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Abstract

`1-Graph has been proven to be effective in data cluster-
ing, which partitions the data space by using the sparse rep-
resentation of the data as the similarity measure. However,
the sparse representation is performed for each datum sepa-
rately without taking into account the geometric structure of
the data. Motivated by `1-Graph and manifold leaning, we
propose Laplacian Regularized `1-Graph (LR`1-Graph) for
data clustering. The sparse representations of LR`1-Graph
are regularized by the geometric information of the data so
that they vary smoothly along the geodesics of the data man-
ifold by the graph Laplacian according to the manifold as-
sumption. Moreover, we propose an iterative regularization
scheme, where the sparse representation obtained from the
previous iteration is used to build the graph Laplacian for the
current iteration of regularization. The experimental results
on real data sets demonstrate the superiority of our algorithm
compared to `1-Graph and other competing clustering meth-
ods.

Introduction
In many real applications, high-dimensional data always re-
side on or close to a intrinsically low dimensional manifold
embedded in the high-dimensional ambient space. Cluster-
ing the data according to its underlying manifold structure
is important and challenging in machine learning. More-
over, the effectiveness of graph-based clustering methods,
such as spectral clustering, motivates researchers to build the
graph which reflects the manifold structure of the data. `1-
graph (Cheng et al. 2010), which builds the graph weight
matrix by reconstructing each datum from the remaining
data and the noise term through sparse representation, has
been shown to be robust to noise and capable of finding
datum-adaptive neighborhood for the graph construction.
Also, the sparse manifold clustering method (Elhamifar and
Vidal 2011) points out that the sparse graph is useful for re-
covering the intrinsic manifold structure in the data.

However, `1-graph performs sparse representation for
each datum separately without considering the geometric in-
formation and manifold structure of the entire data. Previous
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research shows that the data representations which respect
the manifold structure of the data produce superior results in
various clustering and classification tasks (Belkin, Niyogi,
and Sindhwani 2006; He et al. 2011). Inspired by `1-graph
and manifold learning, we propose Laplacian Regularized
`1-Graph (LR`1-Graph) for data clustering in this paper. In
accordance with the manifold assumption, the sparse repre-
sentations of LR`1-Graph are regularized using the proper
graph Laplacian. As a result, the sparse representations are
smoothed along the geodesics on the data manifold where
nearby datums have similar sparse representations. Further-
more, motivated by the fact that the sparse representations of
the `1-Graph lead to a pairwise similarity matrix for spectral
clustering with satisfactory empirical performance, we pro-
pose an iterative regularization scheme which utilizes the
regularized sparse representations from the previous itera-
tion to build the graph Laplacian for the current iteration
of regularization for the LR`1-Graph. The iterative regu-
larization scheme produces superior clustering performance
shown in our experimental results.

The Proposed Regularized `1-Graph
Given the data X = {x1}nl=1 ∈ IRd, `1-graph seeks for the
robust sparse representation for each datum by solving the
`1-norm optimization problem

‖xi −Bαi‖22 + λ‖αi‖1, i = 1, 2, . . . , n (1)

where matrix B = [x1, . . . , xn, I] ∈ IRd×(n+d), λ is the
weighting parameter controlling the sparsity of the sparse
representation, I is the identity matrix, αi = {αij}

n+d
j=1 is

the sparse representation for xi under the dictionary B. We
denote by α the (n + d) × n coefficient matrix with ele-
ments αij = αji , 1 ≤ i ≤ n + d, 1 ≤ j ≤ n. To avoid
trivial solution that αii = 1, it is required that αii = 0 for
1 ≤ i ≤ n. Let G = (X,W) be the `1-graph where the
data X are the vertices, W is the graph weight matrix and
Wij indicates the similarity between xi and xj . Interpreting
αji as the directed similarity between xi and xj , `1-graph
(Cheng et al. 2010) builds the symmetric pairwise similarity
matrix W using the sparse representations as below:

