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Abstract

Constraints over finite sequences of variables are ubiquitous
in sequencing and timetabling. This led to general modelling
techniques and generic propagators, often based on determin-
istic finite automata (DFA) and their extensions. We consider
counter-DFAs (cDFA), which provide concise models for reg-
ular counting constraints, that is constraints over the number
of times a regular-language pattern occurs in a sequence. We
show how to enforce domain consistency in polynomial time
for at-most and at-least regular counting constraints based
on the frequent case of a cDFA with only accepting states
and a single counter that can be increased by transitions. We
also show that the satisfaction of exact regular counting con-
straints is NP-hard and that an incomplete propagator for ex-
act regular counting constraints is faster and provides more
pruning than the existing propagator from (Beldiceanu, Carls-
son, and Petit 2004). Finally, by avoiding the unrolling of
the cDFA used by COSTREGULAR, the space complexity re-
duces from O(n · |Σ| · |Q|) to O(n · (|Σ| + |Q|)), where Σ
is the alphabet and Q the state set of the cDFA.

1 Introduction
Constraints over finite sequences of variables arise in many
sequencing and timetabling applications. The last decade
has witnessed significant research on how to model and
propagate, in a generic way, idiosyncratic constraints that
are often featured in these applications. The resulting mod-
elling techniques are often based on formal languages and,
in particular, deterministic finite automata (DFA). Indeed,
DFAs are a convenient tool to model a wide variety of con-
straints, and their associated propagators can enforce do-
main consistency in polynomial time (Beldiceanu, Carlsson,
and Petit 2004; Pesant 2004).

This paper is concerned with the concept of counter-
DFA (cDFA), an extension of DFAs initially proposed
in (Beldiceanu, Carlsson, and Petit 2004), and uses it to
model regular counting constraints, that is constraints on
the number of regular-language patterns occurring in a se-
quence of variables. cDFAs typically result in more concise
and natural encodings of regular counting constraints com-
pared to DFAs, but, to our knowledge, there is no published
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proof that they do not admit efficient propagators enforc-
ing domain consistency. This paper originated as an attempt
to clarify this issue and to overcome the practical limita-
tion of current filtering algorithms due to a large memory
consumption stemming from the explicit unrolling of the
automaton (Pesant 2004; Demassey, Pesant, and Rousseau
2006). We consider the subset of cDFAs satisfying two
conditions: (1) all their states are accepting, and (2) they
manipulate a single counter that can be increased by transi-
tions. These conditions are satisfied for many regular count-
ing constraints and offer a good compromise between ex-
pressiveness and efficiency.

Our first contribution is to show that for such a cDFA A
it is possible to enforce domain consistency efficiently on
at-most and at-least regular counting constraints. The con-
straint REGCOUNTATMOST(N,X,A) holds if the counter
of A is at most N after A has consumed sequence X . The
constraint REGCOUNTATLEAST(N,X,A) is defined sim-
ilarly. We also show the NP-hardness of feasibility test-
ing for the constraint REGCOUNT(N,X,A), which holds
if the counter of A is exactly N after A has consumed X .
Compared to the constraint COSTREGULAR (Demassey, Pe-
sant, and Rousseau 2006), as generalised for the Choco
solver (Choco 2012), our second contribution is a propaga-
tor for exact regular counting that uses asymptotically less
space (for its internal data structures) and yet propagates
more on the variables of X . Furthermore, our propagators
for at-most and at-least regular counting achieve domain
consistency on the counter variable N (and X) in the same
asymptotic time as the COSTREGULAR propagator achieves
only bounds consistency on N (but also domain consistency
on X).

The rest of the paper is organised as follows. Section 2
defines cDFAs and regular counting constraints. Section 3
gives the propagator, its complexity, and its evaluation. Sec-
tion 4 discusses related work and Section 5 concludes.

