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Université Montpellier, France
gilles.trombettoni@lirmm.fr

Philippe Vismara
LIRMM

SupAgro Montpellier, France
vismara@lirmm.fr

Gilles Chabert
LINA

EMN Nantes, France
gilles.chabert@mines-nantes.fr

Abstract

Given a set of axis-parallel n-dimensional boxes, the q-
intersection is defined as the smallest box encompassing all
the points that belong to at least q boxes. Computing the q-
intersection is a combinatorial problem that allows us to han-
dle robust parameter estimation with a numerical constraint
programming approach. The q-intersection can be viewed as
a filtering operator for soft constraints that model measure-
ments subject to outliers. This paper highlights the equiva-
lence of this operator with the search of q-cliques in a graph
whose boxicity is bounded by the number of variables in the
constraint network. We present a computational study of the
q-intersection. We also propose a fast heuristic and a sophisti-
cated exact q-intersection algorithm. First experiments show
that our exact algorithm outperforms the existing one while
our heuristic performs an efficient filtering on hard problems.

1 Introduction
The combinatorial q-intersection operator can handle a spe-
cific class of numerical (real-valued) Constraint Satisfaction
Problems. In numerical CSPs, the domain of the n variables
is an n-dimensional box (a Cartesian product of n intervals).

The q-intersection appears in the context of parameter es-
timation, a fundamental task in control theory, robotics and
autonomous systems, where the state (position, velocity, etc)
has to be estimated from noisy sensor data. The purpose of
parameter estimation is to estimate the unknown “internal”
parameters of a system from a set of measurements. A sys-
tem can be thought here as any physical process that trans-
forms inputs into outputs. The estimation is made from the
measurements of outputs obtained with different inputs.

Using a constraint programming approach, each measure-
ment provides a constraint system y = f(x, p) where x
is the input vector, y is the output vector, f is a vector of
real-valued functions and p is a vector of unknown param-
eters. As an illustrative example, consider a simple spring
for which the constant k is the parameter to be determined.
It is well-known that a mass m attached to the spring has a
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simple harmonic motion whose angular frequency is ω :=√
m/k. On this example, the input is m, the output is ω, the

parameter is k and we have f(x, p) =
√
x/p. We perform

pairs of measurements (xi, yi), each measurement being as-
sociated with some uncertainty. For instance, attaching to
the spring different loads of given masses mi, one obtains a
set of measurements ωi of the frequencies.

In many applications uncertainty is modeled by a Gaus-
sian noise.1 In the interval constraint programming ap-
proach, uncertainty is modeled by a bounded error ε (Walter
and Piet-Lahanier 1993). In this context, one can enforce
consistency algorithms on the ith measurement constraint:

yi − εi ≤ f(xi, p) ≤ yi + εi

to get a filtered/contracted box [p]i that rigorously encloses
the true value of the parameters. The overall approximation
is then obtained by a simple intersection: p ∈

⋂
i[p]i. This

filtering approach is nice because it gives a safe enclosure of
the parameters, regardless of the model. However, it is not
robust to outliers, i.e., points that correspond to experimental
errors and lead to an empty intersection. Another idea is to
assume that at least q measurements are valid, the other ones
being potential outliers. The q-intersection studied in this
paper replaces the previous intersection by a union of all the
intersections obtained with q measurements. More formally,
given a set S of boxes and an integer q, we say that p ∈ Rn is
a (S, q)-intersection point if p belongs to at least q boxes in
S. The q-intersection of S is thus defined as follows (where
IR is the set of all intervals over R).
Definition 1. Let S be a set of boxes of IRn. The q-
intersection of S, denoted by ∩qS, is the box of smallest
perimeter that encloses the set of (S, q)-intersection points.

For instance, the box in dotted lines in Fig. 1–b is the
4-intersection of the 10 two-dimensional boxes (in plain

1When the noise is described by a probability distribution, the
parameter estimation problem is tackled by statistical methods (see
e.g., (Beck and Arnold 1977)). If the function f is linear, the least
squares method gives the maximum-likelihood estimator (by the
Gauss-Markov theorem). Otherwise, no clear property holds on the
result, which motivates the constraint programming approach.
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(a) A set S of 2-dimensional
boxes

(b) The dashed box is ∩4S.
Zones that belong to at least 4
boxes are darkened.

