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Abstract

We present a new reasoner for RCC-8 constraint networks,
called gp-rcc8, that is based on the patchwork property of
path-consistent tractable RCC-8 networks and graph parti-
tioning. We compare gp-rcc8 with state of the art reason-
ers that are based on constraint propagation and backtrack-
ing search as well as one that is based on graph partitioning
and SAT solving. Our evaluation considers very large real-
world RCC-8 networks and medium-sized synthetic ones,
and shows that gp-rcc8 outperforms the other reasoners for
these networks, while it is less efficient for smaller networks.

Introduction, motivation, and related work
The fundamental reasoning problem in RCC-8 is deciding
the consistency of a set of constraints Θ, i.e., whether there
is a spatial configuration where the relations between the
regions can be described by Θ. Traditionally in qualitative
spatial reasoning (QSR) consistency of such sets is decided
by a backtracking algorithm which optionally uses a path-
consistency algorithm as a preprocessing step for forward
checking. In general, this problem is NP-complete (Renz
and Nebel 1999). However it has been shown in (Renz 1999)
that there are tractable subsets of RCC-8 for which the con-
sistency problem can be decided by path-consistency.

Table 1 depicts the characteristics of some real-world
RCC-8 networks recording the topological relations be-
tween administrative regions in Europe (networks nuts,
adm1, and adm2) and the world (networks gadm1 and
gadm2), and the performance of the following reasoners
regarding consistency checking: Renz-Nebel01 (Renz and
Nebel 2001), GQR-1500 (Gantner, Westphal, and Woelfl
2008; Westphal and Hué 2012), PPyRCC8 (Sioutis and
Koubarakis 2012), and rcc8sat (Huang, Li, and Renz 2013).
All reasoners but rcc8sat follow the standard methods de-
veloped in QSR and CSP for consistency checking, namely
constraint propagation techniques in combination with a
backtracking search algorithm, whereas rcc8sat follows the
SAT paradigm according to which the problem of consis-
tency is reduced to the satisfiability of a Boolean formula
using appropriate encodings (Pham, Thornton, and Sattar
2008).
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Table 1: Characteristics of some real-world networks and
performance of consistency (in seconds) by state of the art
reasoners (dashes denote abrupt termination due to memory
allocation or a bug)

C
ha

ra
ct

er
is

tic
s nuts adm1 gadm1 gadm2 adm2

nodes 2,236 11,762 42,750 276,728 1,732,999
avg. degree 2.84 7.62 7.46 4.26 6.04
avg. labels 1.99 1 1 1.99 1.98
relation set tract. tract. tract. tract. tract.
2D array (GB) 0.004 0.135 1.78 74.78 2,932

R
ea

so
ne

rs Renz-Nebel01 12.25 16,783.47 1,975.04 - -
GQR-1500 10.04 8,540.48 176.15 - -
PPyRCC8 0.99 1,604.87 621.53 - -
rcc8sat - - - - -
gp-rcc8 0.03 0.47 4.04 33.83 18,275

In contrast to the synthetic RCC-8 networks that have
been used in the literature for evaluating the aforementioned
reasoners, the real-world networks of Table 1 are very sparse
and one to two orders of magnitude larger. The labels on
their edges contain 1 or 2 base RCC-8 relations forming a
disjunction. This kind of networks have not been employed
in any experimental evaluation of RCC-8 reasoners with the
exception of (Sioutis and Koubarakis 2012) in which the net-
work adm1 has been used. Typically, the literature focuses
on quite smaller networks (20 to 1000 nodes) with an av-
erage of 4 base RCC-8 relations per edge, and an average
node degree ranging from 4 to 20. Deciding the consistency
of real-world networks is a very important task. Inconsis-
tencies might arise because their RCC-8 relations are com-
puted based on the geometries of geographical objects which
often have not been captured correctly (e.g., overlapping ge-
ometries between two regions that in principle are externally
connected). This is the case for the networks gadm1 and
gadm2.

The characteristics of the networks of Table 1 are suffi-
cient to stress the current reasoners on their implementations
of the path-consistency algorithm which is traditionally em-
ployed by a backtracking algorithm for pruning the search
space. The implementation of path-consistency has always
been an integral part of a RCC-8 reasoner also due to its
ability of being a very good approximation to the consis-
tency problem, especially for networks that do not contain
relations from the NP8 subset. This subset contains the so-
called “hard” relations (Renz and Nebel 2001), i.e., relations
that make consistency NP-complete. In addition, since real-
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world networks such as the ones of Table 1 contain relations
that belong to a tractable subset, path-consistency alone suf-
fices for deciding their consistency.

