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Abstract

The concepts of MSS (Maximal Satisfiable Subset) and
CoMSS (also called Minimal Correction Subset) play
a key role in many A.I. approaches and techniques. In
this paper, a novel algorithm for partitioning a Boolean
CNF formula into one MSS and the corresponding
CoMSS is introduced. Extensive empirical evaluation
shows that it is more robust and more efficient on most
instances than currently available techniques.

Introduction
The concept of MSS (Maximal Satisfiable Subset) has long
been playing a key role in many logic-based A.I. approaches
and techniques. Especially, in the knowledge representation
domain, reasoning on the basis of inconsistent premises is
often modeled using MSSes as basic building blocks (in e.g.
belief revision, knowledge fusion, argumentation theory or
nonmonotonic reasoning (see surveys and edited volumes
of early seminal contributions in each of these fields in e.g.
(Fermé and Hansson 2011), (Grégoire and Konieczny 2006),
(Besnard and Hunter 2008) and (Ginsberg 1987)).

The complement of one MSS in an inconsistent set of for-
mulas, noted CoMSS, is often called Minimal Correction
Subset: it forms a minimal subset of formulas to be dropped
in order to restore consistency. Consequently, the concept of
CoMSS is a crucial paradigm in both model-based diagno-
sis (see seminal works in (Hamscher, Console, and de Kleer
1992)) and consistency-restoring techniques in knowledge-
bases.

Beyond logic-based frameworks, MSSes and CoMSSes
find similar roles in constraint reasoning when a problem
is over-constrained and thus yields no solution (see for ex-
ample in constraint networks (Rossi, van Beek, and Walsh
2006; Lecoutre 2009) or in optimisation (Chinneck 2008)).

In this paper, we are interested in the ubiquitous prob-
lem within the aforementioned domains that consists in par-
titioning an unsatisfiable Boolean CNF formula into one
MSS and the corresponding CoMSS, when maximality
is considered with respect to set-theoretical inclusion (vs.
cardinality). Computing one such partition is in ∆P

2 =
PNP (Papadimitriou 1993). Despite this heavy cost in the
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worst case, several computational approaches to extract one
(MSS,CoMSS) partition have been proposed that prove em-
pirically viable for many instances.

Clearly, extracting one (MSS,CoMSS) pair is close to the
basic version of the MAX-SAT problem that involves soft
clauses only and consists in extracting one maximal (with
respect to cardinality) satisfiable subset of a Boolean CNF
formula. Every solution to MAX-SAT is one MSS whereas
every MSS is not necessarily a solution to MAX-SAT. Inter-
estingly, as advocated by (Marques-Silva et al. 2013), spe-
cific algorithms to compute one MSS can prove faster than
MAX-SAT-dedicated ones; in this respect, computing one
MSS can be used to deliver one approximate solution to
MAX-SAT when a solution to this latter problem is out of
reach.

Noticeably, CoMSS and MUS (namely, Minimal Unsat-
isfiable Subset) are dual concepts. One MUS is an unsatis-
fiable subset such that dropping any one of its clauses leads
to satisfiability. MUSes can be computed as hitting sets of
CoMSSes since any CoMSS contains one clause of each
MUS (Bailey and Stuckey 2005; Grégoire, Mazure, and
Piette 2007a; 2007b; Liffiton and Sakallah 2008).

In the paper, a novel algorithm to compute one
(MSS,CoMSS) partition of an unsatisfiable Boolean CNF
formula is thus introduced. Extensive empirical evaluation
shows that it is more robust and more efficient on most in-
stances than currently available techniques to extract one
MSS or one CoMSS.

Logical preliminaries and basic concepts
Let L be a standard Boolean logical language built on a fi-
nite set of Boolean variables and usual connectives (namely,
∧, ∨, ¬ and→ standing for conjunction, disjunction, nega-
tion and material implication, respectively). Any formula
in L can be represented (while preserving satisfiability) in
clausal normal form (in short, a CNF) using a set (inter-
preted conjunctively) of clauses, where a clause is a formula
made of a finite disjunction of literals and where a literal is
Boolean variable that can negated. Formulas will be noted
using lower-case Greek letters such as α, β, etc. Sets of for-
mulas will be represented using letters like Γ, ∆, Σ, etc. We
note by α the opposite of the clause α, i.e. the set of unit
clauses formed of the opposite of the literals of α.

