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1 Introduction
There has been a great deal of interest about negotiations
having interdependent issues and nonlinear utility spaces
as they arise in many realistic situations (Ito, Hattori, and
Klein 2007; Marsa-Maestre et al. 2013). In this case, reach-
ing a consensus among agents becomes more difficult as the
search space and the complexity of the problem grow. Nev-
ertheless, none of the proposed approaches tries to quanti-
tatively assess the complexity of the scenarios in hand, or
to exploit the topology of the utility space necessary to con-
cretely tackle the complexity and the scaling issues.

We address these points by adopting a representation that
allows a modular decomposition of the issues and con-
straints by mapping the utility space into an issue-constraint
hypergraph. Exploring the utility space reduces then to
a message passing mechanism along the hyperedges by
means of utility propagation. Adopting such representation
paradigm will allow us to rigorously show how complexity
arises in nonlinear scenarios. To this end, we use (Hadfi and
Ito 2013) for complexity assessment in cognitive graphical
models using the concept of entropy. Being able to assess
complexity allows us to improve the message passing al-
gorithm by adopting a low-complexity propagation scheme.
We evaluated our model using parametrized random hyper-
graphs, showing that it can optimally handle complex utility
spaces while outperforming previous sampling approaches.

2 Approach Overview
We start from the formulation of nonlinear multi-issue util-
ity spaces used in (Ito, Hattori, and Klein 2007). The con-
tract space is an n−dimensional utility space, defined over
a finite set of issues I = {i1, . . . , ik, . . . , in}. The issue k,
namely ik, takes its values from a finite set Ik with Ik ⊂ Z.
A contract ~c is a vector of issue values with ~c ∈ ×n

k=1Ik. An
agent’s utility function is defined in terms of m constraints,
making the utility space constraint-based. The constraint cj
is a region of the n−dimensional utility space. We say that
cj has valuew(cj ,~c) for contract~c if cj is satisfied by~c. That
is, when the contract point ~c falls within the hyper-volume
defined by constraint cj , namely hyp(cj). The utility of ~c is
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thus defined as u(~c) =
∑

cj∈[1,m], ~c∈hyp(cj) w(cj ,~c). Figure
1a illustrates an example of 2−dimensional utility spaces.

New representation. The utility u is nonlinear in the
sense that it does not have a linear expression against ~c. This
is true to the extent that the linearity is evaluated with re-
gard to the issues of ~c. However, from the same expression,
we can say that the utility is in fact linear, but in terms of
the constraints cj . The utility space is therefore decompos-
able according to the cj constraints. We propose to trans-
form u into a modular, graphical representation. Since one
constraint can involve one or multiple issues, we adopt a hy-
pergraph representation. We assign to each cj a factor Φj ,
with Φ = {Φj}mj=1. The utility hypergraph is thus defined as
G = (I,Φ). Nodes in I define the issues and the hyperedges
in Φ are the factors. To each Φj we assign a neighbors’ set
N (Φj) ⊂ I containing the issues connected to Φj (involved
in cj), with |N (Φj)| = ϕj . In case ϕj = 2 ∀j ∈ [1,m], the
problem collapses to a constraint satisfaction problem in a
standard graph. Each factor Φj has a sub-utility function φj
defined as φj(~c) = w(cj ,~c).

As an example, Figure 1b illustrates the utility hyper-
graph of u(i1, i2) (Figure 1a), where issues are represented
as white circles and the 50 constraints as red squares.

(a) (b)

Figure 1: 2−dimensional utility space and its hypergraph

Message passing. The hypergraph exploration is inspired
from the sum-product message passing algorithm for belief
propagation. However, the multiplicative algebra is changed
into an additive algebra to support the utilities necessary for
the assessment of the contracts. The messages circulating in
the hypergraph are the contracts we are optimizing. The goal
of the main algorithm (AsynchMP) is to find a bundle of op-
timal contracts that maximizes u. Assuming that φj is the
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Figure 2: H(πk) and ∆(πk) for πk∈[0,9] ∈ {U ,D,PL}

sub-utility of factor Φj , we distinguish two types of mes-
sages: from issue ik to Φj (1a), and from Φj to issue ik (1b).

µik→Φj
(ik) =

∑
Φj′∈N (ik)\Φj

µΦj′→ik(ik) (1a)

µΦj→ik(ik) = max
i1

. . .max
ik′ 6=k

. . .max
in

[
(1b)

φj(i1, . . . , ik, . . . , in) +
∑

ik′∈N (Φj)\ik

µik′→Φj
(ik)

]
We start from the leaves of the hypergraph, i.e., the issues.
At t = 0, the content of the initial messages is defined ac-
cording to µik→Φj (ik) = 0 and µΦj→ik(ik) = φ′j(ik), with
φ′j(ik) being the sub-utility of ik in the factor Φj .

Complexity. We identify the parameters that could poten-
tially affect the complexity of the utility space and thus the
probability of finding optimal contract(s). We distinguish the
constraint-issue connectivity, π. It refers to the number ϕj

of issues involved in each cj . Thus, a utility space (resp.
hypergraph) profile is a tuple of the form (n,m, π). This
parametrization will be used in the study of the complexity.
If we take the distribution π to be a propagation topology, or
hypergraph traversal, we can assess the corresponding com-
plexity using information entropy (Hadfi and Ito 2013).

3 Experimental Results
When exploring G, it is possible to adopt several propaga-
tion topologies that differ in performance. Other than the ini-
tial topology defined by π, we can adopt other topologies
as propagation strategies. The goal is to find the topology
that minimizes the exploration cost when searching for opti-
mal contracts. Let us consider the strategies {πk}9i=0 that are
either uniform (U), deterministic (D) or power-law (PL).
Their corresponding durations and complexities are illus-
trated in Figure 2. Both entropy (H) and duration (∆) fluctu-
ate similarly when describing the complexity of the underly-
ing strategy. Besides, U is the most complex topology since
it possesses the highest entropy and duration, as opposed to
D and PL.

Firstly, let us consider the general propagation mechanism
(AsynchMP) that naively implements (1), and show how
it outperforms the Simulated Annealing (SA) approach in

(Ito, Hattori, and Klein 2007) for optimal contracts finding.
For the profile (40, [20, . . . , 100], π(Φj) ≤ 5∀j), Figure 3
shows the resulting difference in the performances.
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Figure 3: AsynchMP vs. SA

Now, we propose to improve AsynchMP by adopting
a PL topology as a new propagation strategy, namely
AsynchMPi, that prioritizes high degree constraints’ nodes.
To this end, we evaluate both AsynchMP and AsynchMPi
for profiles {(100, 100, πk)}k∈[1,5] with πk(Φj) ≤ pk, pk ∈
[5, 10] and k ∈ [1, 100]. Figure 4 shows that restricting the
message passing to high degree nodes results in a drastic
decrease in the duration of the search time. For small con-
nectivity values (π1 = π2) the search process takes approx-
imately the same amount of time despite the large number
of issues and constraints. In fact, assessing the complexity
of a utility space (resp. utility hypergrpah) must take into
consideration the connectivity function π. In this sense, nei-
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Figure 4: Duration when high degree nodes are used

ther the dimension n nor the number of constraints m could
objectively reflect this complexity unless we consider π.
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