
Double Configuration Checking in Stochastic Local Search for Satisfiability

Chuan Luo1 and Shaowei Cai2,3∗ and Wei Wu1 and Kaile Su1,4

1Key Laboratory of High Confidence Software Technologies of Ministry of Education, Peking University, Beijing, China
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

3Queensland Research Laboratory, NICTA, Brisbane, Australia
4Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia

chuanluosaber@gmail.com; shaoweicai.cs@gmail.com; william.third.wu@gmail.com; k.su@griffith.edu.au

Abstract

Stochastic local search (SLS) algorithms have shown ef-
fectiveness on satisfiable instances of the Boolean satis-
fiability (SAT) problem. However, their performance is
still unsatisfactory on random k-SAT at the phase tran-
sition, which is of significance and is one of the em-
pirically hardest distributions of SAT instances. In this
paper, we propose a new heuristic called DCCA, which
combines two configuration checking (CC) strategies
with different definitions of configuration in a novel
way. We use the DCCA heuristic to design an effi-
cient SLS solver for SAT dubbed DCCASat. The ex-
periments show that the DCCASat solver significantly
outperforms a number of state-of-the-art solvers on ex-
tensive random k-SAT benchmarks at the phase transi-
tion. Moreover, DCCASat shows good performance on
structured benchmarks, and a combination of DCCASat
with a complete solver achieves state-of-the-art perfor-
mance on structured benchmarks.

Introduction
The Boolean satisfiability (SAT) problem is one of the most
widely studied NP-complete problems, and is central to
many areas of computer science and artificial intelligence
(Kautz, Sabharwal, and Selman 2009). Given a formula with
conjunctive normal form (CNF), the SAT problem is to de-
cide whether there exists an assignment that satisfies all
clauses in the formula.

A family of SAT instances is uniform random k-SAT
(Achlioptas 2009). A well-known phase transition phe-
nomenon occurs in the solubility of random k-SAT, and ran-
dom k-SAT at the phase transition is one of the empirically
hardest distributions of SAT instances (Selman 1995; Xu,
Hoos, and Leyton-Brown 2012). In last two decades, great
progress has been made in solving random k-SAT near the
phase transition, for example, by a statistical physics algo-
rithm called survey propagation (SP) (Braunstein, Mézard,
and Zecchina 2005) and stochastic local search (SLS) algo-
rithms, such as WalkSAT (Selman, Kautz, and Cohen 1994).
However, solving random k-SAT at the phase transition re-
mains a challenge for all kinds of algorithms including SP.

∗Corresponding author
Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Moreover, SLS seems to be the most promising method for
such satisfiable instances.

SLS algorithms for SAT operate on complete assignments
and try to find a solution by flipping the Boolean value of a
variable chosen according to a function in each search step.
We use pickVar to denote the function for choosing the vari-
able to be flipped. Although SLS algorithms are typically in-
complete, they usually find solutions for satisfiable instances
surprisingly effectively (Hoos and Stützle 2004). SLS algo-
rithms usually work in two different modes, i.e., the greedy
(intensification) mode and the diversification mode. In the
greedy mode, they prefer the variables whose flips can de-
crease the number of unsatisfied clauses; in the diversifica-
tion mode, they tend to better explore the search space and
avoid local optima.

SLS algorithms for SAT have been widely studied since
the introduction of GSAT (Selman, Levesque, and Mitchell
1992). Particularly, numerous works are devoted to improv-
ing SLS algorithms on random k-SAT instances close to or
at the phase transition due to their well-known hardness. Re-
cent advances in this direction are mainly owed to a number
of ideas, such as the promising decreasing variables exploit-
ing strategy (Li and Huang 2005), probability distribution
(Balint and Fröhlich 2010), satisfying time (Li and Li 2012),
configuration checking (Cai, Su, and Sattar 2011) and sub-
score (Cai and Su 2013c). This direction has been a main-
stream of SLS algorithms for SAT, which is also witnessed
by SAT competitions1, where the benchmarks of the random
SAT track are composed of random k-SAT instances close to
or at the phase transition. Especially, most (nearly 90% of)
instances in the benchmark of the random SAT track in SAT
Competition 2013 are the ones at the phase transition. How-
ever, the performance of existing SLS algorithms on random
k-SAT instances at the phase transition is still unsatisfactory.

Inspired by the simplicity and the effectiveness of the con-
figuration checking (CC) idea on random k-SAT at the phase
transition, we concentrate on designing a CC-based heuristic
to improve SLS algorithms. In the context of SAT, there are
two different CC strategies, i.e., neighboring variables based
configuration checking (NVCC) (Cai and Su 2013c) and
clause states based configuration checking (CSCC) (Luo,
Su, and Cai 2012). Previous CC-based algorithms (Luo, Su,

1http://www.satcompetition.org/

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2703



and Cai 2012; Luo et al. 2013; Cai and Su 2013b; 2013c;
Li and Fan 2013; Habet, Toumi, and Abramé 2013) employ
only one CC strategy, either NVCC or CSCC. However, fur-
ther observations show an interesting relationship between
NVCC and CSCC, and thus motivate us to combine them
together to obtain a more flexible heuristic.

