting this symmetry for
the benefit of tight Maximum A Posteriori (MAP) approxima-
tions. Combined with the pruning power of CSG, the frame-
work quickly generates compact formulations for otherwise
intractable LPs, as demonstrated by several empirical results.

Introduction
Inference in large scale graphical models is an important
task in many domains, and in particular probabilistic re-
lational models (e.g. Markov logic networks). Such mod-
els often exhibit considerable symmetry, and it is a chal-
lenge to devise algorithms that exploit this symmetry in or-
der to speed up inference, see e.g. (Poole 2003; Singla and
Domingos 2008; Kersting, Ahmadi, and Natarajan 2009;
Jha et al. 2010; Apsel and Brafman 2011; Van den Broeck
et al. 2011; Noessner, Niepert, and Stuckenschmidt 2013;
Ahmadi et al. 2013) and (Kersting 2012) for an overview.
Recently, (Niepert 2012; Bui, Huynh, and Riedel 2013) have
established connections between the automorphism group of
graphical models and lifted inference. Specifically, Bui et
al. have demonstrated how to deduce some of the symmetry
available directly from the relational structure, and formu-
lated a compact linear program (LP) for the basic relaxation
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of the Maximum A Posteriori (MAP) query. Their frame-
work, however, does not provide one with efficient tools
to formulate tighter MAP-LP relaxations, such as those ob-
tained via the Sherali-Adams (SA) hierarchy. In this paper,
we make two contributions that jointly allow the computa-
tion of much tighter relaxations in relational models.

The first contribution, called Cluster Signature Graph
(CSG), is a graphical platform that allows an efficient de-
tection of symmetry between clusters of variables, by pro-
jecting the relational structure of each cluster onto a graph.
Consequently, isomorphic CSGs denote exchangeable clus-
ters, that is – clusters that are mapped one onto the other in
a permutation belonging to the automorphism group.

The second contribution, inspired by the work of (Mlade-
nov, Globerson, and Kersting 2014), is a framework which
formulates compact MAP-LPs of the SA hierarchy. At its
core, the framework relies on an oracle to provide all non-
exchangeable clusters within a given size range. The above
requirement is efficiently met by generating non-isomorphic
CSGs using automated graph generation tools. Since the
generated graphs are small, and the procedure for produc-
ing such graphs involves no analysis of the ground graphical
model, the combination of our two contributions produces
compact MAP-LPs of the SA hierarchy very quickly.

Further, we discuss the integration of evidence on unary
and binary atoms into the framework, and finally, validate
our new approach with several empirical results, putting spe-
cial emphasis on the challenging class of transitive relational
models. From the empirical results, we highlight several lift-
ing of the SA hierarchy up to level 6, in non-trivial models.

We begin with an elaborated background section, fol-
lowed by the presentation of our MAP approximation frame-
work. Only then do we proceed to the CSG introduction.

Background
MRF and MAP Estimation
A Markov Random Field (MRF)M is a probabilistic graph-
ical model, consisting of a set of random variables x =
{x1, . . . , xn}, and a set of factors. A factor is a pair (θf , xf ),
which represents a function θf : range(xf ) → R, mapping
from the joint assignment range of variables xf ⊆ x, to the
reals. The joint distribution function of MRFs is given by

Pr(x = x̂) =
1

Z

∏
f

exp
(
θf (x̂f )

)
(1)
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where x̂ is a joint assignment to all x variables, and x̂f is
the respective joint assignment to all xf variables under x̂.
Z here denotes a normalization constant called the parti-
tion function. One common query in probabilistic models is
the Maximum A Posteriori (MAP) estimation query, which
seeks to obtain a joint assignment that maximizes the joint
distribution. The unnormalized maximization task can be ex-
pressed in the form of sum of logarithms, as follows.

MAP(M) = maxx
∑

f
θf (xf ) (2)

In this paper, we will be focusing on obtaining an upper
bound on the maximal unnormalized log distribution in rela-
tional probabilistic models. MAP assignments correspond-
ing to this task may be obtained via rounding schemes,
e.g. (Ravikumar, Agarwal, and Wainwright 2010). Optimiz-
ing the latter for the benefit of relational environments is an
interesting challenge, which we leave to further study.