An interpretation I assigns values from {0, 1} to every
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Boolean variable, and, following usual compositional rules,
to all formulas of L. A formula α is consistent or satisfiable
when there exists at least one interpretation I that satisfies
it, i.e. such that I(α) = 1; I is then called a model of α and
is represented by the set of variables that it satisfies. α can
be deduced from Σ, noted Σ � α, when α is satisfied in all
models of Σ.

SAT is the NP-complete problem that consists in check-
ing whether or not a CNF is satisfiable, i.e., whether or not
there exists a model of all clauses in the CNF. In the pa-
per, we often refer to CDCL-SAT solvers, which are cur-
rently the most efficient logically complete SAT solvers
and that exploit so-called Conflict-Direct Clause Learn-
ing features (see e.g. (Marques-Silva and Sakallah 1996;
Moskewicz et al. 2001; Zhang et al. 2001; Zhang and Malik
2002; Eén and Sörensson 2004; Audemard and Simon 2009;
2012)).

Let Σ be a CNF.

Definition 1 (MSS) Γ ⊆ Σ is a Maximal Satisfiable Subset
(MSS) of Σ iff Γ is satisfiable and ∀α ∈ Σ \ Γ, Γ ∪ {α} is
unsatisfiable.

Definition 2 (CoMSS) Γ ⊆ Σ is a Minimal Correction
Subset (MCS or CoMSS) of Σ iff Σ \ Γ is satisfiable and
∀α ∈ Γ, Σ \ (Γ \ {α}) is unsatisfiable.

Accordingly, Σ can always be partitioned into a pair made
of one MSS and one CoMSS. Obviously, such a partition
needs not be unique.

A core of Σ is a subset of Σ that is unsatisfiable. Minimal
cores, with respect to set-theoretical inclusion, are called
MUSes.

Definition 3 (MUS) Γ ⊆ Σ is a Minimal Unsatisfiable
Subset (MUS) of Σ iff Γ is unsatisfiable and ∀α ∈ Γ, Γ\{α}
is satisfiable.

Under its basic form where all clauses are considered as
being soft, i.e., not compulsory satisfiable, MAX-SAT con-
sists in delivering one maximal (with respect to cardinality)
subset of Σ. As emphasized earlier, every solution to MAX-
SAT is one MSS and there exists a hitting set duality be-
tween CoMSSes and MUSes.

Our algorithm to partition a CNF is based on the transi-
tion clause concept.

Definition 4 (Transition clause) Let Σ be an unsatisfiable
CNF. A clause α ∈ Σ is a transition clause of Σ iff Σ \ {α}
is satisfiable.

The transition clause concept has proved crucial in
approaches to MUS extraction. Especially, (Belov and
Marques-Silva 2011) takes advantage of the following prop-
erty in order to enhance the performance of a MUS extrac-
tor.

Property 1 Let Σ be an unsatisfiable CNF. When α ∈ Σ is
a transition clause, α belongs to every MUS of Σ.

Likewise, a concept of transition constraint has proved
powerful for the extraction of minimal unsatisfiable sets
of constraints in the general setting of constraint networks
(Hemery et al. 2006; Grégoire, Lagniez, and Mazure 2013a;

Algorithm 1: BLS (Basic Linear Search)
input : one CNF Σ
output: one (MSS,CoMSS) partition of Σ

Π← Ω← ∅ ;1
foreach α ∈ Σ do2

if SAT(Π ∪ α) then Π← Π ∪ {α} ;3
else Ω← Ω ∪ {α} ;4

return (Π,Ω) ;5

2013b). The transition clause concept will be a key concept
in our partitioning algorithm, too.