In this paper, we first explore the relationship between
NVCC and CSCC by theoretical analyses, and then pro-
pose a new heuristic called DCCA (Double Configura-
tion Checking with Aspiration), by combining NVCC and
CSCC. Based on DCCA, we develop a new SLS solver for
SAT dubbed DCCASat. To demonstrate the effectiveness of
DCCASat, we compare it against numerous state-of-the-art
solvers on extensive random k-SAT benchmarks at the phase
transition. The experimental results show that DCCASat sig-
nificantly outperforms its competitors on these instances.

More encouragingly, DCCASat shows effectiveness on a
broad range of structured benchmarks, indicating its robust-
ness. Further, we combine DCCASat with a preprocessor
called CP3 (Manthey 2012) and a complete solver named
Riss3g (Manthey 2013), and the resulting hybrid solver
achieves the state-of-the-art performance on a broad range
of structured instances.

The rest of the paper is organized as follows. Next section
provides necessary preliminaries, following with a review
on NVCC and CSCC. Then, we propose the DCCA heuris-
tic. After that, we present the DCCASat solver. Experiments
to evaluate DCCASat on random k-SAT benchmarks at the
phase transition are illustrated subsequently. Afterwards, we
evaluate DCCASat on structured instances. Finally, we con-
clude this paper and outline future directions.

Preliminaries
Given a set of n Boolean variables V = {x1, x2, · · · , xn}, a
literal is a variable x or a negated variable ¬x, and a clause
is a disjunction of literals. A propositional CNF formula
F = c1 ∧ · · · ∧ cm is a conjunction of clauses, where the
number of clauses is denoted m and ci (1 ≤ i ≤ m) is a
clause, and α = m/n is the clause-to-variable ratio of for-
mula F . We use V (F ) to denote the set of all variables ap-
pearing in formula F . Two different variables are neighbors
when they appear simultaneously in at least one clause, and
N (x ) is the set of all neighboring variables of variable x. We
also denote CL(x ) = {c | c is a clause which x appears in}.
A mapping s : V (F ) → {0, 1} is an assignment. If assign-
ment s maps all variables to a Boolean value, it is complete.
Given a complete assignment s, each clause has two possi-
ble states: satisfied or unsatisfied; a clause is satisfied if at
least one literal in that clause is true under s; otherwise, it is
unsatisfied. Given a CNF formula F , the SAT problem is to
find an assignment that satisfies all clauses in F .

A random k-SAT instance is a CNF formula where each
clause is chosen uniformly and contains exactly k distinct
variables. For random k-SAT, numerical simulations (Kirk-
patrick and Selman 1994) suggest the existence of a phase
transition at clause-to-variable ratio of αc. This phase tran-
sition is particularly interesting because it turns out that the
really difficult instances are those ones where α equals αc.

A wide range of state-of-the-art SAT solvers exhibit dramat-
ically longer runtimes for instances at the phase transition
(Xu, Hoos, and Leyton-Brown 2012).

In SLS algorithms which use clause weighting schemes,
each clause c is associated with a weight w(c), and, for a
variable x, score(x ) is the increment in the total weight
of satisfied clauses by flipping x. A clause is δ-satisfied if
exactly δ literals in that clause are true. For a variable x,
subscore(x ) is defined as submake(x ) minus subbreak(x ),
where submake(x ) is the number of 1-satisfied clauses that
would become 2-satisfied by flipping x, and subbreak(x )
is the number of 2-satisfied clauses that would become 1-
satisfied by flipping x (Cai and Su 2013b); age(x ) is the
number of steps that has occurred since x’s last flip.

Previous Configuration Checking Strategies
The idea of CC is to forbid flipping a variable whose
configuration has not been changed since its last flip. There
are two different CC strategies for SAT, i.e., NVCC (Cai and
Su 2013c) and CSCC (Luo, Su, and Cai 2012).

The NVCC Strategy
In NVCC, the configuration of a variable x refers to a vector
consisting of Boolean values of N (x ) (x’s all neighboring
variables). The Boolean array NVChanged is used to imple-
ment NVCC. For a variable x, NVChanged(x ) = 1 means
at least one variable in N (x ) has been flipped since x’s
last flip. A variable x is neighboring-variables-based con-
figuration changed decreasing (NVD) iff score(x ) > 0 and
NVChanged(x ) = 1. The notation NVDvars is used to de-
note the set of all NVD variables.