It turns out that the state of the art reasoners we considered
in our evaluation1 cannot handle such real-world networks.
One reason is the representation of the input network. Most
of the reasoners represent a network as a 2D array. Even if
RCC-8 relations can be encoded in 1 byte, the memory re-
quirements can grow as high as 3TB for our biggest network,
as Table 1 reports. The representation is not the only reason.
By the end of its computation, path-consistency has com-
puted a complete network. Storing such a network requires
to keep at least the upper (or lower) triangular part of the 2D
array, which is still quadratic to the size of the network.

In this paper, we show how to cope with large networks by
developing techniques that rely on graph partitioning. The
main idea is to partition the initial network in k parts, that
ideally are balanced with respect to the number of vertices,
and transfer the bulk processing for consistency checking to
these parts. As the last row of Table 1 witnesses, the gain in
performance and scalability of this approach is very high and
is due to the following two consequences of graph partition-
ing: a) the memory requirements are decreased by a factor
of k, and b) the degree of parallelism can be as high as k, de-
pending on the number of available processing units. Indeed,
for a partitioning of the adm2 network in 2048 parts, gp-rcc8
has a memory footprint of 3GB, while reasoners represent-
ing a network as a 2D array require around 3TB.

The techniques developed in this paper are due to the re-
cent theoretical result of (Huang 2012) that enables one to
decide the consistency problem for a RCC-8 network N , as-
suming this network is the result of the union of two sat-
isfiable RCC-8 networks N1, N2 that agree on their com-
mon constraints. This property is known as patchwork and
was first introduced in (Lutz and Miličić 2007) and proved
for atomic RCC-8 networks N1, N2. This result was later
extended by (Huang 2012), which showed that patchwork
holds for path-consistent networks N1, N2 with relations
from the tractable subsets Ĥ8, Q8, and C8. A notion weaker
than the patchwork property has been used in (Huang, Li,
and Renz 2013), namely aNAP, which ensures that N is
consistent if N1, N2 agree on their common constraints
and have a path-consistent atomic refinement. In principle,
aNAP is equivalent to patchwork for atomic networks, when
path-consistency suffices for deciding consistency of atomic
networks, which is the case for RCC-8.

Patchwork is trivially extended to k networks by in-
duction. Our approach to partitioning the initial graph for
tackling the problem of consistency checking is not new
in QSR. (Li, Huang, and Renz 2009) used a divide-and-
conquer method to decompose a temporal network into
smaller ones and solve the consistency problem in these net-
works independently by constructing a compact SAT encod-
ing that ignores some constraints of the initial network. Sim-
ilarly, (Condotta and D’Almeida 2011) showed that consis-
tency checking of tractable temporal networks can be fur-

1Setup: Intel Xeon E5620, 8 hardware threads, 2.4 GHz, 12MB
L3, 64GB RAM, RAID 5, Ubuntu 12.04.

ther improved for SAT-based encodings using a particular
decomposition of the network that is equivalent to a tree-
decomposition. Tree-decomposition has also been utilized
in (Sioutis and Koubarakis 2012) where partial-path con-
sistency is used for consistency checking of chordal and
tractable RCC-8 networks, and has been shown to perform
very well for sparse networks. Last, (Huang, Li, and Renz
2013) extends the work in (Li, Huang, and Renz 2009) to
other calculi apart from temporal, such as RCC-5 and RCC-
8, but also proves that if the input network is of bounded
tree-width, their divide-and-conquer approach makes the
problem of consistency tractable.

The main contributions of this paper are as follows:
1. We present a new reasoner for RCC-8, called gp-rcc8, that

employs graph partitioning to reduce the initial size of the
network and exploits the degree of parallelism offered by
current computer architectures by checking consistency
of these smaller subnetworks in parallel. To capture the
interdependencies of the subnetworks, we devise a refined
concept of tree-decomposition, called partitioning graph,
and show how standard constraint propagation algorithms
and backtracking search can be improved using this con-
cept as a guidance for their execution.