MAP Relaxation via Linear Programming
Methods for approximating the NP-hard MAP query (Shi-
mony 1994) have become a subject for extensive study in
various fields of computer science. Of the many approaches
(Yedidia, Freeman, and Weiss 2003; Sontag, Globerson, and
Jaakkola 2011), we build our work on the framework of
Linear Programming (LP), where the MAP computation
problem is translated into an Integer Linear Program (ILP)
(Schrijver 1998), and relaxed to an LP by lifting the integral-
ity constraints imposed on the variables. Formally, an LP is
a maximization problem over a set of real-valued variables
µ = {µi}i, as follows.

maxµ
∑

i
ciµi s.t.

∑
i
aijµi ≤ bj ∀j (3)

where ci, bj and aij denote real-valued coefficients. The
polynomial-time complexity of LPs (Khachiyan 1979; Kar-
markar 1984) lends itself to fast approximation methods, and
can be found suitable for large domains, as in our setting.

For ease of presentation, our formulation, from this point
on, will be adapted to triplewise MRFs and Boolean vari-
ables. This chosen formulation should suit our running ex-
amples throughout the paper. Nevertheless, the method we
introduce can be applied to any MRF, of any variable as-
signment range. Given a triplewise MRF M over the set
of random variables x = {xi, . . . , xn} and factors F =
{(θf , xf )}f , we define a MAP linear program as follows.

For each subset of indices I taken from {1, . . . , n} of size
1 ≤ |I| ≤ 3, let µI denote a vector of variables of size
2|I|. A notation µijk(xi, xj , xk) will be used to describe a
specific variable in vector µI corresponding to the subset
I = (i, j, k) and entry (xi, xj , xk) ∈ {0, 1}3. Additionally,
let IF denote the set of all ordered indices for which there
exists a factor f with a matching variables scope xf , and let
θijk denote the log probability table of a factor whose vari-
ables scope is (xi, xj , xk). The MAP linear program (MAP-
LP) is defined as the optimization problem in Figure 1. Note
that permutations of I induce µ vectors that represent the
same LP variables. For instance, the LP variable µij(xi, xj)
is equal to µji(xj , xi), for any i, j and assignments to xi, xj .

max
µ

∑
(i)∈IF

〈θi, µi〉+
∑

(i,j)∈IF

〈θij , µij〉+
∑

(i,j,k)∈IF

〈θijk, µijk〉

s.t.
∑
xi
µi(xi) = 1 ∀(i) ∈ IF ,∑

xj
µij(xi, xj) = µi(xi) ∀(i, j) ∈ IF ,∑

xi
µij(xi, xj) = µj(xj)

µijk(xi, xj , xk) ≥ 0 ∀(i, j, k) ∈ IF ,∑
xk
µijk(xi, xj , xk) = µij(xi, xj)∑

xj
µijk(xi, xj , xk) = µik(xi, xk)∑

xi
µijk(xi, xj , xk) = µjk(xj , xk)

where ,

〈θijk, µijk〉 =
∑

(xi,xj,xk)

θijk(xi, xj , xk) · µijk(xi, xj , xk)

Figure 1: MAP-LP for triplewise MRFs

For this reason, we sometimes ignore the ordered nature of
I and refer to its respective set of xI variables as a cluster.

Modern LP solvers are capable of solving MAP-LP in-
stances for some very large models. However, depending on
a given instance of a problem, the quality of approximation
may prove to be insufficient. Thus, it is common to employ
strategies that produce tigher results. One often used strat-
egy is to identify violations of cycle inequalities (Sontag and
Jaakkola 2007), and add constraints that remove these solu-
tions from the LP’s feasible region. An adaptation of this
method to relational probabilistic models was recently in-
troduced in (Bui, Huynh, and Riedel 2013). A different strat-
egy, albeit considered intractable in large or even moderately
sized models, is elevating the MAP approximation problem
onto high levels of lift and project hierarchies. As shown in
(Sontag 2010), such approach, if tractable, produces tighter
bounds compared with the aforementioned strategy.