Figure 1: Illustration of q-intersection for q=4, n=2.

lines). The q-intersection allows a (soft) constraint pro-
gramming approach to parameter estimation. It handles soft
numerical constraint networks where at least q numerical
constraints must be verified. Each subsystem yi − εi ≤
f(xi, p) ≤ yi + εi corresponding to one measurement con-
tracts the box (filters the domain) using consistency meth-
ods, e.g., numeric constraint propagation (Lhomme 1993;
Benhamou et al. 1999). Then, an operator computes the q-
intersection of all the filtered boxes. For some applications,
these two steps are called at each node of a search tree.

The problem of parameter estimation with outliers in a
bounded-error context has been introduced first in (Jaulin,
Walter, and Didrit 1996), where the q-intersection has also
been formalized. Our paper presents the first theoretical
study of q-intersection, along with efficient incomplete and
exact algorithms to handle this problem.

Intervals, boxes and orderings A closed interval is a set
of the form [a, b] = {x ∈ R : a ≤ x ≤ b}. For an in-
terval I = [a, b], we use the notation I = a and I = b.
An n-dimensional box is a Cartesian product of n intervals,
i.e., an element of IRn. The ith coordinate of a box B (an
interval) is denoted by B[i], and its perimeter is defined as
|B| =

∑n
i=1B[i] − B[i]. We call direction a couple (i, o),

where i is a dimension and o ∈ {−,+} is the orientation.
For a box B, we denote Ld(B) the left bound of B w.r.t. d,
where Ld=(i,+)(B) = B[i] and Ld=(i,−)(B) = B[i]. Sym-
metrically, we define Rd(B), the right bound of B w.r.t.
d, where Rd=(i,+)(B) = B[i] and Rd=(i,−)(B) = B[i].
We define the order ≥o on R as ≥ if o = +, and ≤ if
o = −. Given a direction d = (i, o) and a set of boxes
S = {Bi}i∈N, we denote by >d the strict order on S such
that Bi >d Bj if and only if (Ld(Bi) >o Ld(Bj)) or
(Ld(Bi) = Ld(Bj)) ∧ (i > j).

The q-intersection operator A straightforward exact al-
gorithm for computing the q-intersection is the grid algo-
rithm introduced in (Jaulin and Bazeille 2009). The core idea
is described in Figure 2: using the projections of the boxes
onto every axis, one can generate a grid of (2p − 1)n cells,
where p is the number of boxes and n is the number of di-
mensions. Note that for every x ∈ Rn belonging to q boxes,

Figure 2: Principle of the grid algorithm for q=2, n=2. Cells
contained in q boxes are dotted. The dashed box is ∩2S.

Figure 3: Principle of projective filtering for q=2, n=2. The
method outputs the dashed box, a gross overestimate of∩2S.

there exists a cell C containing x that is included in at least
q boxes. Therefore, the algorithm iterates through the cells,
and computes the minimum-perimeter bounding box of all
the cells that are included in at least q boxes. The overall
complexity is O(np(2p − 1)n). This algorithm is polyno-
mial if n is fixed, but not in the general case.

In practice the grid algorithm is rather slow, even for
small values of n. Moreover, the q-intersection operator is
typically used to filter the search space at each node of a
search tree. Hence, if exact q-intersection algorithms are
too slow for this task, computing a reasonable enclosure of
∩qS may be satisfactory (provided it can be done in poly-
nomial time). This can be achieved using a method first in-
troduced in (Chew and Marzullo 1991), called here projec-
tive filtering, that solves the problem on each dimension in-
dependently. Formally, for each dimension i, the algorithm
computes the projection S[i] of the boxes and solves the q-
intersection problem on S[i]. Since S[i] is a set of intervals
each ∩qS[i] can be computed in polynomial time (a special-
ized version of the grid algorithm is O(p log(p))). It is clear
that (∩qS)[i] ⊆ (∩qS[i]), so

∏
i∈(1..n)(∩qS[i]) is a valid

enclosure of ∩qS. The overall complexity is O(np log(p)).
Figure 3 illustrates the algorithm. This method has no guar-
anteed approximation ratio but can be fairly efficient on
problems with few parameters (Jaulin and Bazeille 2009).

2 Theoretical analysis
In this section we give a brief overview of the complexity of
problems closely related to the q-intersection operator.