2. We bring into play real-world networks the large size of
which should be taken into account in empirical evalu-
ations of RCC-8 reasoners. Dealing with such networks
is very important in GIS, spatial databases, and linked
geospatial data as it has been pointed out recently (Niko-
laou and Koubarakis 2013).

3. We show that our partitioning-based techniques can
achieve scalability for very large real-world networks and
in general for networks of low average degree, but for net-
works of high average degree the state of the art reasoners,
such as GQR, should be preferred.
The rest of the paper is organized as follows. First we

give some background knowledge on RCC-8 reasoning and
graph partitioning, and then we discuss how partitioning of
constraint networks is done in the context of this work. Sec-
ond, we present two algorithms for checking consistency of
RCC-8 networks that operate on partitioning graphs of such
networks. Last, we empirically evaluate the implementation
of our algorithms and conclude by discussing future work.

Preliminaries
Region Connection Calculus (RCC). RCC is an axiom-
atization of topological relations between spatial regions in
first order logic (Randell, Cui, and Cohn 1992). Different
relationships between spatial regions are defined based on
the binary relation connected which is true if the topological
closures of two spatial regions share a common point. RCC-
8 is a constraint language formed by the eight base relations
disconnected (DC), externally connected (EC), equal (EQ),
partially overlapping (PO), tangential proper part (TPP), tan-
gential proper part inverse (TPPi), non-tangential proper part
(NTPP), and non-tangential proper part inverse (NTPPi) de-
finable in the RCC theory and by all possible unions of
the base relations. Constraints are written in the form xRy
where x, y are variables for spatial regions and R is a RCC-8
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Figure 1: Upper left: a graph G, right: a partitioning graph
of G and its parts, lower left: a partitioning graph for nuts

relation. Often, a set of RCC-8 constraints of the form xRy
is given in the form of a constraint network. A constraint
network N is a directed graph with labeled edges where the
nodes are the spatial regions appearing in constraints xRy
and the label of an edge N(x, y) is the RCC-8 relation R.

The fundamental reasoning problem in RCC-8 is deciding
consistency of a set of constraints Θ, i.e., whether there is a
spatial configuration where the relations between the regions
can be described by Θ. Traditionally in QSR consistency
of such sets is decided by a backtracking algorithm which
employs the so-called maximal tractable subsets B, Ĥ8,Q8,
or C8 for reducing the branching factor of the search space.

Graph partitioning (Fjällström 1998). Let G = (V,E)
be an undirected graph that is optionally weighted and k a
positive integer. If U ⊆ V , then G(U) will denote the sub-
graph of G that is induced by the set of vertices U . A set
P = {Vi ⊆ V : 1 ≤ i ≤ k} with k pairwise-disjoint ele-
ments such that

⋃k
i Vi = V is called a k-way partition of V .

Each element Vi ∈ P is called a part of P . The cut-set of
P , in symbols CS(P ), denotes the set of edges of E whose
endpoints belong to different parts. Such edges are called cut
edges. The cardinality of CS(P ) will be referred to as the
cut-size of P . When G is weighted, cut-size corresponds to
the sum of the weights of the cut edges. The cut of P for
parts Vi, Vj ∈ P , in symbols CutP (i, j), is the set of edges
of CS(P ) whose endpoints belong to Vi and Vj . The fringe
of part Vi ∈ P is the set of vertices of Vi that are endpoints
in edges of the cut-set of P . The fringe of part Vi ∈ P for
part Vj ∈ P , in symbols fringei(j), is the set of vertices of
Vi that are endpoints of the edges of set CutP (i, j).

Example 1. The set P = {V1, V2, V3} where V1 =
{0, 1, 2, 3, 4}, V2 = {5, 6}, and V3 = {7, 8, 9} is a 3-way
partition of the graph G depicted in Figure 1. The cut-set of
P is the set {(4, 7), (3, 5), (2, 6), (5, 7), (6, 7)} and the cut-
size is 5. Moreover, the fringe of V1 is the set {2, 3, 4}, of V2

the set {5, 6}, and of V3 the set {7}.
The problem of graph partitioning is to find a k-way par-

tition P of G such that the cut-size is minimized and the
number of vertices in each part of P is equal. This prob-
lem is NP-hard (Garey, Johnson, and Stockmeyer 1976),
hence all practical algorithms are approximate. In theory,
using recursive bisection to compute a k-way partition is
worst than computing k parts from the beginning (Simon
and Teng 1997). Therefore, in contrast to other approaches

that use recursive bisection, such as (Huang, Li, and Renz
2013), we compute k-way partitions directly on the original
RCC-8 constraint network. To do this we rely on the mul-
tilevel partitioning algorithm of (Karypis and Kumar 2000).
However, in (Huang, Li, and Renz 2013) the goal is not the
computation of a k-way partition like in our case, but instead
the continuous decomposition of the original network until
a further partitioning is not desired.