The Sherali-Adams Hierarchy of MAP Relaxation
Lift and project hierarchies are frameworks for incremen-
tally tightening the LP’s feasible region of a relaxed ILP,
starting from loose approximations and ending in exact
solutions. At each level of the hierarchy, new variables
and constraints are introduced, thereby lifting the dimen-
sion of the computational problem. A solution is obtained
by projecting the result back onto the smaller dimension
of the original problem. Typically, lift and project meth-
ods (Sherali and Adams 1990; Lovász and Schrijver 1991;
Lasserre 2002) add variables which correspond to clusters
of variables taken from the original problem. In this work,
we focus on the the Sherali-Adams (SA) hierarchy, which is
a natural extension to MAP-LP. The principles we demon-
strate, however, apply to other hierarchies as well.

In order to obtain a k-level SA linear program, called
MAP-LPk, we define the set of constraints SAI .

SAI ≡
{
µI (xI ) ≥ 0 ∀i ∈ I, ∀xI ∈ {0, 1}

|I|∑
xi
µI (xI ) = µI\{i}(xI\{i})

For later references, let the constraint µI (xI ) ≥ 0 be
called a non-negativity constraint, and let the constraint∑
xi
µI (xI ) = µI\{i}(xI\{i}) be called a local constraint.
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MAP-LPk can be obtained by adding µI vectors and
respective SAI constraints to MAP-LPk−1, for each or-
dered subset of indices I of size k taken from {1, . . . , n}.
As a starting point, MAP-LP3 is defined according to Fig-
ure 1, complemented by local constraints on all triples and
pairs of variables. MAP-LP4 can then be obtained from
MAP-LP3, by introducing µI variables corresponding to
all clusters of size 4, adding all constraints of the form∑
xl
µijkl(xi, xj , xk, xl) = µijk(xi, xj , xk).

Exploiting Symmetry in Linear Programs
The SA hierarchy can quickly generate large and intractable
LPs, even for levels as low as 3. Fortunately, LPs that
are highly symmetrical can have their dimension substan-
tially reduced. This aspect was originally discussed for
ILPs and Semi-Definite Programs, see e.g. (Margot 2010;
Gatermann and Parrilo 2004), and has recently been adapted
to LPs using a quasi-linear time preprocessing step and in-
troduced to the domain of relational probabilistic models
(Mladenov, Ahmadi, and Kersting 2012). We will now for-
malize this notion of symmetry for the benefit of this work.

Let L denote an LP, and let {µi}i denote L’s variables.
Definition 1. µi and µj are called exchangeable if there
exists a permutation on L’s variables that maps µi onto µj
and yields the exact same LP. All variables exchangeable
with one another form a set called an orbit. The set of all
orbits in L is called L’s orbit partition.
Theorem 1. (Bödi, Herr, and Joswig 2013) Let µ̄ρ denote
the set of variables in orbit ρ. Then, there exists a solution
for L under which ∀µi, µj ∈ µ̄ρ : µi = µj , for each orbit
ρ in L’s orbit partition.

From theorem 1, it immediately follows that the dimen-
sion of the LP can be reduced by defining a variable µρ for
each orbit, and replacing each variable µi whose orbit is ρ
with µρ. However, as the LP becomes substantially bigger
and more complex in structure with each level of the SA hi-
erarchy, such direct approach is unlikely to be feasible. In
(Ostrowski 2012), the issue is tackled by incrementally gen-
erating, row by row, a compact MAP-LPk, instead of gen-
erating the original MAP-LPk and only then reducing its di-
mension. The method is able to generate MAP-LP3 on many
problem instances, yet the time required to generate the LP
approaches hundreds of seconds in small problem instance,
and climbs up to ten of thousands seconds in problem in-
stances of no more than a few hundred of variables and con-
straints. LPs for relational models, however, can easily reach
thousands if not millions of variables and constraints, and
may be found unsuitable for this type of approach.

Relational MRF
Probabilistic Relational Models (PRM) are representations
of probabilistic models using the first-order predicate logic.
Two commonly used PRMs are the parfactor model (Poole
2003) and Markov logic network (Richardson and Domin-
gos 2006), and each can be considered a relational represen-
tation of an MRF. Here, we adapt a slightly modified repre-
sentation of the parfactor model, as to allow a consistent set
of notations for both relational and non-relational cases. We

include a brief representation of the model, and refer to (de
Salvo Braz, Amir, and Roth 2005) for a formal introduction.