Given a set S of boxes, the intersection graph of S is the
graph whose vertices are in one-to-one correspondence with
the boxes in S and in which two vertices are adjacent if and
only if the corresponding boxes have a non-empty intersec-
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tion. In graph theory, the boxicity of a graphG is the least in-
teger k such thatG is the intersection graph of some set of k-
dimensional boxes. For instance, interval graphs are exactly
the graphs of boxicity one. It has been observed in (Roberts
1969) that the boxicity is properly defined for every graph
G = (V,E), and satisfies box(G) ≤ |V |. The next lemma
follows from the fact that Roberts’ proof is constructive.
Lemma 1. There is a polynomial-time algorithm that takes
as input a graph G and constructs a set S of boxes whose
intersection graph is G.

Given a set S of boxes of IRn and an integer q, we call
QPOINT the problem of deciding if an (S, q)-intersection
point exists. The following proposition will be instrumental.
Proposition 1. QPOINT is NP-complete.

Proof. A vector x ∈ Rn contained in q boxes is a wit-
ness, so the problem is in NP. For hardness, we reduce
from k-CLIQUE. For every instance 〈G = (V,E), k〉 of
k-CLIQUE, we can obtain a box-representation S of G
in polynomial time using Lemma 1. If there is a (S,q)-
intersection point, then G has a k-clique by definition of the
intersection graph. Conversely, if G has a k-clique, there ex-
ists a subset S′ ⊆ S of size k whose members have a pair-
wise non-empty intersection. Since axis-parallel boxes are
2-Helly (Graham, Grötschel, and Lovász 1995), there exists
an (S′, q)-intersection point, which concludes the proof.

Recall that the initial goal behind the use of the q-
intersection is to reduce search space. Therefore, a natu-
ral conversion of the q-intersection operator into a decision
problem takes as input a set of boxes S and asks whether
|∩qS| ≤ k for some fixed rational number (or integer) k. We
call this problem k-QINTER, and QINTER-OPT the prob-
lem of determining the minimum k such that | ∩q S| ≤ k.
Theorem 1. k-QINTER is coNP-complete for every k and
QINTER-OPT is not polynomially approximable with a
constant factor unless P = NP.

Proof. For simplicity, we denote by k-coQINTER the
complementary problem of k-QINTER. Since Q = {x ∈
Rn : x is a (S, q)-intersection point} is a finite union of in-
tersections of boxes, which are closed sets, Q is a closed set
and contains 2n extremal points. If | ∩q S| > k, then these
extremal points provide a witness so k-coQINTER is in NP.
For hardness, we reduce from QPOINT. Let I = (S, q) be
an instance of QPOINT. We pick x ∈ Rn such that for every
point y that belongs to a box in S, |x−y| ≥ k+1. Then, we
add a set S′ of q identical boxes of perimeter k centered on
x. By construction, the boxes from S′ have an empty inter-
section with the boxes from S. We denote by I ′ = (S∪S′, q)
the instance of k-coQINTER obtained. If there is a (S, q)-
intersection point, then ∩q(S ∪ S′) must contain both x and
a point contained in at least one box from S. By the choice
of x, this implies | ∩q (S ∪S′)| > k and I ′ is a yes-instance.
Conversely, if | ∩q (S ∪ S′)| > k then ∩q(S ∪ S′) 6= ∩qS′
because by construction | ∩q S′| = k. Thus, there must exist
an (S, q)-intersection point, and I is a yes-instance.

The second claim follows from the fact that the point x
can be chosen to be arbitrarily distant from the boxes of S.

Hence, if we force x to be at a distance larger than εk + 1
from any box of S in every dimension, any polynomial ε-
approximation algorithm would decide of the satisfiability
of I , which is impossible unless P = NP.

Unless P = NP, these results rule out the prospect of poly-
nomial time algorithms for the q-intersection operator, even
if we are only looking for a constant-factor approximation.
However, computing ∩qS can be harder than computing
|∩qS|, so the analysis is not fully satisfactory. We now show
that the following problem already exhibits high complexity.
QINTER-CHECK: Given a set S of boxes, an integer q and
a box B, is the q-intersection of S equal to B ?

