
Monte Carlo Simulation Adjusting

Nobuo Araki*, Masakazu Muramatsu, Kunihito Hoki, Satoshi Takahashi
Graduate School of Informatics and Engineering, The University of Electro-Communications

1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 Japan
*a1341001@edu.cc.uec.ac.jp

http://gi.cs.uec.ac.jp:10140/Araki complementary/ReadMe.html

Abstract

In this paper, we propose a new learning method sim-
ulation adjusting that adjusts simulation policy to im-
prove the move decisions of the Monte Carlo method.
We demonstrated simulation adjusting for 4 × 4 board
Go problems. We observed that the rate of correct an-
swers moderately increased.

Introduction
The Monte Carlo (MC) method has driven recent advances
in computer Go (Coulom 2007; Gelly and Silver 2007). A
lot of game simulations are performed to achieve good move
decisions. Simulation means that the program self-plays one
game from a given position to the end. The probability of
move selection in the simulation is often decided by softmax
policy:

πθ(s, a) =
eφ(s,a)

T θ∑
b e
φ(s,b)T θ

, (1)

where φ(s, a) is the feature vector of move a on game po-
sition s and θ is the weight vector. Because the quality of
simulations affects the performance of MC searches, recent
state-of-the-art Go programs have simulation policies that
are carefully adjusted by hand and by machine learning.

In this paper, we propose a new learning method for simu-
lation policy that aims to improve the move decisions of the
MC method. In the first experiment, we used a set of 4 × 4
Go problems, Kuroneko-no Yonro (Hsu 2012), to measure
the performance. These problems are relatively difficult, but
the correct answers are available.

Our method is similar to simulation balancing (Silver and
Tesauro 2009; Huang, Coulom, and Lin 2010). While sim-
ulation balancing requires desirable evaluation values (min-
imax values or the results of deep MC searches) to adjust
the policy, our method requires desirable moves. Desirable
moves can be powerful learning signals because plenty of
expert moves in game records are available for Go. In fact,
a popular learning method (Coulom 2007) uses such desired
moves.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Simulation Adjusting
Our purpose is to find the value of θ such that the best moves
calculated by the MC method match the correct moves. We
set z as the game result (1 or 0), V (s, a) = Eπθ [z|s, a] as the
winning rate of move a at a given position s calculated by
using simulation policy πθ, V (s, amax) as the winning rate
of the best move amax = arg max

a
V (s, a), and V (s, a∗) as

the winning rate of the correct move a∗. Our approach ad-
justs θ to match maxa V (s, a) with V (s, a∗). The objective
function value to minimize is

J(θ) = Eρ(s)[(V (s, amax)− V (s, a∗))2], (2)

where Eρ(s) denotes the expectation over the distribution of
actual states ρ(s). In the discussion below, we use the same
notations as the paper (Silver and Tesauro 2009) for ρ(s) and
ψ.

To carry out the steepest descent, we obtain the gradient
of J(θ) as

∇θJ(θ) = Eρ(s)[2(V (s, amax)− V (s, a∗))k(s)], (3)

where k(s) is ∇θ(V (s, amax) − V (s, a∗)). We set s0 = s
as a given position, si+1 = si ◦ ai as the game position that
appears after move ai at game position si, sT+1 as the end
game position, and

k(s) = Eπθ,a0=amax [z
T∑
t=1

ψ(st, at)]

−Eπθ,a0=a∗ [z
T∑
t=1

ψ(st, at)]. (4)

In accordance with equations (3) and (4), the update algo-
rithm is Algorithm 1. First, we compute the maximum win-
ning rate Vmax, its move amax, and the winning rate of the
correct move V ∗ using the MC method. Second, we com-
pute ψ as defined in the paper (Silver and Tesauro 2009),
and k = hmax − h∗. Third, we update θ with step size α
and repeat this procedure until θ converges. In our experi-
ment, we set α = 1.0

10×log(L×2.0+3.0) where L is the iteration
number so that the step size decreases in accordance with
the progress of the iterations.