W = (α[1:n] +α
T
[1:n])/2 (2)

where α[1:n] is the first n rows of α. W is then feeded
into the spectral clustering method to produce the clustering
result.
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The pairwise similarity matrix using the sparse represen-
tations α plays an essential role for the performance of `1-
graph based clustering. In order to obtain the sparse repre-
sentations that account for the geometric information and
manifold structure of the data, we employ the manifold as-
sumption (Belkin, Niyogi, and Sindhwani 2006) which in
our case requires that nearby data points xi and xj in the data
manifold exhibit similar sparse representations with respect
to the dictionaryB. In other words,α varies smoothly along
the geodesics in the intrinsic geometry. Given a pairwise
similarity matrix Ŵ, the sparse representations α that cap-
ture the geometric structure of the data according to the man-
ifold assumption should minimize the following objective

function 1
2

n∑
i=1

n∑
j=1

Ŵij‖αi −αj‖22 = Tr
(
αLαT

)
where

L = D̂ − Ŵ is the graph Laplacian matrix, and D̂ is a di-

agonal matrix given by D̂ii =
n∑
j=1

Ŵij . Incorporating the

regularization term Tr
(
αLαT

)
into (1), we obtain the ob-

jective function for LR`1-graph as below:

min
α

n∑
i=1

‖xi −Bαi‖22 + λ‖αi‖1 + γTr(αLαT) (3)

s.t. αii = 0, 1 ≤ i ≤ n

As suggested in the manifold regularization framework
(Belkin, Niyogi, and Sindhwani 2006), the pairwise similar-
ity matrix Ŵ is constructed by Gaussian kernel. We use co-
ordinate descent to optimize the objective function (3). Since
(3) is convex, the global minimum is guaranteed. In each
step of coordinate descent, we minimize (3) with respect to
αi with fixed α−i =

[
α1, ...αi−1,αi+1, ...αn

]
. Namely,

we optimize the following objective function in terms of αi
by coordinate descent:

min
αi
‖xi −Bαi‖2 + λ‖αi‖1 + γLii(α

i
)
T
α

i
+ 2(α

i
)
T
∑
j 6=i

Lijα
j

s.t. αii = 0 (4)

(4) can be optimized using the efficient feature-sign search
algorithm (Lee et al. 2006). In addition, `1-Graph uses the
sparse representations to build the pairwise similarity matrix
(2) for spectral clustering and obtains satisfactory clustering
results. It inspires us to propose an iterative regularization
scheme, where the regularized sparse representation from
the previous iteration is used to construct the graph Lapla-
cian for the current iteration of regularization. Algorithm 1
describes the learning procedure for LR`1-Graph.

Experimental Results
The coefficient matrix α obtained from the learning proce-
dure for LR`1-Graph is used to construct the pairwise simi-
larity matrix W by (2), and then W is feeded into the spec-
tral clustering algorithm to produce the clustering result. We
compare our algorithm to K-means (KM), Spectral Cluster-
ing (SC), `1-Graph and Sparse Manifold Clustering and Em-
bedding (SMCE). The clustering results on several real data
sets, i.e. UCI Wine, UCI Breast Tissue (BT) and ORL face
database, are shown in Table 1 where the clustering perfor-
mance is measured by Accuracy (AC) and the Normalized

Algorithm 1 Learning Procedure for LR`1-Graph
Input:

The data set X = {x1}nl=1, the number of iterations M for
iterative regularization, the initial graph Laplacian L = D̂ −
Ŵ computed with Gaussian kernel, the parameters λ and γ.

1: m = 1, initialize the coefficient matrix α = 0
2: while m ≤M do
3: Use coordinate descent algorithm with current L to optimize

(3) and obtain the coefficient matrix α.
4: Build the graph Laplacian L = D −W where W =

(α[1:n] +α
T
[1:n])/2 , D is a diagonal matrix such that

Dii =
∑
j

Wij . m = m+ 1.

5: end while
Output: The coefficient matrix (i.e. the sparse representations)α.

Mutual Information (NMI). ORL-k denotes the first k sam-
ples in the ORL face database. We use fixed empirical value
λ = 0.1, γ = 30,M = 2 throughout the experiments, and
tune λ between [0.1, 1] for `1-Graph and SMCE. We observe
that LR`1-Graph outperforms other clustering methods by
our proposed iterative regularization scheme.

Table 1: Clustering Results on Real Data Sets
Data Set Measure KM SC `1-Graph SMCE LR`1-Graph

Wine
AC 0.7022 0.5618 0.6629 0.7135 0.8371

NMI 0.4287 0.3522 0.4070 0.4317 0.5903

BT
AC 0.3396 0.4057 0.4434 0.4528 0.7547

NMI 0.3265 0.3563 0.3104 0.4131 0.6437

ORL-100
AC 0.5817 0.3813 0.7100 0.7200 0.9113

NMI 0.6188 0.5154 0.7653 0.7517 0.9011

ORL-200
AC 0.5310 0.3812 0.7267 0.7050 0.7873

NMI 0.6654 0.5631 0.8239 0.8114 0.8617

ORL
AC 0.5304 0.4479 0.6958 0.7050 0.7547

NMI 0.7299 0.6710 0.8446 0.8362 0.8754
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