Partitioning of constraint networks
Now we introduce the concept of partitioning graphs for
RCC-8 networks. Informally, a partitioning graph captures
the interdependencies among a set of RCC-8 networks. Two
RCC-8 networks have a dependency if they contain an edge
between the same endpoints. Such dependencies arise fre-
quently when partitioning a RCC-8 network due to the need
of distributing the cut edges among the parts, which has as a
side-effect the copying of vertices from one part to another.
Definition 1. Let G = (V,E) be a RCC-8 network and
{V1, ..., Vk} a k-way partition of G for some positive integer
k. A partitioning graph P of G is an undirected graph P =
(VP , EP , lP , GP ) where VP = {1, ..., k} is the set of its
nodes, EP the set of its edges, lP : VP → V a function
that maps each node of P to a part of G, and GP a set of k
RCC-8 networks satisfying the following conditions:
1. If Gi ∈ GP then the set of vertices of Gi is a superset U

of lP (i) and the set of its edges is the subgraph G(U).
2. Any edge in the RCC-8 network G should be present in at

least one RCC-8 network in GP .
3. An edge (i, j) belongs to EP if and only if Gi ∩Gj 6= ∅.
Edges of G present in more than one RCC-8 network of GP

are called global constraints. Edges of G present in exactly
one network of GP are called local constraints.

The third condition of Definition 1 makes partitioning
graphs a refined concept of tree-decompositions (Robertson
and Seymour 1986) in the sense that nodes of partitioning
graphs are explicitly connected if they share an edge of the
initial network, whereas in a tree-decomposition there would
be a path between such nodes. This relation between the
two concepts allows for capitalizing on the theoretical re-
sults established in the literature for tree-decompositions,
although this work does not deal with this. Devising de-
compositions for which there are generalizations or linear
transformations to tree-decompositions has been widely fol-
lowed in the literature of finite (Gottlob, Leone, and Scar-
cello 2000) and infinite CSP (Li, Huang, and Renz 2009;
Condotta and D’Almeida 2011; Huang, Li, and Renz 2013).

Representing the interdependencies of a set of RCC-8 net-
works as a graph has the following advantages.
1. We can use standard graph algorithms to interpret its un-

derlying structure in a way that is meaningful to deciding
the consistency problem. By running depth-first-search on
a partitioning graph of a network G, we can detect the
existence of connected components, which can be han-
dled separately for deciding the consistency of G (see
for example the lower left part of Figure 1 that corre-
sponds to the partitioning graph of the real-world network

2726



Algorithm 1 PartGraph(G, k)

Input: a network G = (V,E) and an integer k ≥ 2
Output: a partitioning graph P = (VP , EP , lP , GP )
1: compute a k-way partition of G in lP and let Gi = (Vi, G(Vi))
2: RGi

= ∅ . set of received vertices for Gi

3: Cut← {(i, j) | exists u ∈ Vi, v ∈ Vj s.t. (u, v) ∈ G, i < j}
4: for all (i, j) ∈ Cut do . place cut edges
5: Gi ← Gi ∪ CutP (i, j)
6: RGi

← RGi
∪ {v | (u, v) ∈ CutP (i, j) and v ∈ Gj}

7: Gi ← Gi ∪G(fringe(Vi) ∪RGi) . fill missing edges
8: for all (i, j) ∈ Cut do
9: if Gi ∩Gj 6= ∅ then . add edge in PartGraph

10: EP ← EP ∪ (i, j)

11: return (VP , EP , lP , GP )

nuts). The detection of connected components reduces the
search space of the backtracking algorithm considerably.

2. We can develop a cost model for partitioning graphs to
estimate the running time of the algorithms for consis-
tency checking. Such a model could be based on a) graph
metrics, such as graph density, b) weighting schemes for
capturing the imbalance factor of the partitioning and the
degree of interdependency between two partitions.