The CCA heuristic enhances NVCC with an aspiration
mechanism (Cai and Su 2013c). A key notion in aspira-
tion is the significant decreasing (SD) variable: A variable
x is an SD variable iff score(x ) > w, where w is the aver-
aged clause weight (over all clauses). The notation SDvars
is used to denote the set of all SD variables. The CCA heuris-
tic works as follows. First, if NVDvars is not empty, CCA
picks a variable with the greatest score in NVDvars; other-
wise it picks an SD variable with the greatest score.

The CSCC Strategy
In CSCC, the configuration of a variable x refers to a vec-
tor consisting of clause states of CL(x ) (all clauses which
x appears in). The Boolean array CSChanged is used to
implement CSCC. For a variable x, CSChanged(x ) = 1
means at least one clause in CL(x ) has changed its state
(from satisfied to unsatisfied or from unsatisfied to satisfied)
since x’s last flip. A variable x is clause-states-based con-
figuration changed decreasing (CSD) iff score(x ) > 0 and
CSChanged(x ) = 1. The notation CSDvars is used to de-
note the set of all CSD variables.

The DCCA Heuristic
In this section, we first explore the relationship between the
NVDvars set and the CSDvars set. Then, we propose the
DCCA heuristic which combines NVCC and CSCC in a
novel and effective way.

2704



The NVDvars Set and The CSDvars Set
Intuitively, the forbidding strength of CSCC is stronger than
that of NVCC, and the cardinality of NVDvars is greater
than that of CSDvars (Li, Huang, and Xu 2013). In the fol-
lowing, we will show through theoretical analyses that in-
deed the CSDvars set is a subset of the NVDvars set.
Lemma 1. For a given variable x, if CSChanged(x ) = 1,
then NVChanged(x ) = 1.

Proof. For a variable x, CSChanged(x ) = 1 implies that
there exists a clause c ∈ CL(x ) such that its state has been
changed since x’s last flip. On the other hand, to change
c’s state, at least one variable in c must be flipped, and we
denote this variable as y. So, y has been flipped since x’s
last flip. Since both x and y appear in clause c, we have
y ∈ N (x ). Therefore, we have NVChanged(x ) = 1.

Remark 1. The reverse of Lemma 1 is not necessarily true.

Proof. For a variable x, to make NVChanged(x ) = 1,
it suffices that one variable y in N (x ) has been flipped
since x’s last flip. Suppose no other variable in N (x )
has been flipped since x’s last flip. In this case, to make
CSChanged(x ) = 1, the flip of y should be able to change
the states of some clauses in CL(x ). However, suppose at
the step just before y was flipped, all clauses in CL(x ) ∩
CL(y) have more than one true literals, then flipping y
does not change the state of any clause in CL(x ), and thus
CSChanged(x ) is still 0.

According to Lemma 1 and Remark 1, we can derive that
the CSDvars set is a subset of the NVDvars set.

Details of the DCCA Heuristic
The main difference between DCCA and previous CC strate-
gies is that it combines two different CC strategies, namely
NVCC and CSCC, which have different forbidding strength.

The forbidding strength of a single CC strategy is either
too weak or too strong. The forbidding strength of NVCC
is too weak and becomes futile on dense instances such as
random 6-SAT and 7-SAT instances near and at the phase
transition (Cai and Su 2013c). On the other hand, the forbid-
ding strength of CSCC is too strong as we can see from its
definition, and it would forbid some good variables whose
flips are of benefit. To support our arguments, the relatively
poor results about using only either NVCC or CSCC can
be found in Table 3 in Section ‘Experiments on Random
Benchmarks’.

Motivated by the relationship between NVCC and CSCC
(as shown before), we propose a new heuristic which com-
bines NVCC and CSCC, and also uses the aspiration mech-
anism. This new heuristic is thus called double configura-
tion checking with aspiration (DCCA). The DCCA heuristic
bridges NVCC and CSCC in terms of forbidding strength,
and is more flexible for striking a better balance between
intensification and diversification.

The DCCA heuristic is modified from the CCA heuris-
tic and works as follows (shown in Algorithm 1). First, if
CSDvars is not empty, DCCA picks a variable with the
greatest score in CSDvars; otherwise, it picks a variable

Algorithm 1: The DCCA Heuristic
if CSDvars 6= ∅ then return variable x ∈ CSDvars1
with greatest score;
if NVDvars 6= ∅ then return variable x ∈ NVDvars2
with greatest score;
if SDvars 6= ∅ then return variable x ∈ SDvars with3
greatest score;

with the greatest score in NVDvars if NVDVars is not
empty; finally, if NVDvars is empty, DCCA activates as-
piration to pick an SD variable with the greatest score.

We note that as with the CCA heuristic, the DCCA heuris-
tic is used as a framework for the greedy mode. When using
DCCA in SLS algorithms, one still needs to specify the di-
versification mode and the tie-breaking methods.