The class DP, introduced in (Papadimitriou and Yan-
nakakis 1982), is the set of all decision problems that can
be rephrased as the intersection of an NP problem and a
coNP problem. Notorious DP-complete problems include
CRITICAL-SAT, which asks whether a given CNF is un-
satisfiable but removing any clause makes it satisfiable,
or EXACT-CLIQUE, which is the problem of deciding
whether the clique number of a graph is exactly k. Note that
DP-complete problems are both NP-hard and coNP-hard.

Theorem 2. QINTER-CHECK is DP-complete.

Proof. We reduce from EXACT-CLIQUE. Consider an in-
stance 〈G = (V,E), k〉 of EXACT-CLIQUE: Does the
largest clique in G has size exactly k? We have to compute,
in polynomial time, a set of boxes Sf and a box β such that
∩qSf = β if and only if k is the clique number of G.

Using Lemma 1, we can build a set S of n-dimensional
boxes (n = |V |) such that there exists an (S, k)-intersection
point if and only if G has a clique of size k. Let Bh be the
minimum-perimeter bounding box of S. We denote by G′
the graph obtained by adding a universal vertex to G and we
define S′ = S ∪{Bh}. Since Bh intersects with all boxes in
S, there exists an (S′, k+1)-intersection point if and only if
G′ has a clique of size k+1. For simplicity, we will assume
that every point in a box from S′ has coordinate in ]− 1,+1[
for every dimension (if this is not the case, we can enforce it
by scaling down S′ and translating it closer to the origin).

We build an (n + 1)-dimensional instance of QINTER-
CHECK as illustrated in the following figure (n = 2):

S
−
3 S

+
3

S?

S −
1

S +
1

S+
2

S−2

For every dimension i, we define the set of boxes S+
i that

includes a box B+
i for every B′ ∈ S′, such that B+

i [j] =
B′[j] for j < i, B+

i [i] = [1, 1], and B+
i [j] = B′[j − 1] for

j > i. Intuitively, S+
i is a copy of S′ extended to be (n+1)-

dimensional, in which all the boxes have width [1, 1] in the
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extra dimension i. Symmetrically, we define a set S−i for ev-
ery dimension i, whereB−i [i] = [−1,−1] for any box in S−i .
Finally, we define S? as an (n + 1)-dimensional extension
of S setting B[n+ 1] = [2, 2] for the missing dimension.

Let Sf = ∪i=1..(n+1)

(
S+
i ∪ S

−
i

)
∪ S? and β =

[−1, 1]n+1. We will prove that ∩k+1Sf = β if and only
if the clique number of G is k. Suppose the clique num-
ber of G is k. Then, every S+

i (resp. S−i ) contains an
(Sf , k + 1)-intersection point, but S? does not (because G′
has a (k + 1)-clique, but not G). Therefore, for each di-
mension i, there is a pair of (Sf , k + 1)-intersection points
x+i , x−i such that x+i [i] = 1 and x−i [i] = −1. Since ev-
ery box of Sf\S? has its coordinates in [−1, 1], we have
∩k+1Sf = ∩k+1(Sf\S?) = [−1, 1]n+1. The converse im-
plication is similar : if ∩k+1Sf = [−1, 1]n+1, then there is
no (S?, k + 1)-intersection point, thus G has no (k + 1)-
clique. Furthermore, for every i there exists an (S+

i , k +
1)-intersection point, and by construction an (S′, k + 1)-
intersection point, which means that G has a k-clique.

The above proof only shows hardness. For membership
in DP, an instance (S, q,B) of QINTER-CHECK is a yes-
instance if and only if (a) there is an (S, q)-intersection point
on each face of B (clearly in NP) and (b) there is no (S, q)-
intersection point outsideB (which is a coNP problem).

3 (q-1)-core filtering and greedy coloring
We first propose a new polynomial-time heuristic algorithm
for the q-intersection problem, based on the intersection
graph G of the box set S. Even if the intersection graph
alone does not capture the whole problem geometry, it is
a convenient structure supporting many efficient operations.

Observe that the boxes which are not part of a q-clique in
G can be safely removed since they cannot contain an (S, q)-
intersection point. While deciding whether a given vertex is
part of a q-clique is NP-hard, weaker elimination rules can
be applied in polynomial time. A simple necessary condition
for a vertex to be in a q-clique is that it must belong to the
(q − 1)-core of G, defined as the largest induced subgraph
of G whose vertices have degree at least q − 1. If G has p
vertices andm edges, the (q−1)-core ofG can be computed
in time O(m+ p) (Batagelj and Zaversnik 2011).