Let us now describe the algorithm PartGraph that, given
a RCC-8 network G and a positive integer k, it computes a
partitioning graph of G. The algorithm first computes a k-
way partition of G constructing a RCC-8 network for each
part of the partition (line 1) and then decides how to dis-
tribute the cut edges to these RCC-8 networks (lines 4-6),
since cut edges do not belong to any part. In doing so, it iter-
ates over all pairs of parts (i, j) for which there is a cut edge
with endpoints in part Vi and Vj , and augments graph Gi

with their in-between cut edges, while it keeps track of the
vertices of Gj that were copied to Gi through this edge dis-
tribution (set RGi ). Those vertices are then used to ensure
that if any two connected vertices of G appear in Gi, then
they are connected in Gi as well (line 7). Finally, the loop in
lines 8-10 adds an edge in the partitioning graph when two
graphs Gi, Gj overlap.

When iterating over all pairs (i, j) of parts of a k-way
partition that are connected through a cut edge, the Part-
Graph algorithm always modifies the RCC-8 network cor-
responding to part Vi. In practice, this leads to a bad parti-
tioning graph with respect to balancing the vertices of the
initial RCC-8 network among the parts of the partition and
the minimization of the number of global constraints. These
two criteria are very crucial for the partitioning graph, be-
cause they strongly affect the performance of consistency
checking. The following heuristics are used by PartGraph to
determine which part between Gi and Gj to modify (line 5).
Blinkered (BL) Always chooses network Gi to modify.
Minimum fringe (MF) Chooses to modify the network with
the bigger fringe. This heuristic tries to minimize the ver-
tices that are copied.
Minimum intersection (MI) Chooses to modify the net-
work with the bigger induced graph with respect to the set
of vertices in its fringe for the other part. This heuristic tries
to minimize the intersection between two RCC-8 networks.
Balanced (BA) Chooses to modify the network that causes
the lowest imbalance between Gi and Gj . This heuristic tries
to keep the networks as balanced as possible.

Algorithm 2 D-Consistency(P )

Input: a partitioning graph P = (VP , EP , lP , GP )
Output: true or false
1: if not DPath-Consistency(P ) then return false

2: choose an unprocessed global constraint uRv
3: if there is no such constraint then
4: return &©||Consistency(Gi)||Gi∈GP

5: split R into S1, ..., St ∈ B such that S1 ∪ · · · ∪ St = R
6: for all refinements Si, 1 ≤ i ≤ t do
7: replace uRv with uSiv
8: return D-Consistency(P )

9: return false

1: function DPath-Consistency(P )
2: R← GP

3: while R not empty do
4: res = &©||PathConsistency(Gi)||Gi∈R

5: R← ∅
6: if res = false then return false
7: for (i, j) ∈ EP and every (u, v) common to Gi, Gj do
8: t← Gi(u, v) ∩Gj(u, v)
9: if t = ∅ then return false

10: else
11: if t 6= Gi(u, v) then
12: Gi(u, v)← t ; R← R ∪Gi

13: if t 6= Gj(u, v) then
14: Gj(u, v)← t ; R← R ∪Gj

15: return true
16: end function

In general, those heuristics that try to balance the vertices
across partitions, that is, MF and BA, are better when the
RCC-8 network contains relations from a tractable subset,
while MI should be preferred when we need to minimize
the number of global constraints, which has a significant ef-
fect on the performance of consistency checking. We vali-
date these remarks in the following section.

Example 2. The lower right part of Figure 1 depicts a par-
titioning graph of the graph G based on the 3-way partition
of Example 1. The nodes of this graph correspond to the
RCC-8 constraint networks G1, G2, and G3 depicted in the
upper right corner of the same figure. These networks have
been derived from the algorithm PartGraph as follows. Af-
ter the computation of the 3-way partition {V1, V2, V3}, the
networks G1, G2, and G3 correspond to the subgraphs of G
induced by the vertices in V1, V2, and V3 respectively. Sup-
pose now that the loop in lines 4-6 takes place on the or-
dered set of paired parts {(1, 3), (2, 3), (1, 2)} using heuris-
tic BA for the decision at line 5. First, and since G3 contains
fewer vertices than G1, it will get the cut edge (4, 7) and
receive from G1 vertex 4. Correspondingly, G2 will get the
cut edges (5, 7) and (6, 7) as well as the vertex 7 from G3.
Last, in processing the last pair of parts, i.e., (1, 2), G2 be-
ing smaller than G1 will get the cut edges (3, 5) and (2, 6)
as well as vertices 2 and 3 from G1. Then, line 7 will draw
an edge between vertices 2 and 3, since this edge is present
in the initial network G. Last, in lines 8-10, the algorithm
catches the fact that G1 and G2 contain the same edge (i.e.,
global constraint) by adding an edge between the respective
nodes of the partitioning graph (lower right part).