The simplest algorithm to partition a CNF into one
(MSS,CoMSS) pair is given in Algorithm 1 and called Ba-
sic Linear Search (in short, BLS). It inserts within the MSS
under construction every clause that is satisfiable together
with this subset. Clearly, when the number of clauses in Σ
is n, BLS requires n calls to a SAT-solver. This basic algo-
rithm is only given here because we believe that it is the best
starting point to understand the new approach that we are
going to introduce. A survey of the currently more efficient
approaches is provided for example in (Marques-Silva et al.
2013).

CMP: a novel partitioning algorithm

Algorithm 2: CMP
(Computational Method for Partitioning)

input : one CNF Σ
output: one (MSS,CoMSS) partition of Σ

(Π,Ψ)←ApproximatePartition(Σ);1
Ω← ∅ ;2
Γ← Ψ ; // Working subset of Ψ3
while Ψ 6= ∅ do4

extendSatPart(Π,Γ,Ω,Ψ) ;5

if Ψ 6= ∅ then6
α←selectClause(Γ) ;7

(I,∆)← solve(Π ∪ (Γ \ {α}) ∪ α );8

//Returns a model I if SAT and
//(I = ∅ and core ∆) otherwise
if I 6= ∅ then // Transition clause9

Ω← Ω ∪ {α} ;10

Π← Π ∪ {β ∈ (Ψ\{α}) s.t. I(β)=1} ∪ α ;11

Γ← Ψ← {β ∈ (Ψ\{α}) s.t. I(β)=0} ;12

else13
Γ← Γ\{α};14

exploitCore(Π,Γ,Ψ,∆, α) ;15

return (Π ∩ Σ,Ω);16

The novel algorithm for partitioning an unsatisfiable CNF
into one MSS and its corresponding CoMSS is called CMP
for Computational Method for Partitioning. Its skeleton is
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Procedure ApproximatePartition(Σ)

if SAT(Σ) then // Satisfiable instance1
return (Σ, ∅);2

else3
Let P be the progress-saving interpretation delivered4
by the previous call to the CDCL-SAT solver ;
return({β∈Σ s.t. P(β)=1},{β∈Σ s.t. P(β)=0});5

depicted in Algorithm 2, where framed boxes in the algo-
rithm are optional and will be discussed in a subsequent sec-
tion.

CMP delivers a partition (Π,Ω) of a CNF Σ where Π is
one MSS of Σ (and, consequently, where Ω is the corre-
sponding CoMSS). At this point, it is important to stress
that:

1. The loop structure of CMP makes a search for transition
clauses that differs from BLS in a fundamental original
way: the iteration loops in both algorithms are very dif-
ferent. In the worst case, CMP makes O(n2) calls to a
SAT-solver whereas BLS makes a linear number of such
calls, only. However, our extensive experimental studies
show that even without the optional features given in the
framed boxes, the basic structure of CMP is more efficient
than every current competitor on many instances.

2. The full version of CMP thus includes several additional
optional features encapsulated within framed boxes in Al-
gorithm 2. We will show that each of them incremen-
tally increases the performance of the approach: some
of the options were already included in other approaches
(extendSatPart), other ones are exploited in an orig-
inal way (especially a concept that we will call “opposite
enforcement on backbones”) and the last ones are new
concepts (parts of exploitCore).

CMP: step-by-step presentation
CMP starts by computing one MSS approximation
of Σ using the ApproximatePartition proce-
dure (Alg.2:line1), which calls a CDCL-SAT solver to
check the satisfiability of Σ. In the positive case,
ApproximatePartition delivers the partition (Σ, ∅)
and since Ψ = ∅, CMP does not enter its main loop and
ends. In the negative case, ApproximatePartition
partitions Σ into a couple (Π,Ψ), where Π is a
subset of the MSS under construction that is ob-
tained (Proc.ApproximatePartition:line5) by mak-
ing use of the so-called progress-saving interpretation
(Pipatsrisawat and Darwiche 2007) P of Σ that has
been delivered by the call to the CDCL-SAT solver
(Proc.ApproximatePartition:line1): all clauses of Σ
satisfied by P are recorded inside Π. In CDCL-SAT solvers,
the progress-saving interpretation captures the final state of
variables which can hopefully exhibit a “good” approxi-
mation of an MSS of Σ. Moreover, the facilities provided
by CDCL-SAT solvers to record useful information like
the final state of variables ordering, the polarity cache and
clause deletion/restart strategies for subsequent calls to the

solver, can be exploited as well (Audemard et al. 2011;
Guo and Lagniez 2011).