2 Background
Deterministic Finite Counter Automata
Recall that a deterministic finite automaton (DFA) is a tuple
〈Q,Σ, δ, q0, F 〉, where Q is the set of states, Σ is the alpha-
bet, δ : Q× Σ→ Q is the transition function, q0 ∈ Q is the
start state, and F ⊆ Q is the set of accepting states.
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Figure 1: Counter-DFA AAB for the constraint
NUMBERWORD(N,X, “aab”)

This paper considers a subclass of counter-DFAs in which
all states are accepting and only one counter is used. The
counter is initialised to 0 and increases by a given nat-
ural number at every transition. Such an automaton ac-
cepts every string and assigns a value to its counter. More
formally, a counter-DFA (cDFA) is here specified as a tu-
ple 〈Q,Σ, δ, q0, F 〉, where Q, Σ, q0, and F are as in a
DFA except that F = Q and the DFA transition func-
tion δ is extended to the signature Q × Σ → Q × N,
so that δ(q, `) = 〈r, inc〉 indicates that r is the successor
state of state q upon reading alphabet symbol ` and that the
counter is increased by inc. (All our results generalise to
inc ∈ R+, that is weighted regular counting.) We also de-
fine two projections of this extended transition function: if
δ(q, `) = 〈r, inc〉, then δQ(q, `) = r and δN(q, `) = inc.

Given δ(q, `) = 〈r, inc〉, we denote by C(q `→ r) the counter
increase inc of transition q `→ r from state q to state r upon
consuming symbol `. Similarly, we denote by C(q σ

 r) the
counter increase of a path q σ

 r from state q to state r upon
consuming a (possibly empty) string σ.

Example 1. Consider the automaton AAB in Figure 1. It
represents a cDFA with state set Q = {ε, a, aa} and alpha-
bet Σ = {a, b}. The transition function δ is given by the
labelled arcs between states, and the start state is q0 = ε
(indicated by an arc coming from no state; we often denote
the start state by ε, because it can be reached by consuming
the empty string ε). Since the final states F are all the states
in Q, this automaton recognises every string over {a, b} and
is thus by itself not very interesting. However, the cDFA
features a counter k that is initialised to 0 at the start state,
increased by 1 on the transition from state aa to state ε upon
reading symbol ‘ b’, and increased by 0 on all other tran-
sitions. As a result, the final value of k is the number of
occurrences of the word “aab” within the string.

Regular Counting Constraints
A regular counting constraint is defined as a constraint that
can be modelled by a cDFA. The REGCOUNT(N,X,A)
constraint holds if the value of variable N , called
the counter variable, is equal to the final value of
the counter after cDFA A has consumed the values
of the entire sequence X of variables. Consider the
constraint NUMBERWORD(N,X,w), which holds if N
is the number of occurrences of the non-empty word
w in the sequence X of variables. The constraint
NUMBERWORD(N,X, “aab”) can be modelled by the con-

i{k ← 0}
xi /∈ V

xi ∈ V {k ← k + 1}

Figure 2: Counter-DFA AMONG for the constraint
AMONG(N,X,V)

straint REGCOUNT(N,X,AAB) with the automaton AAB
specified in Figure 1.

Signature Constraints
A constraint on a sequenceX of variables can sometimes be
modelled with the help of a DFA or cDFA that operates not
onX , but on a sequence of signature variables that function-
ally depend via signature constraints on a sliding window of
variables within X (Beldiceanu, Carlsson, and Petit 2004).

For example, the AMONG(N,X,V) con-
straint (Beldiceanu and Contejean 1994) requires N to
be the number of variables in the sequence X that are
assigned a value from the given set V . With signature
constraints xi ∈ V ⇔ si = 1 and xi /∈ V ⇔ si = 0 (with
xi ∈ X), we obtain a sequence of |X| signature variables
si that can be used in a cDFA that counts the number of
occurrences of value 1 in that sequence. (The choice of
AMONG is purely pedagogical: we do not claim this is the
best way to model and propagate this constraint.) Rather
than labelling the transitions of such a cDFA with values of
the domain of the signature variables (the set {0, 1} here),
we label them with the corresponding conditions of the
signature constraints, giving the cDFA in Figure 2.

If each signature variable depends on a sliding window
of size 1 within X (as for AMONG), then the signature
constraints are unary. Our results also apply to cDFAs
with unary signature constraints because a network of a
REGCOUNTATMOST constraint and unary signature con-
straints is Berge-acyclic.