Consistency checking for partitioning graphs
Our algorithm for checking whether a RCC-8 network G is
consistent is the D-Consistency algorithm that operates on a
partitioning graph P of G. Before discussing the details of
D-Consistency, we introduce some necessary notation.

Notation. Expression ||F (e)||e∈S denotes the parallel exe-
cution of function F over each element e of the set S. The
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symbol &© before such expressions denotes the application of
the logical AND operator on the results of this execution. Al-
gorithm names typed in small capitals, like CONSISTENCY,
indicate the use of the standard versions of the correspond-
ing algorithms as they appear in the literature of QSR.

The structure of D-Consistency resembles the backtrack-
ing algorithm for RCC-8 networks described in (Renz and
Nebel 2001) with the following three exceptions.

1. In line 1, D-Consistency employs the algorithm DPath-
Consistency for forward-checking, instead of path-
consistency that is traditionally used. The DPath-
Consistency algorithm, which is explained in detail below,
ensures that the parts of P are path-consistent.

2. In line 4 where the consistency algorithm of (Renz and
Nebel 2001) returns the result of the procedure DECIDE
over G, D-Consistency returns the result of procedure
CONSISTENCY executed over each subnetwork of G.
CONSISTENCY corresponds to the traditional backtrack-
ing algorithm for checking consistency of RCC-8 net-
works (Renz and Nebel 2001), thus, in our context ensures
that the parts of G are locally consistent.

3. In line 5, instead of refining a constraint according to the
relations of a general set S as in (Renz and Nebel 2001),
we employ the set of base relations B for which we can
prove the soundness and completeness of D-Consistency.
The main idea of D-Consistency is to find candidate re-

finements of all global constraints in base relations (lines 2
and 5-8) and then move on with checking the consistency
of the nodes of the partitioning graph independently to each
other using CONSISTENCY in a parallel fashion (line 4). Re-
fining the global constraints in base relations is required to
ensure that the parts will agree on their common constraints
during execution of CONSISTENCY. Only then the patch-
work property of (Huang 2012) can be safely utilized and
the consistency checking of the parts be turned into an inde-
pendent task opening up the way to full parallelism.

The DPath-Consistency algorithm operates on a partition-
ing graph P of an RCC-8 constraint network G and de-
cides whether each RCC-8 network of a part of P is path-
consistent. DPath-Consistency runs the traditional path-
consistency algorithm for every part of the initial network G
according to the partitioning graph P (line 4) and then en-
sures that any pair of connected parts agree on their common
global constraints (lines 7-14). If two parts Gi, Gj disagree
on a common global constraint, then this constraint is refined
according to the intersection of the corresponding relations
from Gi and Gj (line 8). In case the intersection is the empty
set, the algorithm has found an inconsistency (line 9), other-
wise it inserts the networks Gi and Gj for inspection (i.e.,
another run of path-consistency) depending on whether the
intersection refined that global constraint (lines 11-14).
Proposition 1. Let P = (VP , EP , lP , GP ) be a partition-
ing graph for an RCC-8 constraint network G. The pro-
cedure DPath-Consistency decides whether all RCC-8 net-
works Gi ∈ GP are path-consistent.

The next proposition follows easily from Proposition 1
and the patchwork property of path-consistent networks with
relations from the sets Ĥ8, C8, or Q8 (Huang 2012).

Proposition 2. Let G be a RCC-8 constraint network with
relations from the sets Ĥ8, C8, and Q8, and P a partitioning
graph of G. The procedure DPath-Consistency suffices to
decide the consistency problem for G.

In (Huang, Li, and Renz 2013), they give an algorithm
for checking consistency of a network that has been de-
composed into smaller ones by encoding these subnetworks
to a Boolean formula and deciding it using a SAT solver.
The decomposition follows a tree structure; the root node
represents the initial network and the leaf nodes the result-
ing parts. Intermediate nodes are created by bisecting their
immediate parents, while it is ensured that nodes belong-
ing to different subtrees do not overlap. In checking con-
sistency, their algorithm traverses the tree recursively and at
each level it refines overlapping constraints to base relations.
Upon reaching the leaf nodes, the algorithm first refines the
remaining constraints to base relations and then encodes the
corresponding network to a Boolean formula.