A domain is a set of constants, called domain objects,
that represent distinctive entities in the modeled world,
e.g. {Alice,Bob, Carol, . . .}. A logical variable (lvar)
is a variable whose assignment range is associated with
some domain. An atom is an atomic formula of the form
p(t1, . . . , tn), where the symbol p is called a predicate1, and
each term ti is either a domain object or an lvar. A ground
atom is an atom whose ti terms are all domain objects. Non-
ground atoms are collections of ground atoms, all sharing
the same assignment range, and describing a certain property
of an individual (e.g. smoker) or some relation between in-
dividuals (e.g. friendship). A ground substitution {Xi/oi}i,
is the replacement of each lvar Xi with a domain object oi.

The parfactor modelMr (aka relational MRF) is a collec-
tion of relational factors, called parfactors. A parfactor is a
tuple (θ,A,R), consisting of a function θ : range(A)→ R,
an ordered set of atomsA, and a set of constraintsR imposed
on A’s lvars. Grounding a parfactor is done by applying all
ground substitutions that are consistent with R, resulting in
a collection of factors. The ground atoms then serve as ran-
dom variables in the ground MRF. A notation θ(A |R) is
commonly used to denote a parfactor. For example, parfac-
tor θ(smokes(X), smokes(Y ), friends(X,Y )|X 6= Y ),
whose ground instances in the domain {Alice,Bob} are

• θ
(
smokes(Alice), smokes(Bob), friends(Alice,Bob)

)
• θ

(
smokes(Bob), smokes(Alice), friends(Bob,Alice)

)
We restrict our attention to shattered (de Salvo Braz,
Amir, and Roth 2005) models, consisting of inequality con-
straints of the form X 6= Y only. Additionally, such in-
equality constraints will be imposed on each pair of lvars
X,Y where, in their absence, a ground factor with mul-
tiple entries of the same ground atom may be produced.
For instance, θ(p(X), p(Y )) may produce a ground factor
θ(p(o1), p(o1)), and will therefore be split into two parfac-
tors: θ(p(X), p(Y )|X 6= Y ) and some θ′(p(X)).

Lifting the Sherali-Adams Hierarchy
Before introducing our framework, which substantially re-
duces the size of relational MAP linear programs induced
by the SA hierarchy, we make the following observation.
If two clusters of MRF variables are symmetrical, then the
vectors of MAP-LP variables corresponding to these clus-
ters are symmetrical as well. More formally, let xI and xJ
denote two clusters of variables taken from MRFM.

Definition 2. xI and xJ are called exchangeable if there
exists a permutation π onM’s random variables that yields
the exact same MRF, and under which each variable xi ∈ xI
is mapped onto a distinctive xj ∈ xJ .

Observation 1. If xI and xJ are exchangeable, then the LP
variables in vectors µI and µJ of a respective MAP-LPk are
exchangeable.

Thus, if we obtain indices of only non-exchangeable MRF
clusters, then we can form a compact MAP-LP representing

1Although the term predicate is used, atoms are not restricted
to Boolean assignments.
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Algorithm 1: GENERATECOMPACTMAPLPk

Input: Relational MRFMr, an integer k
Output: MAP-LPk of reduced dimension

1 objective = 0, constraints = {}
2 for d = 1 to k do
3 for I ∈ CANONICALCLUSTERS(Mr ,d) do
4 Let µI be a vector of LP variables of size 2d

5 Add non-negativity constraints on µI
6 (θI , xI ) = CANONICALFACTOR(Mr , I)
7 Add #I · 〈θI , µI 〉 to the objective
8 for i ∈ I do
9 I ′ = CANONICALCLUSTER(Mr , I \ {i})

10 Add local constraints between µI and µI′

11 return objective, constraints

the k-level of the Sherali-Adams hierarchy. The unique rep-
resentative clusters will be called canonical clusters hence-
forth, and their generation will be, at this point, associated
with an oracle which supports the following queries:

1. CANONICALCLUSTERS(Mr, d) – generating the indices
of all canonical clusters of size d in the relational MRF.

2. CANONICALCLUSTER(Mr, I) – retrieving the indices
of a canonical cluster which is exchangeable with xI .

3. CANONICALFACTOR(Mr, I) – retrieving a ground fac-
tor (θI , xI ) associated2 with the canonical cluster xI .

4. #I – retrieving the number of clusters exchangeable with
xI

3 in the relational MRF.

