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Abstract

The FNSGP algorithm for Gaussian process model is
proposed in this paper. It reduces the time cost to accel-
erate the task of non-stationary time series prediction
without loss of accuracy. Some experiments are verified
on the real world power load data.

Introduction
Gaussian process for machine learning (Rasmussen and
Williams 2006) is a practical method for the time series
prediction problems. One of the deficiencies of the origi-
nal exact inference method of GP is the high time com-
plexity o(n3). In order to solve this problem, many approx-
imate inference methods have been developed (Rasmussen
and Nickisch 2010). In this paper, a new exact inference
method for GP models with non-stationary covariance func-
tion is proposed. Real world experiments showed that this
algorithm greatly reduces the computational time for online
prediction of non-stationary time series.

Process Models
The GP method constructs a model: yt = f(xt) + et, from
data set {(xt, yt)|t = 1, ..., n}. In the time series prob-
lems, the feature vector xt is composed of history data,
xt = [yt−1, ..., yt−d]. d is a constant selected by the users.
yt is the corresponding scalar output. et is the additive white
noise with Gaussian distribution e(t) ∼ N(0, σ2

n).
For a new model input x∗, the joint distribution of the new

output y∗ and the history data Y = [y1, y2, ..., yn]T is[
Y
y∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI k̄(x∗, X)
k̄T (x∗, X) k(x∗, x∗)

])
(1)

where k(·, ·) is the covariance function, K is called the
Gram matrix whose elements are Kij = k(xi, xj) , and
k̄(x∗, X) = [k(x∗, x1), k(x∗, x2), ..., k(x∗, xN )]

T . X =
[x1, x2, ..., xN ]T .
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The expected value and the variance of y∗ can be obtained
by the joint Gaussian distribution as:

ŷ∗ = k̄T (x∗, X)(K(X,X) + σ2
nI)−1Y (2)

V ar(y∗) = k(x∗, x∗)

−k̄T (x∗, X)(K(X,X) + σ2
nI)−1k̄(x∗, X) (3)

We only consider one step ahead prediction in this paper.
In multi-step problems, if the predicted values in the previ-
ous steps are used in the feature vectors, the uncertainty will
propagate (Girard et al. 2003).

The weighted linear trend covariance function (Brahim-
Belhouari and Bermak 2004) is fit for the non-stationary
time series prediction tasks:

kns(xi, xj) = xi
TTxj (4)

where T is a d×d diagonal matrix whose diagonal elements
are called hyper parameters and can be determined by solv-
ing an optimization problem in the GP learning phase before
the inference step.

Fast algorithm
The time complexity of the standard Gaussian Process infer-
ence algorithm mainly lies in the matrix inverse operation in
equation (2) and (3). In addition, the inverse matrix may be
numerically singular when the value of n is large. These are
the two major problems encountered in constructing the fast
algorithm.

In the non-stationary time series problems , when the co-
variance function (4) is used, the the inverse operation in
Equation (2) and (3) can be written as:

(K(X,X) + σ2
nI)−1 = (XTXT + σ2

nI)−1

=
1

σ2
n

I − 1

σ2
n

X(σ2
nT
−1 +XTX)−1X (5)

by using the matrix inversion lemma:

(P +QRS)−1 = P−1 − P−1Q(SP−1Q+R−1)−1SP−1

In (5), T is a diagonal matrix, so T−1 can be easily calcu-
lated with o(d) time cost. The other nontrivial matrix inverse
operation is on the d× d matrix σ2

nT
−1 +XTX . d is a con-

stant and is equivalent to the size of the hyper parameter
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vector. In most regular statistical learning problems, the size
of the parameter vector is much smaller than the number of
data samples. Thus we have d� n, and the matrix inversion
will be done on a d×dmatrix, rather than an n×n one. The
time cost of (2) and (3) can be reduced significantly.

Next, we will solve the singular matrix problem. Because
the elements of the matrix (σ2

nT
−1 +XTX)−1 will be very

small when the size of the matrix X increases with n, the
inversion matrix may be singular and run into serious round
off problems when n is quite large. We calculate the inter-
mediate variables Ky and Kv instead to avoid this problem.
Let

Ky = (σ2
nT
−1 +XTX)−1XTY (6)

Kv = (σ2
nT
−1 +XTX)−1XT k̄ (7)

where Ky is for the calculation of the expected value of the
predicted output and Kv is for the corresponding variance
value.

The Cholesky decomposition can be used to solve the ma-
trix inversion in (6) and (7). Let U = σ2

nT
−1 + XTX ,

b = XTY , and b′ = XT k̄. Let V be the cholesky decom-
position matrix of U , denoted as V = cholesky(U). V is
an upper triangle matrix, and U = V V T . Then Ky = U−1b
and Kv = U−1b′ can be calculated by:

U−1b = V −TV −1b, U−1b′ = V −TV −1b′ (8)

The time costs of the cholesky decomposition and (8) are
o(d3/6) and o(d2) respectively. Note that the computational
complexity of the matrix inversion operation for an upper
triangle matrix is much lower than that of the regular one.
Let ay and av be:

ay =
1

σ2
n

{Y −XKy}, av =
1

σ2
n

{k̄ −XKv}. (9)

The predicted value and the variance can be finally obtained
by y∗ = k̄ay and var(y∗) = x∗Tx∗T − k̄av .

The algorithm is summarized as FNSGP (Fast Non-
Stationary Gaussian Process Inference ) in the Figure 1.

The time cost of FNSGP is o(n2 + d3) . Since d � n in
regular problems, the total time cost of one inference step is
reduced from o(n3) to o(n2).

Experiments
Our experiment is done on real world ultra short time elec-
tric power load data. Realtime online power load predic-
tion have great economic importance in the power industry
(Blum and Riedmiller 2013). We choose n = 1000, d = 30,
and the results on predict error (normalized mean square er-
ror) and running time are averaged over 5000 steps. For non-
stationary time series shown in fig.2, the new method obtains
the same predicted values as the standard GP, whereas the
time cost is greatly reduced.

References
Blum, M., and Riedmiller, M. 2013. Electricity demand
forecasting using gaussian processes. Power 10:104.

INPUT: X,Y, T, σ2
n, x
∗

OUTPUT: y∗, var(y∗)

1: U = σ2
nT
−1 +XTX

2: b = XTY
3: k̄ = XTx∗T

4: b′ = XT k̄
5: V = cholesky(U)
6: Ky = V −TV −1b
7: Kv = V −TV −1b′

8: ay = (Y −XKy)/σ2
n

9: av = (k̄ −XKv)/σ2
n

10: y∗ = k̄ay
11: var(y∗) = x∗Tx∗T − k̄av

Figure 1: FNSGP (Fast Non-Stationary Gaussian Process In-
ference )
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Figure 2: Predicted power load series

Table 1: Comparison of the prediction errors and time cost
of FNSGP and Standard GP.

Method Predict Error
(NMSE)

Average Run-
ning time

FNSGP 0.005 0.008s
Standard GP 0.005 0.651s
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