Compared to our algorithm, there is one similarity and
two major differences. Both approaches, before deciding
consistency of the decomposed networks, ensure that they
agree on their common constraints. The first difference
stems from how this agreement is ensured. In (Huang, Li,
and Renz 2013), they refine all common constraints between
two nodes of the same parent to base relations and then they
move to the next level. On the other hand, we refine a single
global constraint and move to the next one only if that refine-
ment does not make any decomposed network inconsistent.
That is, we use the DPath-Consistency algorithm to prune
the search space of the backtracking search, which leads to
better performance. Such pruning through constraint prop-
agation does not take place in the SAT-based algorithm of
(Huang, Li, and Renz 2013). The next difference stems from
the fact that (Huang, Li, and Renz 2013) decide consistency
based on the aNAP property for path-consistent atomic net-
works, whereas we employ the patchwork property of path-
consistent tractable subnetworks. This allows us to employ a
split set with a better branching factor, like Ĥ8, during back-
tracking search in the subnetworks, instead of using the split
set B, as (Huang, Li, and Renz 2013) do.
Proposition 3. Let G be a RCC-8 constraint network and
P a partitioning graph of G with k parts. The procedure
D-Consistency for P decides the problem of consistency
for G. The running time of D-Consistency is proportional
to |B|g(|B|gkm3/p + kblm3/p) where g is the number of
global constraints, l and m the maximum number of local
constraints and vertices across all parts of P , b the branching
factor of the split set S employed in the algorithm CONSIS-
TENCY, and p the number of available processing units.

In practice, if we assume a balanced partitioning and take
into account the branching factors of the split sets B and
Ĥ8, then the maximum number of nodes per part is n/k and
the above formula becomes: 4g(|B|gn3 + 1.438ln3)/pk2.
It is evident that the number of global constraints is funda-
mental to the performance of our algorithm and this num-
ber strongly depends on the k-way partitioning of the initial
network. Although the parameters p and k are fixed, they
significantly affect the running time, as it is shown next.
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Figure 2: a-b) Effect of partitioning heuristics and the number of parts on consistency checking, c) Performance of consistency
checking for power-law synthetic networks using hard relations (alpha = 2.5, 100 instances per data point)

Table 2: Performance of consistency checking (in seconds)
for real-world and synthetic networks using hard relations

nuts adm1 gadm1 H(80,15,4) H(80,15.5,4) H(80,17.5,4)
GQR-1500 - timeout - 0.09 0.09 0.09
PPyRCC8 77.17 - - 2,202.45 142.26 4,355.01
rcc8sat - - - 7.50 7.94 8.96
gp-rcc8 1.88 13,091.96 - timeout 0.36 timeout

Empirical evaluation
In this section we present the results of the empirical evalua-
tion of our reasoner gp-rcc8. Figure 2 depicts how the num-
ber of parts and the partitioning heuristic affect the running
time of consistency checking for some of the real-world net-
works considered. For gadm1 (Figure 2a), heuristics BA and
MF outperform the other two, while performance and num-
ber of parts seem to have an inversely proportional relation
up to 512 parts. For adm2 (Figure 2b), both BA and MF have
the best performance over the others, which are not present
in the figure due to a time out. This behavior is expected be-
cause heuristics BA and MF aim at producing balanced parts
that is crucial for the running time of DPath-Consistency.

Table 1 of the introductory section demonstrates the su-
periority of gp-rcc8 on checking consistency of tractable
RCC-8 networks. In that case the path-consistency algo-
rithm alone or, in our case, the DPath-Consistency algo-
rithm, suffices to decide consistency. Since these networks
are real-world, it is interesting to keep their structure in-
tact and modify the edge labels to use relations from the
set of hard relations NP8. In doing so, every edge of these
networks is randomly assigned a relation from NP8 us-
ing a uniform distribution. We then ensure that the resulting
networks are not trivially flawed, that is, they do not suf-
fer from trivial local inconsistencies. Therefore, in checking
their consistency, the backtracking algorithm will be ulti-
mately invoked. Table 2 depicts the running times of con-
sistency checking for the real-world networks nuts, adm1,
and gadm1 using a time limit of 20 hours. Dashes denote
that the respective reasoners exceeded the system’s memory
limit (64 GB) or terminated abruptly. gp-rcc8 outperforms
all others, except for gadm1 for which all reasoners exceed
the available memory due to the large search space.