Algorithm 1 introduces the framework for generating a
compact MAP-LP, making use of the oracle’s capabilities.
The algorithm generates all LP variables corresponding to
canonical clusters of various sizes, injects non-negativity
and locality constraints, and updates the linear objective
function with the matching log-potential tables. Note that the
effect of the log-potential is multiplied by #I to compen-
sate for the effective removal of exchangeable variables from
the LP. Also note that local constraints cannot be properly
formed without invoking the oracle’s CANONICALCLUS-
TER query, since having I as the set of indices of a canonical
cluster, does not guarantee the same for I \ {i}. Finally, we
define µ∅ as a constant whose value is 1, thereby allowing
local contraints to be added for clusters of size 1.

Exchangeable Clusters in the Relational MRF
Algorithm 1 establishes a clear motivation for shifting the
attention from symmetry analysis in the LP domain to the
domain of the original graphical model. In particular, we’re
interested in capturing symmetry of clusters, as induced by

2An all zero factor is returned in case of no such association.
3In the relational setting, clusters corresponding to ground in-

stances of the same relational factor are necessarily exchangeable,
if the parfactor consists of inequality constraints on all pairs of
lvars. If so, #I is simply the number of ground instances of the
parfactor. When not assuming this form, it is possible for two (or
more) canonical clusters to be associated with the same parfactor.
#I will then be obtained combinatorically.

the first-order formulation of the relational MRF. We begin
with a known result (Bui, Huynh, and Riedel 2013).
Theorem 2. Let πo be a renaming permutation on the do-
main objects of Mr. Let xI and xJ be clusters of ground
atoms, mapped one onto the other under πo. Then, xI and
xJ are exchangeable.

We demonstrate the above with an example. Let πo =
{o1 → o2, o2 → o1} be a renaming permutation on do-
main objects {o1, o2}. Then, the two clusters of ground
atoms4 {r(1,2), p2} and {r(2,1), p1} are necessarily ex-
changeable. Nevertheless, renaming permutations cannot
rule out exchangeability in all cases. For instance, clusters
{p1, q2} and {p1, q1} are indeed exchangeable in parfactor
θ(p(X), q(Y )), although they do not conform to any renam-
ing permutation. In the following subsection we present a
generalization to the renaming permutation criterion, allow-
ing us to capture these cases of exchangeability as well.

Cluster Signature Graph (CSG)
Our approach is based on a reduction from a cluster of
ground atoms to a graph, such that if two graphs are iso-
morphic, then their respective clusters are exchangeable. For
that purpose, we define the Cluster Signature Graph (CSG).
Intuitively, the CSG depicts which ground atoms in the re-
spective cluster must ”move together” in any permutation
which aims to preserve the structure of the relational MRF.
For instance, a structure preserving permutation in parfactor
θ(r(X,Y ), p(X)) would be required to coordinate the im-
ages of ground atoms {r(1,2), p1} in a way that guarantees
identical substitutions on lvarX . Consequently, their images
could be {r(3,5), p3}, but never {r(3,5), p4}. Before formal-
izing this restriction, we make a distinction between substi-
tutions in different positions of the ground atom. In r(3,5),
a substitution X/o3 was applied on the lvar in position 1,
whereas a substitution Y/o5 was applied in position 2. With
this, we are ready for the following definition.
Definition 3. Ground atoms xi and xj are substitution cou-
pled in positions ωi and ωj , respectively, if (1) they share
a ground factor originating from a substitution on the same
lvar in the respective ω positions, or (2) there exists a ground
atom xk that is substitution coupled with both in their re-
spective ω positions.
Example: In parfactor θ(r(X,Y ), p(X)), the ground atoms
r(1,2) and r(1,3) are substitution coupled in positions 1 and
1, respectively, since they each share a ground factor with
p1. However, r(2,1) and r(3,1) are not substitution coupled,
although they share the same substitution on lvar Y .

