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Abstract
This paper defines the “Single Agent in a Team Decision”
(SATD) problem. SATD differs from prior multi-agent com-
munication problems in the assumptions it makes about team-
mates’ knowledge of each other’s plans and possible observa-
tions. The paper proposes a novel integrated logical-decision-
theoretic approach to solving SATD problems, called MDP-
PRT. Evaluation of MDP-PRT shows that it outperforms
a previously proposed communication mechanism that did
not consider the timing of communication and compares fa-
vorably with a coordinated Dec-POMDP solution that uses
knowledge about all possible observations.

Introduction
This paper defines a new multi-agent decision problem, the
“Single Agent in a Team Decision” (SATD) problem, which
may be described informally as follows: An individual col-
laborating in a multi-agent team obtains new information,
unanticipated at planning time. This (single) agent has in-
complete knowledge of others’ plans. It must decide whether
to communicate this new information to its teammates, and
if so, to whom, and at what time. SATD differs from previ-
ously studied multi-agent communications problems in that
it does not assume complete knowledge of other agents’
plans or policies nor that all observations are knowable in
advance. It assumes instead that agents have some knowl-
edge of each other’s intentions and plans which can be used
to reason about information sharing decisions.

We are investigating SATD in the context of developing
computer agents to support care teams for children with
complex conditions (Amir et al. 2013). Care teams for chil-
dren with complex conditions involve many providers –
a primary care provider, specialists, therapists, and non-
medical care givers. The care team defines a high-level care
plan that describes the main care goals, but there is no cen-
tralized planning mechanism that generates a complete plan
for the team or that can ensure coordination. Caregivers are
unaware of their collaborators’ complete plans, yet their in-
dividual plans often interact. Communicating relevant infor-
mation among team members is crucial for care to be coor-
dinated and effective, but doing so is costly and often insuf-
ficient in practice.
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Developing agents that are capable of supporting infor-
mation sharing in such teams is beyond the current state-
of-the-art in multi-agent systems. BDI approaches to multi-
agent planning, e.g. STEAM (Tambe 1997), often base their
communication mechanisms on theories of teamwork and
collaboration (Grosz and Kraus 1996; Cohen and Levesque
1990). These approaches, however, typically do not rea-
son about uncertainty and utilities that are prevalent in the
healthcare domain. Decision-theoretic approaches to multi-
agent communication typically reason about communica-
tion within a POMDP frameword, e.g., (Goldman and Zil-
berstein 2003; Roth, Simmons, and Veloso 2006; Pynadath
and Tambe 2002). However, these approaches assume that
all possible observations are known in advance and that the
team has a joint policy. In contrast, in the healthcare domain
new information that was unexpected at planning time is of-
ten observed. In addition, care providers only agree on high-
level goals and team members individually plan ways to ac-
complish the tasks for which they are responsible. There-
fore, it cannot be assumed that agents know the complete
plans or policies of their teammates.

To address SATD, we propose a novel, integrated Belief-
Desire-Intention (BDI) and decision-theoretic (DT) repre-
sentation, called “MDP-PRT” that builds on the strengths
of each approach. Evaluation of an agent using MDP-PRT
shows that it outperforms the inform algorithm proposed by
Kamar et al. (2009). In addition, we compared the agent’s
performance with that of Dec-POMDP policy that was in-
formed about all possible observations and show it obtains
close results to those obtained by this Dec-POMDP policy
despite lacking a coordinated policy that considers all possi-
ble observations.

The paper makes three contributions: (1) it formally de-
fines the SATD communication problem; (2) it proposes a
new representation (MDP-PRT) that enables agents to rea-
son about and solve the SATD communication problem, and
(3) it demonstrates the usefulness of this representation.