3 The Propagator
Feasibility Test and Domain Consistency Filtering
Our propagator is defined in terms of the following concepts,
which assume a sequence x1, . . . , xn of variables with do-
mains denoted by dom(xi):

• Define P(i) (respectively P(i)) to be the set of pairs 〈q, c〉
where c is the minimum (respectively maximum) counter
increase (or value) after the automaton consumes any pre-
fix string σ = σ1 · · ·σi from state q0 to reach state q, with
i ∈ [0, n] and σj ∈ dom(xj) for each j ∈ [1, i].

• Define S(i) (respectively S(i)) to be the set of pairs 〈q, c〉
where c is the minimum (respectively maximum) counter
increase after the automaton consumes any suffix string
σ = σi · · ·σn from state q to reach a state appearing in
P(n) (respectively P(n)), with i ∈ [1, n + 1] and σj ∈
dom(xj) for each j ∈ [i, n].

Example 2. By illustrating one representative of these four
quantities, we show that we have to maintain the maximum
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Figure 3: Counter-DFARST

counter value for every state reachable from q0 in i steps,
rather than just maintaining the overall maximum counter
value and the set of states reachable from q0 in i steps. Con-
sider the automatonRST in Figure 3, where q0 is ε.

In a sequence of n = 6 variables x1, . . . , x6 that must be
assigned value ‘ r’ or ‘ t’, we have:

P(0) = {〈ε, 0〉}
P(1) = {〈ε, 0〉, 〈r, 1〉}
P(2) = {〈ε, 1〉, 〈r, 1〉, 〈rr , 1〉}
P(3) = {〈ε, 1〉, 〈r, 2〉, 〈rr , 1〉, 〈rrt , 1〉}
P(4) = {〈ε, 2〉, 〈r, 2〉, 〈rr , 2〉, 〈rrt , 1〉, 〈rrtr , 3〉}
P(5) = {〈ε, 2〉, 〈r, 3〉, 〈rr , 3〉, 〈rrt , 2〉, 〈rrtr , 3〉}
P(6) = {〈ε, 3〉, 〈r, 3〉, 〈rr , 3〉, 〈rrt , 3〉, 〈rrtr , 4〉}

Indeed, 〈rrtr , 4〉 ∈ P(6) because 〈rrt , 2〉 ∈ P(5) and there
is a transition in A from rrt to rrtr on symbol ‘ r’ with a
counter increase of 2, even though three states have a higher
counter value (namely 3) than rrt in P(5).

A decomposition using sliding transition constraints
where the state and counter variables are not explicitly
linked, such as in (Beldiceanu, Carlsson, and Petit 2004),
has no link between the reached state at level i and the cor-
responding counter value, and thus hinders propagation.

To compute P(i) and S(i), we need an operation that
takes a set of state-and-integer pairs and keeps only the
pairs 〈q, c〉 where there is no pair 〈q, c′〉 with c′ < c. For-
mally, trimMin(S) = {〈q, c〉 ∈ S | @〈q, c′〉 ∈ S :

c′ < c}. For brevity, we use trimMin
φ(q,c)

(〈q, c〉) to denote

trimMin({〈q, c〉 | φ(q, c)}), for any condition φ. We induc-
tively define P(i) and S(i) as follows:

P(i) =


{〈q0, 0〉} if i = 0

trimMin
〈q,c〉∈P(i−1)
`∈dom(xi)

(〈δQ(q, `), c+ δN(q, `)〉) if i ∈ [1, n]

S(i) =


{〈q, 0〉 | ∃c ∈ N : 〈q, c〉 ∈ P(n)} if i = n+ 1

trimMin
〈q′,c′〉∈S(i+1)
`∈dom(xi)

δ(q,`)=〈q′,inc〉

(〈q, c′ + inc〉) if i ∈ [1, n]

We show that the inductively computed quantities corre-
spond to the definitions of P(i) and S(i). First consider P(i).
The base case P(0) follows from the initialisation to zero of
the counter. By induction, suppose the set P(i−1) is correct.
Before applying trimMin, the set contains all pairs obtained
upon reading the symbol ` starting from some pair 〈q, c〉 in
P(i−1), where c is the minimum counter value for q over se-
quences of length i− 1. The trimMin operation then filters
out all the pairs 〈q′, c′〉 with non-minimum counter value for
q′. The correctness proof for S(i) is similar.