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

3094



Algorithm 1 Adjusting θ
θ ← 0
for L = 0 to loop limit do

for all s0 ∈ training set do
Vmax ← 0, V ∗ ← 0, amax ←NULL
a∗ ← teacher move in s0
for all a0 ∈ all legal moves of s0 do
V ← 0
for i = 1 to M do

simulate(s0, a0, . . . , sT , aT ; z) using πθ
V ← V + z

M
end for
if V > Vmax then
Vmax ← V, amax ← a0

end if
if a0 = a∗ then
V ∗ ← V

end if
end for
hmax ← 0, h∗ ← 0
for j = 1 to N do

simulate(s0, amax, . . . , sT , aT ; z) using πθ
hmax ← hmax +

z
N

∑T
t=1 ψ(st, at)

end for
for j = 1 to N do

simulate(s0, a∗, . . . , sT , aT ; z) using πθ
h∗ ← h∗ + z

N

∑T
t=1 ψ(st, at)

end for
θ ← θ − α(Vmax − V ∗)(hmax − h∗)

end for
end for

Experiments
We test Algorithm 1 on Kuroneko-no Yonro (Hsu 2012), a
set of problems of 4 × 4 Go. The correct move for each
problem is known and unique.

We construct the feature vector based on previous work
(Coulom 2007) and the author’s Go knowledge, e.g., 3 × 3
patterns, distance to the previous n moves, ladder, nakade,
semeai (capturing races) with a small number of moves, cap-
turing stones in various situations, self-atari, escaping self-
atari, tactical moves at board corners, atari in various situa-
tions, distance from board edge, and cut.

We select problems where black wins with 0.0 komi un-
der the Chinese rules and has more than one legal move. We
divide them into training data A (60 problems) and test data
B (10 problems). For each legal move, we carry out 50 sim-
ulations to compute its winning rate (M= 50) and 50 simu-
lations to compute ψ (N= 50). We set the loop limit to 150.
For each loop, we carry out one closed test (CT) for data A
and 100 open tests (OTs) for data B. The results are shown
in Figure 1. The number of correct answers (CA) is the aver-
age number of correct answers of B over 100 different pseu-
dorandom number sequences. We also adjust the policy by
using the popular method (Coulom 2007) with data A and
test this policy on data B (CA of OT by the Minorization-
Maximization (MM) method (Coulom 2007)). This figure

shows that the objective function value (OF) of the closed
test (OF of CT) decreases, and the number of correct an-
swers of the open test (CA of OT) increases and is greater
than the number of correct answers of the open test by MM
(CA of OT by MM). We can also see that the result is im-
proved in the first 10 iterations, and after that the number of
correct answers oscillates.

1 10 100
4

4.5

5

5.5

6

6.5

7

7.5

8

0

0.2

0.4

0.6

0.8

1

1.2
　OF of CT

　CA of OT

　CA of OT by MM

Loop number L

C
A

O
F

 o
f 

C
lo

se
d 

T
es

t

Figure 1: Result of closed test (training data of A and B and
test data A) and open test (training data A and test data B.)

Conclusion and Future Work
We observed that the objective function value decreased and
the number of correct answers moderately increased. In-
creasing the size of training data may improve the number
of correct answers, but this is future work. Performing the
test on actual expert games (9 × 9 and 19 × 19 games) and
tuning the step size α are also future work.

References
Coulom, R. 2007. Computing Elo Ratings of Move Patterns
in the Game of Go. ICGA Journal 30(4).
Gelly, S., and Silver, D. 2007. Combining Online and Of-
fline Knowledge in UCT. In International Conference on
Machine Learning, ICML 2007.
Hsu, C. 2012. Kuroneko-no Yonro. Nihon Ki-in.
Huang, S.-C.; Coulom, R.; and Lin, S.-S. 2010. Monte-
Carlo Simulation Balancing in Practice. In Computers and
Games, 81–92.
Silver, D., and Tesauro, G. 2009. Monte-Carlo Simula-
tion Balancing. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML ’09, 945–
952. New York, NY, USA: ACM.

3095