We can improve this filtering with a greedy coloring run
in every direction. For any coloring, each clique of the in-
tersection graph must contain one vertex of color at least
q. Therefore, if for a given direction d (for instance going
”from left to right”) we perform a greedy coloring of the
boxes using the order<d, the left bound of the first box with
color q will be smaller than the left bound of ∩qS. Our al-
gorithm coreF (Algorithm 1) repeats that procedure on all
2n directions to obtain a valid enclosure of ∩qS.

The overall complexity of the procedure coreF is
O(np2 +m+ p+ np log(p) + nm) = O(np2), to be com-
pared to the complexity O(np log(p)) of projective filtering.
Proposition 2. coreF is strictly stronger than projective
filtering.

Proof. We first prove that coreF is at least as tight as pro-
jective filtering. Let i be a dimension. We will prove that

Algorithm 1: coreF(S, q)
Data: A set S of p n-dimensional boxes, an integer q

1 G← The intersection graph of S
2 G← The (q-1)-core of G
3 Remove from S all the boxes that are no longer in G
4 for i = 1..n do
5 Perform a greedy coloring with respect to <d=(i,+)

6 L[i]← The left bound of the first box with color q
7 Perform a greedy coloring with respect to <d=(i,−)
8 R[i]← The right bound of the first box with color q
9 return [L[1], R[1]]× ...× [L[n], R[n]]

∩qS[i] ≤ L[i] (the proof ∩qS[i] ≥ R[i] is symmetric). By
construction of L[i], we know that the box B colored with
q (where L[i] = Ld(B)) is adjacent to q − 1 boxes in G
(these boxes are colored with 1..(q − 1)). So B intersects
with q − 1 boxes whose left bound is smaller or equal to
L[i]. Hence L[i] is a (S[i], q)-intersection point.

A simple example on which coreF computes a strictly
tighter box than projective filtering comes with the 3 follow-
ing rectangles: B1 = [0, 3]× [0, 1], B2 = [0, 1]× [0, 3] and
B3 = [2, 3]× [2, 3]. For q = 2, coreF returns [0, 1]× [0, 1]
while projective filtering returns [0, 3]× [0, 3].

4 Exact algorithm
In this section we present a new exact algorithm for the q-
intersection operator. Like coreF, the algorithm operates
mainly on the intersection graph but makes an efficient use
of the geometric information available through the boxes.

By the Helly property, the q-cliques of the intersection
graph G are in one-to-one correspondance with the sets
of q boxes that share a common point. Therefore, the q-
intersection can be computed by enumerating the q-cliques
ofG: starting from an empty boxH , for each q-clique found
with associated boxes B1, ..., Bq we expand H to include
B1 ∩ ... ∩ Bq . Once every q-clique has been processed,
H contains every (S, q)-intersection point and has mini-
mum perimeter, so H = ∩qS. This enumeration procedure
can then be improved by a Branch-and-Bound. Consider the
search tree whose depth-k nodes are exactly the cliques of
size k, and the children of a node labeled with a clique C are
labeled with cliques of the form {C∪v}. At each node, if the
intersectionU of the boxes associated with the current clique
is such that U ⊆ H , we know that no q-clique originating
from this branch can improve H and we can backtrack.

To be efficient in practice, this B&B must be able to gener-
ate good bounds quickly. It appears that if the goal is only to
compute Ld(∩qS) for some direction d (which corresponds
to a single face of ∩qS), simple branching rules can guaran-
tee that the first q-clique found determines Ld(∩qS).

Therefore, despite the potential redundancy, the best q-
intersection algorithm we have devised runs 2n times the
“directional” B&B, i.e., once for each direction/face.