We define the REGCOUNTATMOST(N,X,A) propaga-
tor. The propagator for REGCOUNTATLEAST is similar.
The following theorem gives a feasibility test.
Theorem 1. A REGCOUNTATMOST(N, [x1, . . . , xn],A)
constraint has a solution iff the minimum value of the
counter of A after consuming the entire sequence is at most
the maximum of the domain of N :

min
〈q,c〉∈P(n)

c ≤ max(dom(N))

Proof. Suppose c is the minimum counter value such that
〈q, c〉 ∈ P(n) for some state q. By the definition of
P(n), there is some sequence σ = σ1 · · ·σn where for all
1 ≤ j ≤ n the symbol σj belongs to dom(xj) such that
C(q0

σ
 q) = c. Because each σj belongs to the domain of

the corresponding variable, we have that σ is a solution to
REGCOUNTATMOST iff c ≤ max(dom(N)).

We now show how to achieve domain consistency (DC).
Theorem 2. For a REGCOUNTATMOST(N, [x1, . . . , xn],A)
constraint, define the minimum value of the counter of A for vari-
able xi to take value `:

m(i, `) = min
〈q,c〉∈P(i−1) ,

q′=δQ(q,`) ,

〈q′,c′〉∈S(i+1)

(c+ δN(q, `) + c′)

• A value ` in dom(xi) (with i ∈ [1, n]) appears in a solution iff
the minimum value of the counter is at most the maximum of the
domain of N : m(i, `) ≤ max(dom(N)).

• A value in dom(N) appears in a solution iff it is at least the
minimum counter value given in Theorem 1.

Proof. We start with the first claim. (If) We show that any
` ∈ dom(xi) with m(i, `) ≤ max(dom(N)) participates
in a solution. Suppose m(i, `) equals c + δN(q, `) + c′ for
some 〈q, c〉 ∈ P(i − 1) and some 〈q′, c′〉 ∈ S(i + 1), with
q′ = δQ(q, `). Then there exist two strings σ = σ1 · · ·σi−1
and τ = σi+1 · · ·σn and some state qn such that

C(q0
σ
 q) = c and C(q′ τ qn) = c′

with σj ∈ dom(xj) for all j ∈ [1, n]. Note that the length of
σ`τ is n. We have:

C(q0
σ`τ
 qn) = C(q0

σ
 q) + δN(q, `) + C(q′ τ qn)

= c+ δN(q, `) + c′

= m(i, `) ≤ max(dom(N)).

Hence the assignment corresponding to σ`τ satisfies the do-
mains and the constraint, so ` ∈ dom(xi) participates in a
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solution. (Only if) If ` ∈ dom(xi) participates in a solu-
tion, then the counter of that solution is at least m(i, `) and
at most max(dom(N)), hence m(i, `) ≤ max(dom(N)).

The second claim follows from Theorem 1. Indeed, let
c = min〈q,c〉∈P(n) c So there exists a sequence σ = σ1 · · ·σn
with each σj ∈ dom(xj) such that C(q0

σ
 q) = c. Further,

for any σ′ = σ′1 · · ·σ′n with each σ′j ∈ dom(xj) for all j ∈

[1, n], we have c ≤ C(q0
σ′

 q′n) for some state q′n. So, by
Theorem 1, we need to prove that v ∈ dom(N) participates
in a solution iff c ≤ v. (Only if) If v ∈ dom(N) participates
in a solution, then there exists a sequence σ′ = σ′1 · · ·σ′n
such that each σ′j ∈ dom(xj) and C(q0

σ′

 q′n) ≤ v. Since

c ≤ C(q0
σ′

 q′n), we have c ≤ v. (If) If c ≤ v, then
the sequence σ above necessarily also forms a solution with
N = v.