In order to provide a full picture on substitution cou-
pling, the CSG must also integrate inequality constraints
found in the relational MRF. One way to achieve the above,
is to determine substitution coupling in a slightly modi-
fied, constraint-less model, and project the coupling prop-
erty onto the original model, as follows. For every constraint
X 6= Y found in a parfactor consisting of atom r(X,Y ),
p(X) or q(Y ), add a respective atom r(Y,X), p(Y ) or q(X)
to the parfactor and remove the constraint. The substitution

4Let pi and r(i,j) denote p(oi) and r(oi, oj), respectively.
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(a) CSGs (b) RCSGs (c) CSGs with Evidence (broken lines)

Figure 2: Cluster Signature Graphs in θ(r(X,Y ), p(X), q(Y ))

coupling of the modified model now requires a ”coordina-
tion” between lvars X and Y , as they occupy the same po-
sition in one of the atoms, and thus fulfills the original re-
quirement. We now proceed with the main definition.
Definition 4. The CSG of cluster xI in relational MRFMr,
is a directed colored multigraph G = (V,E,C), where V is
a set of vertices, E is a set of directed edges and C is a
coloring function, mapping each edge to a color. Edges and
colors in the CSG are defined as follows.

1. For each xi ∈ xI originating from a unary predicate p,
let G contain a node u and a loop carrying the color ’p’.

2. For each xi ∈ xI originating from a binary predicate r,
let G contain nodes u and v to represent xi’s positions,
and a directed edge u→ v carrying the color ’r’.

3. Let all substitution coupled nodes in G be merged into a
single node, without removing any of the incident edges.

Theorem 3. If the CSGs of xI and xJ inMr are isomor-
phic, then xI and xJ are exchangeable.
Proof outline.
Let gI and gJ denote two isomorphic CSGs of xI and xJ ,
respectively. It can be shown that for every ground atom xi
added to CSG gI , there exists a respective ground atom xj
that, once added to CSG gJ , induces the same isomorphism
as before, but for the additional mapping between the new
graph properties. Once both graphs consist of all ground
atoms, the mapping between the edges of the graphs serves
as a structure preserving permutation in the relational MRF.
Hence, xI and xJ are exhangeable.

Example: Let Mr consist of θ(r(X,Y ), p(X), q(Y )) and
a domain size 4, let xI = {r(1,2), r(2,3), p1, q1} and let
xJ = {r(3,1), r(2,4), p2, q3}. The two clusters are exchange-
able, since there exists a permutation which maps one to
the other while preserving the MRF structure. That permu-
tation is π = {r(1,2) ↔ r(2,4), p1 ↔ p2, q2 ↔ q4, r(2,3) ↔
r(3,1), p2 ↔ p3, q3 ↔ q1}. See Figure 2a for illustration.

Renaming Signatures As mentioned earlier, renaming
permutations constitute a stricter form of exchangeability
compared with CSGs. A graphical depiction of this form,
called Renaming Cluster Signature Graph (RCSG), can be
obtained from existing CSGs by projecting their content
onto the axis of domain objects (see Figure 2b).

Generating Canonical Clusters
Since isomorphic CSGs denote exchangeable clusters,
canonical clusters can be obtained, in principle, by generat-
ing valid CSGs and filtering out isomorphic instances. This
approach, unfortunately, cannot be easily implemented due
to the complex rules that constitute a valid CSG. A more
practical approach is to generate non-isomorphic instances
of the simpler RCSG, and filter-out further, if one wishes,
by converting flat RCSG representations into CSGs.

Generating non-isomorphic instances of graphs up to k
edges is clearly harder than determining isomorphism in
graphs of order k. However, one must keep in mind that
this procedure involves generation of small local graphs,
and does not involve any processing of the actual ground
(and typically large) graphical model. In fact, this procedure
is entirely domain size independent. Fortunately, there are
commonly available tools dedicated to this task, producing
graph instances very quickly. For instance, we were able to
obtain the entire data required to lift MAP-LP6 in a transitive
model, in less than 23 seconds, which is only a fraction of
the time the LP engine takes to solve that compact LP (more
than 1000 seconds). Much like knowlege compilation, gen-
eration of graphs can be carried out once, offline, and serve
all models consisting of similar predicate content.

Canonical Clusters in Presence of Evidence
As it turns out, the platform of CSG is almost seamlessly ex-
tended for handling evidence. Given cluster xI and evidence
e (a set of ground atoms paired with value assignments), a
new CSG is defined on the union of xI and e, where the sub-
stitution coupling property of ground atoms in e is defined as
if they contained no evidence. Edges denoting evidence are
colored according to the predicate symbol and the associated
value assignment, e.g. r = 1, p = 0 etc. Exchangeability, as
before, is determined via an isomorphism test on the CSGs.