Π will evolve to deliver the final MSS whereas the fi-
nal CoMSS Ω under construction is initialized to the empty
set (Alg.2:line 2). When the optional parts of the algorithm
are taken into account, Π might not only be enriched with
clauses that are moved from Ψ but also with additional (en-
tailed) clauses that are expected to speed the whole process.
Actually, in this case, Σ = (Π ∩ Σ) ∪ Ψ ∪ Ω will be an
invariant of the loop of the algorithm.

Let us leave apart the optional framed boxes for the mo-
ment and see also Figure 1. At the beginning (Alg.2:line 3)
and whenever a clause α is added into Ω (Alg.2:line 10),
a working subset Γ of Ψ is initialized to Ψ (Alg.2:line 12).
While every clause of Ψ has not been dispatched either in the
CoMSS or in the MSS under construction, the algorithm
searches for a clause α ∈ Ψ that is a transition clause of
Π∪Γ∪{α} where Γ∪{α} ⊆ Ψ, i.e., such that Π∪Γ∪{α}
is unsatisfiable whereas Π ∪ Γ is satisfiable. When such an
α is discovered, it is moved inside the CoMSS under con-
struction Ω (Alg.2:line 10). All clauses of Π ∪ Ψ that are
satisfied (resp. falsified) by the exhibited model I from the
last satisfiability test of Π∪Γ are moved inside Π (Alg.2:line
11) (resp. remain in Ψ (Alg.2:line 12)). The working subset
Γ is then initialized to Ψ according to the new value of this
latter set (Alg.2:line 12). When α is not such a transition
clause (Alg.2:line 14), α is expelled from the working sub-
set Γ ∈ Ψ (Alg.2:line 15). The selectClause function
(line 7) selects one clause α from Γ. Our implementation of
this function is based on the well-known VSIDS (Zhang and
Malik 2002) heuristic.

CMP: proof of correctness
For space reasons, we only give here the main keys of the
proof, together with useful observations that help to under-
stand why CMP delivers the intended results.

First, it is easy to see that the loop always terminates. Re-
member that Γ is initialized to Ψ (alg.2:lines 3 &12). Since
Σ is unsatisfiable whereas Π is always satisfiable, there al-
ways exists at least one α ∈ Γ such that the satisfiability
test (Alg.2:line 9) is positive thanks to the fact the previ-
ously negatively tested α are expelled from Γ, successively
(Alg.2:line 14). When this positive test occurs, Ψ decreases
(Alg.2:line 12). An extreme case occurs when satisfiability
is only found when Γ = {α}.

Now, let us explain why the final Ω is a CoMSS of Σ.
First, consider the first time when some α is going to be
moved inside Ω (Alg.2:line 10) because α has been recog-
nized as a transition clause of Π∪Γ. This corresponds to Fig-
ure 1, where Ω = ∅. The following property ensures that α
can be inserted within Ω since when α is a transition clause
of Π∪Γ, α belongs to any Θ that is a CoMSS of Σ and that
is such that Θ ⊆ Ψ\(Γ\{α}).

Property 2 Let Σ be an unsatisfiable CNF. When Σ = Π∪
Ψ with Π satisfiable, Γ ⊆ Ψ and α ∈ Γ is a transition clause
of Π∪Γ, we have that ∀Θ ⊆ Ψ\(Γ\{α}) s.t. Θ∈CoMSS(Σ):
α ∈ Θ.
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Σ an unsatisfiable CNF
Σ = Π ∪Ψ ∪ Ω
Π is satisfiable
Γ ⊆ Ψ
α transition clause of Π ∪ Γ
Ω set of transition clauses