The next set of experiments evaluates gp-rcc8 on syn-
thetic hard instances. Table 2 depicts the performance of
consistency checking for three very small networks that had
been characterized in (Renz and Nebel 2001) as the hardest
ones. These networks are generated according to the model
H(n, d, l) where n is the number of nodes, d the average

degree, and l the average number of base RCC-8 relations
per edge. It is evident that GQR outperforms all reasoners,
while gp-rcc8 has the worst performance except for the case
of the second network, in which it comes second best. A
closer inspection reveals that the first and third networks are
inconsistent. Putting this together with the fact that partition-
ing these networks results in a complete partitioning graph,
which means that there are shared RCC-8 constraints be-
tween every pair of parts, our implementation will split these
constraints in base relations, which explodes the number of
nodes that will be visited. rcc8sat has the second best per-
formance, which is expected for such small networks, as it
has been already pointed out in (Westphal and Wölfl 2009;
Huang, Li, and Renz 2013) for SAT-based reasoners.

In contrast, gp-rcc8 performs better for hard networks
with low average degree. Figure 2c depicts how the reason-
ers perform on power-law networks that were generated ac-
cording to the PLOD algorithm (Palmer and Steffan 2000).
It has been shown that networks of bounded tree-width, such
as power-law networks, make consistency tractable follow-
ing the decomposition approach of (Huang, Li, and Renz
2013). gp-rcc8 outperforms all others and manages to solve
all 100 networks for all network sizes we considered. On the
other hand, all other reasoners either solve some of them2

or none (e.g., GQR because of a crash). Although PPyRCC8
performs better than rcc8sat, it cannot solve any network of
4000 nodes or more. rcc8sat times out, but is able to solve
some networks up to 8000 of nodes.

Conclusions and future work
We presented gp-rcc8, a reasoner that employs graph par-
titioning for checking consistency of RCC-8 networks.
gp-rcc8 outperforms state of the art reasoners for very
large real-world networks and medium-sized synthetic ones,
while it is less efficient for smaller and synthetic networks.

In the future, we will adapt graph partitioning to various
classes of networks (e.g., power-law), since the quality of
the partitioning greatly affects the performance of gp-rcc8.
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Lutz, C., and Miličić, M. 2007. A tableau algorithm for de-
scription logics with concrete domains and general tboxes.
J. Autom. Reason. 38:227–259.
Nikolaou, C., and Koubarakis, M. 2013. Querying incom-
plete geospatial information in RDF. In SSTD, 447–450.
Palmer, C. R., and Steffan, J. G. 2000. Generating network
topologies that obey power laws. In Global Telecommunica-
tions Conference, 2000. GLOBECOM’00. IEEE, volume 1,
434–438. IEEE.
Pham, D. N.; Thornton, J.; and Sattar, A. 2008. Modelling
and solving temporal reasoning as propositional satisfiabil-
ity. Artif. Intell. 172(15):1752–1782.
Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A Spatial
Logic based on Regions and Connection. In Proceedings of
the 3rd International Conference on Knowledge Represen-
tation and Reasoning.
Renz, J., and Nebel, B. 1999. On the Complexity of Qual-
itative Spatial Reasoning: A Maximal Tractable Fragment
of the Region Connection Calculus. Artificial Intelligence
1-2:95–149.
Renz, J., and Nebel, B. 2001. Efficient methods for qual-
itative spatial reasoning. Journal of Artificial Intelligence
Research (JAIR) 15:289–318.
Renz, J. 1999. Maximal tractable fragments of the region
connection calculus: A complete analysis. In IJCAI, 448–
455.

Robertson, N., and Seymour, P. D. 1986. Graph minors.
ii. algorithmic aspects of tree-width. Journal of algorithms
7(3):309–322.
Simon, H. D., and Teng, S.-H. 1997. How good is re-
cursive bisection? SIAM Journal on Scientific Computing
18(5):1436–1445.
Sioutis, M., and Koubarakis, M. 2012. Consistency of
Chordal RCC-8 Networks. In ICTAI. Athens, Greece,
November 07–09, 2012.
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