The algorithm of an idempotent propagator consists of the
feasibility test of Theorem 1 and the pruning of the values
from dom(N) and all dom(xi) that do not satisfy the condi-
tions of Theorem 2, upon first computing its m(i, `) values.

Complexity
The complexity of a non-incremental implementation of the
propagator is established as follows. Recall that we consider
sequences of n variables xi, each with at most the automaton
alphabet Σ as domain. Let the automaton have |Q| states.
Each set P(i) has O(|Q|) elements and takes O(|Σ| · |Q|)
time to construct and trim (assuming it is implemented as a
counter-value array indexed byQ, with all cells initialised to
+∞). There are n+ 1 such sets, hence the entire P(·) vector
takesO(n·|Σ|·|Q|) time and Θ(n·|Q|) space. Similarly, the
entire S(·) vector takes O(n · |Σ| · |Q|) time and Θ(n · |Q|)
space. Each value m(i, `) takes O(|Q|) time to construct,
since at most |Q| pairs 〈q, c〉 of P(i−1) are iterated over and
the corresponding pair 〈q′, c′〉 is unique and can be retrieved
in constant time (under the assumed data structure). There
are n · |Σ| such values, hence the entire m(·, ·) matrix takes
O(n · |Σ| · |Q|) time and Θ(n · |Σ|) space. Each test of a
domain value takes constant time, hence Θ(n + 1) time in
total for the n variables xi and the counter variable N . In
total, such an implementation takes O(n · |Σ| · |Q|) time,
and Θ(n · (|Q|+ |Σ|)) space.

The Exact Regular Counting Constraint
Not surprisingly, decomposing REGCOUNT(N,X,A) into
the conjunction of REGCOUNTATMOST(N,X,A) and
REGCOUNTATLEAST(N,X,A) does not yield DC at the
fixpoint of their propagators: for the cDFA B in Figure 4
and the constraint REGCOUNT(N, [2, x, 2],B), with N ∈
{0, 1, 2} and x ∈ {1, 2}, it misses the inference of N 6= 1.
Worse, achieving DC on exact regular counting is NP-hard:

Theorem 3. The feasibility of REGCOUNT is NP-hard.

Proof. By reduction from Subset-Sum. Consider an in-
stance 〈{a1, . . . , ak}, s〉 of Subset-Sum, which holds if there
is a subset A ⊆ {a1, . . . , ak} such that

∑
v∈A v = s.

Construct a cDFA A with one state and alphabet Σ =

ε{k ← 0} q

1
2
1

2 {k ← k + 1}

Figure 4: Counter-DFA B, where domain consistency is not
achieved for exact regular counting

{a1, . . . , ak, 0}. A transition labelled by ai increases the
counter by ai, and the transition labelled by 0 does not in-
crease the counter. Build a sequence of variables X =
〈x1, . . . , xk〉 such that dom(xi) = {0, ai} and a vari-
able N such that dom(N) = {s}. Such a reduction
can be done in polynomial time. Subset-Sum holds iff
REGCOUNT(N,X,A) holds.

The propagator for REGCOUNTATMOST can be gener-
alised into an incomplete propagator for REGCOUNT. A
value ` is removed from the domain of variable xi if the
following condition holds for all 〈q, c〉 ∈ P(i− 1):∧
〈q,c〉∈P(i−1)
q′=δQ(q,`)
〈q′,c′〉∈S(i+1)

〈q′,c′〉∈S(i+1)

[
c+ δN(q, `) + c′, c+ δN(q, `) + c′

]
∩ dom(N) = ∅

This propagator has the same space complexity as
REGCOUNTATMOST, but it may need more than one run
to achieve idempotency. Indeed, it differs from the pre-
vious propagator in that lower and upper bounds have to
be calculated for each state in P(i − 1), and it is possi-
ble that some states will give different bounds. Hence the
first run of the propagator might not reach idempotency.
The propagator is strictly stronger than computing the fix-
point of REGCOUNTATMOST and REGCOUNTATLEAST,
because the intersection test with respect to dom(N) is
strictly stronger than the conjunction of the two compar-
isons on the at-most and at-least sides: for the cDFA in
Figure 4 and the constraint REGCOUNT(1, [2, x, 1, y, z],B),
with x, y, z ∈ {1, 2}, the REGCOUNT propagator infers
z 6= 2, whereas the decomposition misses this inference.
The REGCOUNT propagator is also incomplete: the counter-
example before Theorem 3 for the decomposition also ap-
plies to it.