Problem Definition
In this section, we formally define the SATD problem.
SATD arises in the context of a group activity of a team
of agents. We assume the group’s plan meets the Shared-
Plans specification for collaborative action (Grosz and Kraus
1996). Two particular properties of SharedPlans are impor-

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

3092



tant: plans, which decompose into constituent tasks, may
be only partially specified and agents do not know the de-
tails of constituent tasks for which they are not responsible.
An instance of the SATD problem is represented by a tuple
〈ai,A−i,bSP,V,o∗, ϕcomm,C〉.

ai is the agent that observes new information. o∗ is the
new information ai obtained. A−i are the other agents that
are part of the team. bSP is ai’s beliefs about the SharedPlan
of the team (ai knows its own plans but he is uncertain about
others’ plans). V is the utility function; its value is the utility
of completed constituent tasks. We assume a fully coopera-
tive setting and all agents share the same utility. ϕcomm is a
function that produces a modified b′SP under the assumption
that the agents in A−i (or a subset of them) are informed
about o∗. C is the cost of communicating o∗. SATD is the
problem of ai determining whether to communicate o∗ to
agents in A−i and if so, at what time.

Approach
This section proposes a solution to the 2-agent SATD
problem 〈a1, a2, bSP , V, o

∗, ϕcomm, C〉, where an agent a1
learns new information o∗ and needs to reason whether and
when to communicate o∗ to a2. To solve the 2-agent SATD
communication problem, we use an MDP in which the states
explicitly represent a1’s beliefs about a2’s plans. The choice
of representation for the agent’s beliefs bSP is key, as it af-
fects the way bSP can be revised and therefore the compu-
tational efficiency of solving the MDP. Our approach uses
a Probabilistic Receipe Tree (PRT) (Kamar, Gal, and Grosz
2009) to represent bSP .

In the MDP-PRT 〈A,S,R, Tr, s0〉, A includes two ac-
tions inform (communicating o∗) and ¬inform (not com-
municating o∗). Each state in S encompasses a1’s beliefs
about a2’s plans (i.e., the PRT corresponding to bSP ). We
denote a state by bSP . The initial state bSP 0 corresponds to
a1’s initial beliefs about the SharedPlan. The reward func-
tion is a function of V and C: the reward for a state bSP

is the value of the constituent tasks completed in the last
time step minus the cost of communication if a1 chose to in-
form a2. The transition function, Tr(bSP

′, a, bSP ), defines
the probability of reaching state bSP

′, when taking action
a in state bSP . a1’s belief may change for two different rea-
sons. First, if a1 communicates o∗ to a2, then bSP changes to
ϕcomm(bSP , o

∗). Second, as a2 executes actions in its con-
stituent plans, a1 may “observe” a2’s actions or results of
those actions and learn more about a2’s plans. To reflect this
reasoning, we define an additional function, ϕobs(bSP ). This
function takes as input bSP and returns the set of next ex-
pected beliefs bnext

SP and their probabilities Pr(bnext
SP ).

An optimal single agent communication policy can be
computed using any MDP solver, e.g. value iteration algo-
rithm used in our implementation.

Results
We tested the MDP-PRT agent using a modified version of
the Colored Trails (CT) game used by Kamar et al. (2009).
The first experiment compared the performance of the MDP-
PRT agent with that of a PRT agent using the inform algo-

rithm of Kamar et al. (2009). Table 1 shows the average
utility achieved by the agents in experiments with differ-
ent communication costs. The MDP-PRT agent outperforms
the PRT agent across all configurations and communication
costs. This is because the MDP-PRT considers the possibil-
ity of communicating at a later time, while the PRT inform
algorithm is myopic.

Comm. Cost 5 10 20 30
PRT 67.67 65.17 60.17 55.17

MDP-PRT 77 75.57 72.83 70.03

Table 1: Average utility for PRT Inform and MDP-PRT.

Key aspects of SATD are that agents cannot anticipate a1
observing o∗ nor form a coordinated policy. This limits the
possible utility achievable in SATD, as a coordinated pol-
icy that takes into account knowledge of possible observa-
tions during planning time can lead to better performance.
To evaluate the loss in utility as a result of this missing
knowledge, we compare the MDP-PRT with a joint pol-
icy generated using a Dec-POMDP that is knowledgable of
the possible observations at planning time. As expected, the
Dec-POMDP always performs better as a result of its addi-
tional information at planning time (see table 2). However,
the average utility achieved by MDP-PRT is still within 15%
of the optimal utility.

Comm. Cost 5 10 25 50
Dec-POMDP 101.8 101.46 100.2 98.13

MDP-PRT 100.52 99.08 94.38 87.5

Table 2: Average utility for Dec-POMDP and MDP-PRT.
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