The DCCASat Solver
We utilize the DCCA heuristic to develop a new SLS solver
for SAT dubbed DCCASat. To focus on the essential part of
DCCASat, we only present the pseudo code of its pickVar
function (outlined in Algorithm 2), as described below.

In each search step, the pickVar function first utilizes the
DCCA heuristic to pick a variable, with ties broken by a
function referred to as FG . If the DCCA heuristic fails to
return a variable, then the pickVar function switches to the
diversification mode, where it utilizes a clause weighting
scheme (referred to as CW ) to update clause weights and
then picks a variable according to a function referred to as
FR from a random unsatisfied clause.

To obtain the whole DCCASat solver, we need to specify
three components, namely, clause weighting scheme CW ,
as well as functions FG and FR. As DCCASat is developed
on the basis of CCASat (Cai and Su 2013c), it distinguishes
two types of instances and employs different components for
them as CCASat does. The first type of instances includes
random 3-SAT and structured (non-random) instances, and
the other one includes random k-SAT instances with k > 3.

Components for random 3-SAT and structured SAT:
• Scheme CW : the SWT scheme (Cai and Su 2013c). SWT

increases clause weights of all unsatisfied clauses by one;
further, if the averaged clause weight w exceeds a thresh-
old wt, each clause weight is smoothed as w(ci) = bp ×
w(ci)c+ bq × wc, where 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1.

• Function FG : the function which prefers to select the
variable x with greatest age(x ).

• Function FR: the function which prefers to select the vari-
able xwith the greatest age(x ) for random 3-SAT, and the
greatest score(x ) for structured SAT.

Components for random k-SAT with k > 3:
• Scheme CW : the PAWS scheme (Thornton et al. 2004),

which works as follows. With probability sp, where 0 ≤
sp ≤ 1, for each clause whose weight is greater than one,
its weight is decreased by one; with probability 1 − sp,
the weight of each unsatisfied clause is increased by one.

2705



Algorithm 2: The pickVar Function of DCCASat
if CSDvars 6= ∅ then return variable x ∈ CSDvars1
with greatest score, breaking ties by function FG ;
if NVDvars 6= ∅ then return variable x ∈ NVDvars2
with greatest score, breaking ties by function FG ;
if SDvars 6= ∅ then return variable x ∈ SDvars with3
greatest score, breaking ties by function FG ;
activate clause weighting scheme CW ;4
pick an unsatisfied clause c randomly;5
return variable x in clause c by function FR;6

• Function FG : the function which prefers to select the
variable x with the greatest hscore2 (x ) = subscore(x )+
bage(x )/γc, where γ is a positive integer (Cai, Luo, and
Su 2014).

• Function FR: the function which prefers to select the
variable x with the greatest hscore(x ) = score(x ) +
bsubscore(x )/dc+ bage(x )/βc, where d and β are posi-
tive integers (Cai and Su 2013b).
We introduce the algorithmic settings in DCCASat as

follows. For random 3-SAT, wt for SWT is set to 200 +
bn+250

500 c, where n is the number of variables in the instance;
p for SWT and q for SWT are set to 0.3 and 0.7, respectively.
For random k-SAT with k > 3, d for hscore is set to 13−k;
β for hscore and γ for hscore2 are both set to 1000; sp for
PAWS is set to 0.75 for 4-SAT, 0.8 for 5-SAT, 0.9 for 6-SAT
and 0.92 for k-SAT with k ≥ 7. For structured instances,
DCCASat performs a simple unit propagation procedure be-
fore the search; wt for SWT is set to 300; p for SWT is set
to 0.3; q for SWT is set to 0 if α ≤ 15 and to 0.7 otherwise
(α is the clause-to-variable ratio of the instance), inspired by
the literature (Cai and Su 2013a).

Experiments on Random Benchmarks
We conduct experiments to evaluate DCCASat on extensive
random k-SAT benchmarks at the phase transition.

The Benchmarks
We adopt two random benchmarks (in bold) at the threshold
ratio of phase transition.

1. SC13_Threshold: all 250 random k-SAT instances from
the threshold benchmark of the random SAT track of SAT
Competition 20132 (50 instances for each k-SAT class
with k = 3, 4, 5, 6 and 7), which vary in variables.

2. Large_Threshold: random k-SAT instances generated
randomly at the threshold ratio of phase transition accord-
ing to the random k-SAT generator3 used in SAT Com-
petition 2013 (totally 500 instances, 100 for each k-SAT
class with k = 3, 4, 5, 6 and 7). The size of instances in
this benchmark (n = 15000, 2500, 600, 300 and 150 for
k = 3, 4, 5, 6 and 7, respectively) is larger than that in the
SC13_Threshold benchmark.
2http://satcompetition.org/2013/files/sc13-benchmarks-

random.tgz
3http://sourceforge.net/projects/ksatgenerator/

For the above two benchmarks, the clause-to-variable ra-
tio (α) of each instance equals the threshold ratio of phase
transition (αc), which is reported in (Mertens, Mézard, and
Zecchina 2006) and is indicated in Table 1 and Table 2, and
thus a significant fraction of the instances are unsatisfiable.