Evaluation
We implemented in SICStus Prolog version 4.2.1 (Carls-
son, Ottosson, and Carlson 1997) the described propaga-
tors for REGCOUNTATMOST, REGCOUNTATLEAST, and
REGCOUNT. The full source code is in (Beldiceanu et al.
2013). We evaluated their merits as follows.

We generated random cDFAs of up to five states (it is
very important to note that all 34 counter automata of the
Global Constraint Catalogue (Beldiceanu et al. 2007) have
at most five states, since counters are a very powerful de-
vice that allows a drastic reduction from the number of
states needed by using a conventional DFA) using the ran-
dom DFA generator (Almeida, Moreira, and Reis 2007) of
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FAdo (version 0.9.6) and doing a counter increase by 1 on
each arc with a probability of 20%. For each random cDFA,
we generated random instances, with random lengths (up to
n = 10) of X = [x1, . . . , xn] and random initial domains of
the counter variable N (one value, two values, and intervals
of length 2 or 3) and the signature variables si (intervals of
any length, and sets with holes).

The results, upon many millions of random instances, are
that our REGCOUNT propagator never propagates less but
often more, to the point of detecting more failures, than
the built-in AUTOMATON (Beldiceanu, Carlsson, and Pe-
tit 2004) of SICStus Prolog. Further, it is already up to 3
times faster than the latter, even though it is naı̈vely im-
plemented in Prolog, while the built-in works by decom-
position into a conjunction of TABLE constraints (with tu-
ples according to the transition function δ), which is very
carefully implemented in C. There is thus strong reason to
believe that our propagators will do better on any bench-
mark. Also, no counterexample to the domain consistency of
REGCOUNTATMOST has been generated and no pruning by
the propagators of actually supported values was observed,
giving a sanity check while proving Theorems 1 and 2.

Table 1 gives the cumulative runtimes (under Mac
OS X 10.7.5 on a 2.8 GHz Intel Core 2 Duo with a 4 GB
RAM), the numbers of detected failures, and (when both
propagators succeed) the numbers of pruned values for ran-
dom instances of some constraints, the four-state cDFA for
the NUMBERWORD(N,X, “toto”) constraint being unnec-
essary to reproduce here.

To demonstrate the power of our propagators, we have
also tested them on constraints whose counter-DFAs have
binary signature constraints, so that our at-least and at-
most regular counting propagators may not achieve domain
consistency, because they were designed for unary signa-
ture constraints. For example, the INFLEXION(N,X) con-
straint holds if there are N inflexions (local optima) in the
integer sequence X; a cDFA is given in (Beldiceanu et
al. 2007), with signature constraints using the predicates
xi{<,=, >}xi+1 on the sliding window [xi, xi+1] of size 2.
Our exact regular counting propagator outperforms the built-
in AUTOMATON (Beldiceanu, Carlsson, and Petit 2004) of
SICStus Prolog, as shown in the last line of Table 1. Further,
our instance generator has not yet constructed any counter-
example to domain consistency on at-most regular counting.

4 Related Work
Our regular counting constraints are related to
COSTREGULAR(X,A, N,C) (Demassey, Pesant, and
Rousseau 2006), an extension of the REGULAR(X,A)
constraint (Pesant 2004): a ground instance holds if the
sum of the variable-value assignment costs is exactly N
after DFA A has accepted X , where the two-dimensional
cost matrix C, indexed by Σ and X , gives the costs of
assigning each value of the alphabet Σ ofA to each variable
of the sequence X . Indeed, both the abstractions and the
underlying propagators of regular counting constraints and
COSTREGULAR are closely related. However, we now
argue that regular counting constraints sometimes provide
both a more natural abstraction and some computational

benefits, namely more propagation and asymptotically less
space, within the same asymptotic time.