Strategy for one face Let us fix a direction d = (i, o).
Let Q be the set of all possible nonempty intersections of q
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boxes from S. The goal is to compute Ld(∩qS), defined by:

Ld(∩qS) =
≥o

min
Q∈Q
Ld(Q) (1)

Furthermore, it is easy to prove that every Q ∈ Q satisfies:

Ld(Q) =
≥o
max

B s.t.Q⊆B
Ld(B) (2)

Geometrically, it means that the left bound of Q is the left
bound of the rightmost box used to compute the intersec-
tion Q. It follows that the optimal intersection Qmin for a
direction d is such that the left bound of its rightmost box is
minimum. More formally:

Ld(∩qS) =
≥o

min
Q∈Q

(
≥o
max

B s.t.Q⊆B
Ld(B)

)
(3)

Thus, if we consider one box B at a time in increasing or-
der w.r.t. >d and ask for each one: “Is B the rightmost box
of some intersection Q of q boxes?”, then the first positive
answer will provide Ld(∩qS).

The subproblem solved for each box B is equivalent to
decide whether there exists an (S′, q−1)-intersection point,
where S′ = {B′ ∈ S|(B′ <d B) ∧ (B′ ∩ B 6= ∅)},
which is a standard (q − 1)-clique problem on the intersec-
tion graph of S′. On a side note, since graphs of boxicity
n have at most O((2p)n) maximal cliques (Chandran, Fran-
cis, and Sivadasan 2010), the (q−1)-clique subproblems are
solvable in polynomial time if n is fixed.

Bound propagation and nogoods Each run of the one-
direction algorithm provides valuable information that can
be reused for the next calls to avoid redundant computations.

First, if we have an intersection Q ∈ Q such that
Ld(∩qS) = Ld(Q) (obtained after the treatment of one
face), it is clear that any box B ∈ S such that Rd(B) <o

Ld(Q) cannot contain any (S, q)-intersection point, and
hence can be removed from the data set. Second, we also
know that any intersection Q of q boxes found provides an
upper bound for any other direction d′ = (i′, o′): thus, we
can ignore any box B such that Ld′(B) ≥o′ Ld′(Q) when
studying d′. The boxes removed by the second rule depend
on the direction d′ studied, which forces to use sets of al-
lowed boxes that are specific to each direction. Figure 4–
(a) illustrates both rules. The rule 1 definitely eliminates the
rectangle 1 which is entirely in the left side of the hached
region. The rule 2 is applied just before determining the bot-
tom face of ∩4S and states that we can ignore the rectangle
2, since it is completely in the top side of the hached area.

In addition, no (S′, q)-intersection point may exist for any
set S′ of boxes such that ∀B ∈ S′, Ld(B) <o Ld(Q) (Fig-
ure 4). It may happen that subproblems to be solved in the
remaining directions involve box sets with this property, and
we want to avoid this situation. Thus, when one optimal in-
tersection Q is determined for some direction d = (i, o), the
maximal set of boxes SN

d = {B ∈ S|Ld(B) <o Ld(Q)}
is stored as a nogood. Then, each time we solve a q-clique
subproblem over some box set S′, we perform a preliminary
inclusion check S′ ⊆ SN

d for all processed d, and skip the

(a) (b)

Figure 4: (a) Example of bound propagation and (b) no-
good management after the determination of the leftmost 4-
intersection (w.r.t d) of 2D boxes.

subproblem if at least one inclusion is true. Figure 4–(b) il-
lustrates the nogood recording after having found an optimal
4-intersection for the left face. No subset S′ of the colored
boxes (whose left face appears before the darkened rectan-
gle) can contain an (S′, q)-intersection point.

The algorithm The complete procedure for computing
the q-intersection is summarized in Algorithm 2. H is the
minimum-perimeter bounding box of the nonempty inter-
sections of q boxes found by the algorithm, and is updated
everytime a new intersection is found using the procedure
MinBoundingBox. N is the set of nogoods. For every d,
A[d] is the set of allowed boxes for the direction d. The sub-
procedure FindMinQ (Algorithm 3) is the algorithm de-
tailed in the section ”Strategy for one face”. Propagate
implements the propagation mechanisms discussed above
(the two rules and nogood management). Find_Clique
is a black-box clique solver that takes as input a graph and
an integer k, and returns either a k-clique or ∅ if none exists.
The correctness of QInter2 follows from (3).