The Competitors
Seven state-of-the-art competitors of DCCASat are listed as
follows and indicated in bold.

CCASat4 (Cai and Su 2013c) is based on the CCA heuris-
tic and is the winner of the random SAT track of SAT Chal-
lenge 2012. CCA2013* (Li and Fan 2013) is an efficient
implementation of CCASat with some enhancements. The
probSAT* solver (Balint and Schöning 2012) is the win-
ner of the random SAT track of SAT Competition 2013, and
Ncca+* (Habet, Toumi, and Abramé 2013) is the best CC-
based SLS solver in the same track. CScoreSAT2013* (Cai
and Su 2013b) is based on NVCC and is the best SLS solvers
for solving random k-SAT with k > 3 near the phase transi-
tion. FrwCB2013* (Luo et al. 2013) is based on CSCC and
is the best SLS solver for solving huge random 3-SAT near
the phase transition. SP5 (Braunstein, Mézard, and Zecchina
2005) is a statistical physics approach which can solve ran-
dom 3-SAT instances with up to 107 variables near the phase
transition (Mézard 2003).

For CCASat on solving random benchmarks, we use the
parameters which are reported in the literature (Cai and Su
2013c). The versions of the solvers marked with notation ‘*’
are the ones submitted to SAT Competition 2013.

Experimental Preliminaries
The DCCASat solver is developed on the top of CCASat,
and thus is implemented in C++.

We adopt the evaluation methodology used in SAT com-
petitions: Each solver performs one run on each instance
with a cutoff time of 5000 seconds. Note that the number
of the instances and the cutoff time are enough to test the
performance of the solvers. For each solver on each instance
class (or each benchmark), we report the number of the
solved instances (‘#solv.’) and the par10 run time (‘par10
time’) in seconds, where the run time of a failed run is pe-
nalized as 10 times as the cutoff time. The results in bold in-
dicate the best performance for an instance class (or a bench-
mark). The rules at SAT competitions establish that the win-
ner is the solver which solves the most instances, breaking
ties by selecting the solver with the least par10 run time.

All experiments are carried out on a machine under
GNU/Linux, using 2 cores of Intel Core i7 2.4GHz.

Experimental Results
Results on the SC13_Threshold benchmark:

Table 1 reports the comparative results of DCCASat
and its state-of-the-art competitors on the SC13_Threshold
benchmark. DCCASat stands out as the best solver for

4http://shaoweicai.net/Code/CCASat-Opensource.zip
5http://www.ictp.trieste.it/~zecchina/SP/sp-1.4b.tgz

2706



Instance
Class

Ratio
(α = αc)

SP FrwCB2013 CScoreSAT2013 Ncca+ CCA2013 CCASat probSAT DCCASat
#solv. #solv. #solv. #solv. #solv. #solv. #solv. #solv.

par10 time par10 time par10 time par10 time par10 time par10 time par10 time par10 time

3-SAT 4.267 4 13 14 16 15 17 16 18
46001 37148 36271 34174 35365 33267 34251 32328

4-SAT 9.931 0 11 11 8 11 9 15 15
50000 39155 39277 42113 39212 41102 35232 35339

5-SAT 21.117 0 8 10 12 11 11 11 13
50000 42132 40226 38447 39221 39275 39108 37362

6-SAT 43.37 0 12 12 14 17 17 14 21
50000 38356 38290 36345 33525 33366 36210 29524

7-SAT 87.79 0 23 21 24 21 22 25 26
50000 27457 29178 26251 29087 28097 25441 24252

Overall N/A 4 67 68 74 75 76 81 93
49200 36850 36648 35466 35282 35022 34048 31761

Table 1: Comparative results of DCCASat and its competitors on the SC13_Threshold benchmark.

Instance
Class

Ratio
(α = αc)

probSAT DCCASat

#solv. par10
time #solv. par10

time
3-SAT-v15000 4.267 2 49014 6 47078
4-SAT-v2500 9.931 5 47545 5 47644
5-SAT-v600 21.117 2 49005 9 45671
6-SAT-v300 43.37 0 50000 11 44663
7-SAT-v150 87.79 28 36314 43 28856

Overall N/A 37 46375 74 42783

Table 2: Comparative results of DCCASat and probSAT on
the Large_Threshold benchmark.