At the conceptual level, the regular counting and
COSTREGULAR constraints differ in how costs are ex-
pressed. In the COSTREGULAR constraint the costs are as-
sociated with variable-value assignments, while in regular
counting constraints the costs (seen as counter increases)
are associated with the transitions of the counter automa-
ton. This is an important conceptual distinction, as counter
automata provide a more natural and compact abstraction
for a variety of constraints, where the focus is on count-
ing rather than costing. Footnote 1 of (Demassey, Pesant,
and Rousseau 2006, page 318) points out that the cost ma-
trix C can be made three-dimensional, indexed also by the
states Q of A, but this is not discussed further in (De-
massey, Pesant, and Rousseau 2006). This allows the ex-
pression of costs on transitions, and it seems that this has
no impact on the time complexity of their propagator. This
generalisation is implemented in the Choco solver (Choco
2012). It is only with such a three-dimensional cost matrix
that it is possible for the modeller to post a regular count-
ing constraint by using the COSTREGULAR constraint: first
unroll the counter automaton for the length |X| into a di-
rected acyclic weighted graph G (as described in (Pesant
2004), and the counter increases become the weights) and
then post COSTREGULAR(X,N,G); the Choco implemen-
tation (Choco 2012, page 95) of COSTREGULAR features
this option. The alternative is to read the three-dimensional
cost matrix C offA only (sinceX is not needed) and to post
COSTREGULAR(X,A′, N,C), where DFA A′ is counter-
DFAA stripped of its counter increases. Either way, this en-
coding is not particularly convenient and it seems natural to
adopt counter automata as an abstraction. Also note that the
cost matrix C has to be computed for every different value
of |X| that occurs in the problem model, while this is not
the case with counter automata. Essentially, regular count-
ing is a specialisation of the generalised COSTREGULAR
constraint (with a three-dimensional cost matrix), obtained
by projecting the generalised cost matrix onto two different
dimensions than in the original COSTREGULAR constraint,
namely Q and Σ, and using it to extend the transition func-
tion of the DFA to the signatureQ×Σ→ Q×N and calling
the extended DFA a cDFA.

At the efficiency level, regular counting constraints
are propagated using dynamic programming, like
COSTREGULAR. This is not surprising. The time complex-
ity is the same as for the encoding using COSTREGULAR,
namely O(n · |Σ| · |Q|), where n = |X|, as the unrolling
of the cDFA takes the same time as the propagator itself. It
is interesting however to note that the structure of regular
counting constraints enables a better space complexity
thanks to the compactness of a counter automaton as the
input data structure, as well as fundamentally different
internal data structures: we do not store the unrolled
automaton. Indeed, we have shown that regular counting
constraints have a space complexity of Θ(n · (|Q| + |Σ|)),
while the encoding by COSTREGULAR constraint takes
Θ(n · |Σ| · |Q|) space, to store either the three-dimensional
cost matrix C or the unrolled graph G (Choco allows both
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seconds failures prunings
Constraint #instances REGCOUNT AUTO REGCOUNT AUTO REGCOUNT AUTO
AMONG(N,X,V) 4,400 0.8 1.8 2,241 2,241 3,749 3,749
NUMBERWORD(N,X, “aab”) 13,200 0.9 2.3 4,060 4,020 1,294 943
NUMBERWORD(N,X, “toto”) 17,600 0.9 2.7 4,446 4,435 1,149 663
REGCOUNT(N,X,RST ) 13,200 3.9 7.3 5,669 4,333 13,213 2,275
INFLEXION(N,X) 13,200 3.7 7.5 4,447 4,066 9,279 4,531

Table 1: Comparison between REGCOUNT and the AUTO(MATON) constraint of SICStus Prolog

ways of parametrising COSTREGULAR). Note that adding
a counter to a DFA bears no asymptotic space overhead on
the representation of the DFA.