Algorithm 2: QInter2(S, q)
Data: A set S of boxes, an integer q

1 H ← ∅ ; N ← ∅
2 for d ∈ all directions do A[d]← S
3 for d ∈ all directions do
4 Q← FindMinQ(A[d], q, d,N )
5 if Q 6= ∅ then H ←MinBoundingBox(H,Q)
6 else if d is the first direction then return ∅
7 (A,N )← Propagate(S,A, H,Q, d,N )

8 return H

5 Implementation and first experiments
We have implemented the projective filtering, coreF and
QInter2 in the C++ numerical constraint programming li-
brary Ibex (Chabert and Jaulin 2009; Chabert 2014), which
originally shipped with the grid algorithm. Q-clique prob-
lems are solved using Cliquer (Ostergard 2002). All ex-
periments have been performed on a 2.2Ghz Intel Core i7.
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Algorithm 3: FindMinQ(S, q, d,N )

Data: A set S of boxes, an integer q, a direction d, a set
of nogoods N

Result: An intersection Q of q boxes optimal for d

1 Order S in the ascending order according to >d

2 for j = q..|S| do
3 B ← S[j] ; N ← {B′ ∈ S|B >d B

′, B ∩B′ 6= ∅}
4 if @N ′ ∈ N s.t. N ⊆ N ′ then
5 G← The intersection graph of N
6 C ← Find Clique(G, q − 1)
7 if C 6= ∅ then return

⋂
Bi∈C Bi

8 return ∅

Comparison of exact algorithms We have compared
QInter2 with the grid algorithm on randomly generated
instances. The center of each of the p boxes in S and its
radius in every dimension are uniformly drawn in [0, L]. In
practice, the instances obtained using this method exhibit an
abrupt phase transition: there exists a value qc such that for
q << qc, ∩qS is roughly [0, L]n, for q >> qc ∩qS is triv-
ially empty, and for q ∼ qc the q-intersection problem is
very hard. The value qc can be controlled by multiplying
the size of each box by a scaling factor. The two values of
qc we have studied are 0.3 p (many outliers) and 0.8 p (few
outliers). The corresponding scaling factor (for transforming
each random instance into a difficult one) is determined em-
pirically. We have run the grid algorithm and QInter2 on a
selection of such instances, with q ∼ qc, and Table 1 summa-
rizes the runtimes obtained.2 Heuristics are not included as
they always return a large and inaccurate enclosure of ∩qS.

n p q% grid (Ibex) QInter2
2 100 0.8 0.67 0.01
2 300 0.8 17.8 0.57
2 600 0.8 147 8.53
6 100 0.8 >3,600 0.05
6 500 0.3 >3,600 3.55
6 500 0.8 >3,600 16.6

15 500 0.3 >3,600 213
25 100 0.8 >3,600 0.13
25 200 0.3 >3,600 1.98
25 200 0.8 >3,600 1.58
25 300 0.3 >3,600 379
50 100 0.8 >3,600 0.42

Table 1: Comparison of the grid algorithm and QInter2 on
random instances. Running times are expressed in second.

In the light of these results it is clear that QInter2
significantly outperforms the grid algorithm, which is ex-
tremely inefficient in high dimension. Furthermore, during
the experiments used to determine the correct scaling factor,
it has appeared that QInter2 solves immediately easy in-
stances (where q differs from qc) while the grid algorithm is

2The code and instances of our experiments are available in the
release 2.1.2 (and subsequent) of IBEX (www.ibex-lib.org).

still very slow. Note that we cannot deduce an accurate cor-
relation between values of parameters and the performance
of our algorithm, as this experiment is only based on a pre-
liminary sampling of difficult instances.

Comparison of heuristic propagators In this experiment
we have compared our heuristic coreF with projective fil-
tering in the broader context of parameter estimation. The
n-dimensional localization problem is defined by a target
T ∈ Rn of unknown position and a set of beacons, whose
coordinates are known. Each beacon provides an estimation
of the distance between itself and T , possibly erroneous, and
the goal is to compute the coordinates of T assuming at least
q beacons provided valid estimations.

This problem can be solved using constraint programming
and q-intersection. The algorithm is a standard tree search
where q-intersection is used multiple times at each node
to prune search space. The reader can refer to (Jaulin and
Bazeille 2009) for a detailed description of the procedure.