this benchmark, and outperforms its competitors on all in-
stance classes except for the 4-SAT one. On the 4-SAT in-
stance class, although probSAT performs slightly faster than
DCCASat, DCCASat solves the same number of instances
as probSAT does, and significantly outperforms other CC-
based SLS solvers as well as SP. Overall, DCCASat solves
93 instances, while the second best solver namely probSAT
solves 81 instances, indicating the efficiency of DCCASat.
More encouragingly, DCCASat solves an instance which is
not solved by all submitted solvers in the random SAT track
of SAT Competition 2013. This also confirms the superiority
of DCCASat over its state-of-the-art competitors.
Results on the Large_Threshold benchmark:

To measure the superitority of DCCASat on random k-
SAT instances at the phase transition more accurately, we
directly compare DCCASat with probSAT on large ran-
dom instances at the phase transition (Large_Threshold),
as DCCASat and probSAT are the best two solvers for
SC13_Threshold in Table 1. According to Table 2, it is clear
that DCCASat performs much better than probSAT on all in-
stance classes (but the 4-SAT-v2500 one, where DCCASat
solves the same number of instances as probSAT does).
Particularly, on 6-SAT-v300, DCCASat solves 11 instances,
while probSAT fails to solve any one. Overall, DCCASat
solves 74 instances, while probSAT only solves 37 instances.
The effectiveness of the DCCA heuristic:

Recalling that the DCCA heuristic combines NVCC
and CSCC, to demonstrate the effectiveness of DCCA,

Benchmark
DCCASat_alt1 DCCASat_alt2 DCCASat

#solv. #solv. #solv.
par10 time par10 time par10 time

SC13_Threshold 75 59 93
35253 38402 31761

Table 3: Comparative results of DCCASat and its two alter-
native versions on the SC13_Threshold benchmark.

we evaluate two alternative versions of DCCASat namely
DCCASat_alt1 (without CSCC, i.e., deleting line 1 in Al-
gorithm 2) and DCCASat_alt2 (without NVCC, i.e., delet-
ing line 2 in Algorithm 2) on the SC13_Threshold bench-
mark, and the related results are presented in Table 3, where
the parameters used in DCCASat_alt1 and DCCASat_alt2
are identical to those used in DCCASat. It is apparent that
DCCASat obviously outperforms its two alternative ver-
sions, proving that the effectiveness of the DCCA heuristic
is mainly due to the combination of NVCC and CSCC.

Experiments on Structured Benchmarks
We perform further empirical analyses to present the robust-
ness of DCCASat on extensive structured benchmarks.

Empirical Setup
We set up three structured benchmarks (in bold).

1. SC13_HC: all 150 satisfiable instances from the hard-
combinatorial SAT track of SAT Competition 20136,
which covers a broad range of structured types.

2. CBMC: all 39 satisfiable testing instances generated by a
bounded model checking tool.

3. SWV: all 75 satisfiable testing instances generated by the
Calysto static checker (Babic and Hu 2008).

The CBMC and SWV benchmarks7 are real world verifi-
cation problems. Further, they are currently remarkable chal-

6http://satcompetition.org/2013/files/sc13-benchmarks-
combinatorial.tgz

7https://cs.uwaterloo.ca/~dtompkin/papers/sat10-dave-
instances.zip

2707



Benchmark #instances CCASat gNovelty+GCwa Sattime2013 Sparrow2013HC DCCASat
#solv. par10 time #solv. par10 time #solv. par10 time #solv. par10 time #solv. par10 time

SC13_HC 150 62 29469 65 28471 73 25840 71 26396 77 24476
CBMC 39 25 18375 39 39 25 18230 28 14203 39 4
SWV 75 24 34200 37 25338 33 28092 24 34075 38 24696

Table 4: Comparative results of DCCASat and its competitors on structured benchmarks.

Benchmark #instances Sparrow+CP3 DCCASat+CP3 Glucose SparrowToRiss DCCASatToRiss
#solv. par10 time #solv. par10 time #solv. par10 time #solv. par10 time #solv. par10 time

SC13_HC 150 78 24085 82 22740 109 13991 131 6751 134 5733

Table 5: Comparative results of DCCASat+CP3, DCCASatToRiss and their competitors on the SC13_HC benchmark.

lenges for SLS solvers, and have been extensively studied
in literature (Hutter et al. 2009; Tompkins and Hoos 2010;
Tompkins, Balint, and Hoos 2011; Duong et al. 2013).

We compare DCCASat with four efficient SLS solvers,
which are listed as follows and indicated in bold. The
gNovelty+GCwa* solver (Duong et al. 2013) is one of
the most recent SLS solvers tested on CBMC and SWV
benchmarks. Sattime2013* (Li and Li 2012) is an im-
proved version of Sattime2012, which is the best SLS
solver for hard-combinatorial track in SAT Challenge 2012.
Sparrow2013HC* (Balint and Fröhlich 2010) is the core
component of Sparrow+CP3, which is the best SLS solver
for hard-combinatorial instances in SAT Competition 2013.
We also include CCASat as the baseline solver.