The set of canonical clusters is now obtained by generat-
ing all possible compositions between (a) the evidence and
(b) all canonical clusters obtained by ignoring the evidence,
followed by the filtration of isomorphic instances. In Fig-
ure 2c, we see two different compositions of an ”evidence
free” canonical cluster with constant evidence, resulting in
two clusters that are no longer symmetrical. The number of
canonical clusters therefore becomes highly dependent on
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Figure 3: Empirical Results for Lifted MAP-LP

the type of the evidence. Evidence on binary predicates, even
in small portions, can very quickly break the symmetry of
the model up to intractability.

In contrast, evidence on unary predicates results in LPs
which are size indepednent in both the global domain-size
and the amount of evidence. The reason for this very conve-
nient integration, is that the composition between ”evidence-
free” canonical clusters and the constant evidence partitions
the CSG into two disconnected components: (a) one that
only carries unary evidence, and (b) one that paints the nodes
of the canonical cluster with the unary evidence occupying
the shared nodes. Since the evidence is constant, the con-
tent of evidence in (b) determines (a) as well. Further, nodes
in (a) are graphically indistinguishable, but for the colors of
the atoms occupying the nodes. These inherent properties
reduce the CSG isomorphism test to a comparison between
the (b) components of the CSGs, ignoring (a) altogether.

With the introduction of evidence, a single parfactor in the
compact LP may be matched with several canonical clusters,
all assuming similar shape but differ in evidence nodes. For
instance, let model θ(p(X), r(X,Y )) consist of evidence
p1 = 0, and let {p2, r(2,5)} and {r(1,3)} denote two different
canonical clusters. The first cluster is matched with potential
θ. The second is matched with the potential θ conditioned
on p1 = 0. The number of clusters exchangeable with each
canonical cluster (#I) can be determined combinatorically.

Implementation and Empirical Results
We demonstrate the framework with the challenging task
of lifting MAP-LPk in transitive models. Let parfactor
θ(r(X,Y ), r(X,Z), r(Y,Z)|X 6= Y,X 6= Z, Y 6= Z) be
called, henceforth, the transitive model. We follow Algo-
rithm 1, as follows. (1) Canonical clusters are obtained by
generating all non-isomorphic instances of directed graphs
with up to k edges, using the nauty (McKay and Piperno
2014) software package, where all graphs assume a canon-
ically labeled form. (2) A canonical cluster of size 3 con-
sisting of nodes u, v, w and edges (u, v), (u,w), (v, w), is
matched with the parfactor, and a linear expression involv-
ing its respective µ variables is added to the objective. (3)
For each canonical cluster of size d, we obtain subset clus-

ters of size d − 1 for which local constraints are added, by
removing edges (one each time) from the d size cluster’s
graph and obtaining a matching canonical labeling (nauty).

We conducted experiments on several models, in which
table entries were set at random, with explicit discourage-
ment of uniform assignment entries (Apsel and Brafman
2012), as to avoid trivial MAP solutions. The LP engine we
used is the GNU Linear Programming Kit (GLPK) simplex
solver. Figure 3a depicts a comparison between ground and
lifted MAP-LP3 for the transitive model, where we see that
the ground LP could not solve instances beyond domain size
7. The lifted MAP-LP is slightly more compact in smaller
domains, since canonical clusters are restricted to include no
more nodes than the domain size. Beyond that, lifted MAP-
LP is domain size independent. Figures 3b and 3c depict
the number of LP variables and the running time of MAP-
LPs for the following models: (1) Transitive; (2) Transitive
with an additional parfactor and one unary atom; (3) Tran-
sitive with three additional parfactors and two unary atoms;
(4) Four unary atoms and three parfactors; (5) Two binary
atoms with two transitive parfactors; (6) Model no. 2 with
unary evidence on 50% of the atoms. Figure 3d depicts the
tightening of the objective with each level of the SA hier-
archy. To the best of our knowledge, we present the highest
lifting of the SA hierarchy in relational models, to date.

Conclusions
We presented a new framework for relational MAP-LP,
based on the Sherali-Adams hierarchy, which exploits sym-
metry between clusters to form a compact linear program.
We then presented a novel graphical platform (CSG) which
allows for the quick generation of all relevant non sym-
metrical clusters. In effect, the CSG serves as a bounded-
width window onto the automorphism group of the graphical
model. Thus, CSGs may be used to apply tighter approxima-
tions within various frameworks of lifted inference.
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