In our instances, T and the positions of the beacons are
drawn uniformly in [0, L]. Then, slightly more than q bea-
cons make a correct measurement and return a thin interval
that contains the right value. The other beacons return a ran-
dom thin interval. We ran the optimization procedure using
both heuristics, and measured the size of the search tree (to
estimate the filtering power of the q-intersection algorithms)
and the total running time. Table 2 summarizes our results.

projF coreF
n p q% time (s) # br time (s) # br
2 500 0.2 0.23 39 0.21 23
2 500 0.5 0.08 15 0.17 13
2 500 0.8 0.04 13 0.21 13
4 500 0.2 147 25,944 83.5 9,770
4 500 0.5 0.48 84 1.03 46
4 500 0.8 0.08 19 0.58 18
6 200 0.2 2,200 727,134 1,292 355,999
6 200 0.5 22.13 9,070 18.74 3,598
6 200 0.8 1.02 401 2.68 275

Table 2: Time to compute the position of T using various
q-intersection algorithms. projF denotes the projective fil-
tering, and # br is the number of branches in the search tree.

Our experiments show that the use of coreF over pro-
jective filtering is beneficial on the difficult instances tested
(which happen to be the ones with the largest number of
outliers), cutting both the size of the search tree and running
times. However, easy instances are better handled by projec-
tive filtering. Exact algorithms are not included as they are
generally not competitive, even though QInter2 beats pro-
jective filtering on the hardest instance tested (n=6,p=200).

6 Conclusion
This paper has presented the first theoretical analy-
sis of the q-intersection operator. We have proven that
QINTER-CHECK is DP-complete and proposed incomplete
and exact algorithms to handle the q-intersection problem.
Experiments on instances randomly generated confimed that

2635



our QInter2 algorithm outperforms the existing grid algo-
rithm and suggest that our new heuristic does well on prob-
lems with many outliers. A future work would embed our
new algorithms in real robust parameter estimation applica-
tions.

References
Batagelj, V., and Zaversnik, M. 2011. Fast Algorithms for
Determining (generalized) Core Groups in Social Networks.
Advances in Data Analysis and Classification 5(2):129–145.
Beck, J. V., and Arnold, K. J. 1977. Parameter Estimation
in Engineering and Science. Wiley series in probability and
mathematical statistics. John Wiley & Sons.
Benhamou, F.; Goualard, F.; Granvilliers, L.; and Puget, J.-
F. 1999. Revising Hull and Box Consistency. In Proc. ICLP,
230–244.
Chabert, G., and Jaulin, L. 2009. Contractor Programming.
Artificial Intelligence 173:1079–1100.
Chabert, G. 2014. www.ibex-lib.org.
Chandran, L.; Francis, M.; and Sivadasan, N. 2010. Geo-
metric Representation of Graphs in Low Dimension Using
Axis Parallel Boxes. Algorithmica 56(2):129–140.
Chew, P., and Marzullo, K. 1991. Masking failures of multi-
dimensional sensors. In Reliable Distributed Systems, 1991.
Proceedings., Tenth Symposium on, 32–41.
Graham, R. L.; Grötschel, M.; and Lovász, L., eds. 1995.
Handbook of Combinatorics (Vol. 1). Cambridge, MA,
USA: MIT Press.
Jaulin, L., and Bazeille, S. 2009. Image Shape Extraction
using Interval Methods. In Sysid 2009.
Jaulin, L.; Walter, E.; and Didrit, O. 1996. Guaranteed Ro-
bust Nonlinear Parameter Bounding. In CESA’96 IMACS
Multiconference (Symposium on Modelling, Analysis and
Simulation), 1156–1161.
Lhomme, O. 1993. Consistency Techniques for Numeric
CSPs. In Proc. IJCAI, 232–238.
Ostergard, P. R. 2002. A Fast Algorithm for the Maximum
Clique Problem. Discrete Applied Mathematics 120(1–
3):197–207.
Papadimitriou, C. H., and Yannakakis, M. 1982. The Com-
plexity of Facets (and Some Facets of Complexity). In Pro-
ceedings of the Fourteenth Annual ACM Symposium on The-
ory of Computing, STOC, 255–260. New York, NY, USA:
ACM.
Roberts, F. S. 1969. On the boxicity and cubicity of a graph.
Recent Progresses in Combinatorics, Academic Press, New
York 301–310.
Walter, E., and Piet-Lahanier, H. 1993. Guaranteed Linear
and Nonlinear Parameter Estimation from Bounded-error
Data: A Survey. In ISCAS, 774–777.

2636