For CCASat on solving structured benchmarks, we use
the parameters which are reported in the literature (Cai and
Su 2013c). For the gNovelty+GCwa solver on solving the
CBMC and SWV benchmarks, we use the parameters which
are reported in the literature (Duong et al. 2013). The ver-
sions of the solvers marked with notion ‘*’ are the ones sub-
mitted to SAT Competition 2013.

We note that the evaluation methodology on structured
benchmarks is the same as the one on random benchmarks.

Empirical Analyses
The robustness of the DCCASat solver:

Table 4 illustrates the empirical results of DCCASat and
its efficient SLS competitors on structured benchmarks (in-
cluding SC13_HC, CBMC and SWV). The results show
that DCCASat achieves the best performance among all
competing SLS solvers on structured benchmarks. On the
SC13_HC benchmark, the number of solved instances of
DCCASat is 77, while those of CCASat, gNovelty+GCwa,
Sattime2013 and Sparrow2013HC are 62, 65, 73 and 71, re-
spectively. On CBMC and SWV, DCCASat performs better
than gNovelty+GCwa, which is one of the best SLS solvers
for solving CBMC and SWV, and also DCCASat dramat-
ically outperforms other competitors. The experimental re-
sults indicate the robustness of DCCASat.
Combining DCCASat with other techniques:

Inspired by the success of the Sparrow+CP3 solver,
which equips Sparrow (Balint and Fröhlich 2010) with a
preprocessor called CP3 (Manthey 2012) and is the best
SLS solver for SC13_HC, and the SparrowToRiss solver,

which combines Sparrow+CP3 with a complete solver
named Riss3g (Manthey 2013) and exhibits the best per-
formance (although not officially ranked) for SC13_HC
in SAT Competition 2013 (Balint and Manthey 2013),
we combine DCCASat with CP3 and Riss3g, and evalu-
ate the resulting hybrid solvers on hard-combinatorial in-
stances. By replacing Sparrow with DCCASat in both the
Sparrow+CP3 and SparrowToRiss solvers, we obtain two
new solvers namely DCCASat+CP3 and DCCASatToRiss,
respectively. Table 5 shows the comparative results of
five solvers, namely, DCCASat+CP3, DCCASatToRiss,
Sparrow+CP3, SparrowToRiss and Glucose (Audemard and
Simon 2013) which is the official winner of the hard-
combinatorial SAT track of SAT Competition 2013, on
the SC13_HC benchmark. The results on SC13_HC show
that DCCASat+CP3 outperforms Sparrow+CP3, and also
present that DCCASatToRiss achieves the state-of-the-art
performance, indicating that DCCASat can cooperate well
with other techniques.

Conclusions and Future Work
This work took a significant step towards improving perfor-
mance of SLS solvers for solving random k-SAT at the phase
transition. We explored the relationship between NVCC and
CSCC via theoretical analyses, and then proposed a new
heuristic called DCCA, which combines NVCC and CSCC
in a novel way. We used the DCCA heuristic to develop a
new SLS solver for SAT dubbed DCCASat. The experiments
present that DCCASat significantly outperforms state-of-
the-art solvers on extensive random k-SAT benchmarks at
the phase transition. Moreover, experiments on structured
benchmarks demonstrate the robustness of DCCASat.

The strong experimental results suggest that this work
opens a promising direction for improving SLS solvers,
which focuses on the relationship and the combination of
different forbidding strategies. Therefore, for future work,
we would like to do more deep work along this direction.

Acknowledgments
This work is supported by 973 Program 2010CB328103,
ARC Grant FT0991785, and NSFC 6137007. The authors
would like to thank the anonymous reviewers for their help-
ful comments.