At the consistency level, note that our at-most and at-
least regular counting propagators achieve domain consis-
tency on the counter variableN in the same asymptotic time
as the COSTREGULAR propagator (Demassey, Pesant, and
Rousseau 2006; Choco 2012) achieves only bounds consis-
tency onN . The claim by (Demassey, Pesant, and Rousseau
2006; Choco 2012) that their propagator achieves domain
consistency on X is invalidated by Theorem 3 (stressing the
need for propagator sanity checks like ours, even with ran-
dom instances), hence this would only hold for at-most and
at-least variants of COSTREGULAR: for the cDFA B in Fig-
ure 4 and the constraint REGCOUNT(N, [2, 2, x, 2, y],B),
with N ∈ {1, 3} and x, y ∈ {1, 2}, their propagator misses
the inference of y 6= 2, and so does our propagator for ex-
act regular counting. Our data structures are more compact
(see above), and yet enable more propagation onX for exact
regular counting.

To summarise, although regular counting constraints and
the COSTREGULAR constraint are closely related, we be-
lieve that our results contribute both to our understanding of
these constraints and to the practice in the field.

The SEQBIN constraint (Petit, Beldiceanu, and Lorca
2011; Katsirelos, Narodytska, and Walsh 2012) can be rep-
resented by a regular counting constraint, but it would re-
quire non-unary signature constraints.

The METER constraint (Roy and Pachet 2013) does not
take an automaton but constraints on two consecutive vari-
ables. It has only variables: the cost of a variable is its value,
while counter increases or costs are distinguished from the
variables for both REGCOUNT and COSTREGULAR. It
does not provide a counter variable but allows partial sum
constraints. It achieves domain consistency in pseudo-
polynomial time.

5 Conclusion
We consider regular counting constraints over finite vari-
able sequences, which are ubiquitous and very diverse in
sequencing and timetabling (e.g., restricting the number
of monthly working weekends or two-day-periods where a
nurse works during a night followed by an afternoon). We
study a class of deterministic finite automata with counters
(cDFA) that allows more concise models for regular count-
ing constraints than representations using standard DFAs.

Our first contribution is to show how to enforce domain

consistency in polynomial time for at-most and at-least
regular counting constraints, even for the counter variable,
based on the frequent case of a cDFA with only accepting
states and a single counter that can be increased by transi-
tions. We also show that deciding the feasibility of exact
regular counting constraints is NP-hard. Our second contri-
bution is to reduce the space complexity fromO(n · |Σ| · |Q|)
to O(n · (|Σ| + |Q|)) by not explicitly representing the un-
rolled cDFA.

It is possible to lift our restriction to counter automata
where all states are accepting, even though we are then tech-
nically outside the realm of regular counting. For instance,
this would allow us to constrain the number N of occur-
rences of some pattern, recognised by cDFA A1, in a se-
quence X of variables, while X is not allowed to contain
any occurrence of another pattern, recognised by cDFA A2.
Rather than decomposing this constraint into the conjunc-
tion of REGCOUNT(N,X,A1) and REGCOUNT(0, X,A2),
with poor propagation through the shared variables, we can
design a cDFA A12 that counts the number of occurrences
of the first pattern and fails at any occurrence of the second
pattern (instead of counting them) and post the unique con-
straint REGCOUNT(N,X,A12), after using the following
recipe. Add an accepting state, say q, and an alphabet sym-
bol, say $, whose meaning is end-of-string. Add transitions
on $ from all existing accepting states to q, with counter in-
crease by zero. Add transitions on $ from all non-accepting
states to q, with counter increase by a suitably large number,
such as max(dom(N)) + 1. Make the non-accepting states
accepting. Append the symbol $ to the sequence X when
posting the constraint, so that the extended automaton never
actually stops in a state different from q, thereby making it
irrelevant whether the original states are accepting or not.

Open issues include the following questions. Can we im-
plement our propagators to run in O(n · |Σ|) time? Which
cDFAs admit a propagator achieving domain consistency
for exact regular counting? Can we generalise our domain-
consistency result to non-unary signature constraints? We
conjecture our results extend to non-deterministic counter
automata: our notation was merely simplified by requiring
that the transition function δQ return a single state.

Other constraints, such as the one of (Barták 2002), can
be used to encode counters: a comparison is future work.

Since our propagator essentially uses linear constraints,
we strongly believe it is also relevant in the context of linear
programming, as in (Côté, Gendron, and Rousseau 2007).
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