2708



References
Achlioptas, D. 2009. Random satisfiability. In Handbook of
Satisfiability. 245–270.
Audemard, G., and Simon, L. 2013. Glucose 2.3 in the SAT
2013 competition. In Proc. of SAT Competition 2013: Solver
and Benchmark Descriptions, 42–43.
Babic, D., and Hu, A. J. 2008. Calysto: scalable and precise
extended static checking. In Proc. of ICSE 2008, 211–220.
Balint, A., and Fröhlich, A. 2010. Improving stochastic
local search for SAT with a new probability distribution. In
Proc. of SAT 2010, 10–15.
Balint, A., and Manthey, N. 2013. Sparrow+CP3 and
SparrowToRiss. In Proc. of SAT Competition 2013: Solver
and Benchmark Descriptions, 87–88.
Balint, A., and Schöning, U. 2012. Choosing probability
distributions for stochastic local search and the role of make
versus break. In Proc. of SAT 2012, 16–29.
Braunstein, A.; Mézard, M.; and Zecchina, R. 2005. Survey
propagation: An algorithm for satisfiability. Random Struct.
Algorithms 27(2):201–226.
Cai, S., and Su, K. 2013a. CCAnr. In Proc. of SAT Compe-
tition 2013: Solver and Benchmark Descriptions, 16–17.
Cai, S., and Su, K. 2013b. Comprehensive score: Towards
efficient local search for SAT with long clauses. In Proc. of
IJCAI 2013, 489–495.
Cai, S., and Su, K. 2013c. Local search for Boolean sat-
isfiability with configuration checking and subscore. Artif.
Intell. 204:75–98.
Cai, S.; Luo, C.; and Su, K. 2014. New scoring func-
tions for random k-SAT with long clauses. Technical report.
http://shaoweicai.net/Paper/new-scoring-functions.pdf.
Cai, S.; Su, K.; and Sattar, A. 2011. Local search with edge
weighting and configuration checking heuristics for mini-
mum vertex cover. Artif. Intell. 175(9-10):1672–1696.
Duong, T.-T. N.; Pham, D. N.; Sattar, A.; and Newton, M.
A. H. 2013. Weight-enhanced diversification in stochastic
local search for satisfiability. In Proc. of IJCAI 2013, 524–
530.
Habet, D.; Toumi, D.; and Abramé, A. 2013. Ncca+: Con-
figuration checking and Novelty+ like heuristic. In Proc.
of SAT Competition 2013: Solver and Benchmark Descrip-
tions, 61.
Hoos, H. H., and Stützle, T. 2004. Stochastic Local Search:
Foundations & Applications. Elsevier / Morgan Kaufmann.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: An automatic algorithm configuration
framework. J. Artif. Intell. Res. (JAIR) 36:267–306.
Kautz, H. A.; Sabharwal, A.; and Selman, B. 2009. Incom-
plete algorithms. In Handbook of Satisfiability. 185–203.
Kirkpatrick, S., and Selman, B. 1994. Critical behavior in
the satisfiability of random Boolean expressions. Science
264:1297–1301.
Li, C., and Fan, Y. 2013. CCA2013. In Proc. of SAT Com-
petition 2013: Solver and Benchmark Descriptions, 14–15.

Li, C. M., and Huang, W. Q. 2005. Diversification and
determinism in local search for satisfiability. In Proc. of SAT
2005, 158–172.
Li, C. M., and Li, Y. 2012. Satisfying versus falsifying in
local search for satisfiability. In Proc. of SAT 2012, 477–478.
Li, C. M.; Huang, C.; and Xu, R. 2013. Balance between in-
tensification and diversification: two sides of the same coin.
In Proc. of SAT Competition 2013: Solver and Benchmark
Descriptions, 10–11.
Luo, C.; Cai, S.; Wu, W.; and Su, K. 2013. Focused random
walk with configuration checking and break minimum for
satisfiability. In Proc. of CP 2013, 481–496.
Luo, C.; Su, K.; and Cai, S. 2012. Improving local search for
random 3-SAT using quantitative configuration checking. In
Proc. of ECAI 2012, 570–575.
Manthey, N. 2012. Coprocessor 2.0 - a flexible CNF simpli-
fier. In Proc. of SAT 2012, 436–441.
Manthey, N. 2013. The SAT solver Riss3g at SC 2013.
In Proc. of SAT Competition 2013: Solver and Benchmark
Descriptions, 72–73.
Mertens, S.; Mézard, M.; and Zecchina, R. 2006. Threshold
values of random K-SAT from the cavity method. Random
Struct. Algorithms 28(3):340–373.
Mézard, M. 2003. Passing messages between disciplines.
Science 301:1685–1686.
Selman, B.; Kautz, H. A.; and Cohen, B. 1994. Noise strate-
gies for improving local search. In Proc. of AAAI 1994, 337–
343.
Selman, B.; Levesque, H. J.; and Mitchell, D. G. 1992. A
new method for solving hard satisfiability problems. In Proc.
of AAAI 1992, 440–446.
Selman, B. 1995. Stochastic search and phase transitions:
AI meets physics. In Proc. of IJCAI 1995, 998–1002.
Thornton, J.; Pham, D. N.; Bain, S.; and Ferreira Jr., V. 2004.
Additive versus multiplicative clause weighting for SAT. In
Proc. of AAAI 2004, 191–196.
Tompkins, D. A. D., and Hoos, H. H. 2010. Dynamic scor-
ing functions with variable expressions: New SLS methods
for solving SAT. In Proc. of SAT 2010, 278–292.
Tompkins, D. A. D.; Balint, A.; and Hoos, H. H. 2011. Cap-
tain Jack: New variable selection heuristics in local search
for SAT. In Proc. of SAT 2011, 302–316.
Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2012. Predicting
satisfiability at the phase transition. In Proc. of AAAI 2012,
584–590.

2709