Π

Ψ︷ ︸︸ ︷
Γ α Ω︸ ︷︷ ︸
Σ

Figure 1: The various sets of clauses

Proof. By contradiction. Assume that ∃ Θ ∈ CoMSS(Σ)
s.t. Θ ⊆ Ψ \ (Γ \ {α}) and α 6∈ Θ, i.e. Θ ⊆ Ψ \ Γ. If
Θ ∈ CoMSS(Σ) then Σ \ Θ is satisfiable. Moreover, since
Γ ⊆ Ψ and Θ ⊆ Ψ \ Γ, we have: Ψ = (Ψ \ Γ) ∪ Γ = ((Ψ \
Γ)\Θ)∪Θ∪Γ. Thus, Σ = Π∪Ψ = Π∪Γ∪((Ψ\Γ)\Θ)∪Θ.
By consequence, (Σ\Θ) ⊇ (Π∪Γ). As Σ\Θ is satisfiable,
we have also Π∪Γ satisfiable which is in contradiction with
Π∪Γ being unsatisfiable (because α is a transition clause of
Π ∪ Γ). �

Now, thanks to the following property it is easy to prove
by induction that every time a clause α is inserted within
Ω, α belongs to a same CoMSS than the clauses that were
previously inserted within Ω.

Property 3 Let Σ be an unsatisfiable CNF. Assume Σ =
Π ∪ Ψ, Π satisfiable, Γ ⊆ Ψ and that α ∈ Γ is a transition
clause of Π∪Γ. If Θ ⊆ (Ψ\Γ) is a CoMSS of Σ\{α} then
Θ ∪ {α} is a CoMSS of Σ.

Proof. By contraposition. Assume that (Θ ∪ {α}) is not a
CoMSS of Σ. Let us prove that Θ is not a CoMSS of Σ \
{α}. (Θ ∪ {α}) is not a CoMSS of Σ means that either
Σ\(Θ∪{α}) is unsatisfiable (1) or (Θ∪{α}) is not minimal,
i.e. (Θ ∪ {α}) is an upper-approximation of a CoMSS of Σ
(2).

(1) Σ\(Θ∪{α}) unsatisfiable entails that (Σ\{α})\Θ is
unsatisfiable and consequently Θ is not a CoMSS of Σ\{α}.

(2) (Θ ∪ {α}) is an upper-approximation of a CoMSS
of Σ implies that there exists a CoMSS Φ of Σ s.t. Φ ⊂
(Θ ∪ {α}). In other words, there exists β ∈ (Θ ∪ {α}), s.t.
β 6∈ Φ. Property 2 ensures that α ∈ Φ, we obtain that α 6= β.

Σ\(Θ∪{α}) is satisfiable (because (Θ∪{α}) is an upper-
approximation of a CoMSS of Σ). Thus, Σ \ (Θ ∪ {α} ∪
{β}) is also satisfiable. Therefore, (Σ \ {α}) \ (Θ \ {β}) is
satisfiable and thus Θ is not a CoMSS of Σ \ {α}. �

CMP: optional improvements
We have investigated four candidate improvements of CMP.
They are encapsulated in the framed boxes of Algorithm 2.

First, following (Birnbaum and Lozinskii 2003) and
(Marques-Silva et al. 2013), we have exploited the idea
that checking the satisfiability of a logically weaker (and
thus hopefully easier) CNF where some clauses (here, the
clauses belonging to Γ) are replaced by their disjunction
(here, noted

∨
Γ) can prove informative. In case of unsat-

isfiability of Π ∪ {
∨

Γ}, Π ∪ Γ is also unsatisfiable. In case
of satisfiability, the set of clauses from Γ that are containing
literals satisfied in the exhibited model, is satisfiable together
with Π and can thus be moved inside Π. This is the role of

Procedure extendSatPart(Π,Γ,Ω,Ψ)

(I,∆)← solve(Π ∪ {
∨

Γ}) ;1
if I 6= ∅ then2

Π← Π ∪ {β ∈ Ψ s.t. I(β) = 1} ;3
Γ← {β ∈ Ψ s.t. I(β) = 0} ;4

else5
Ω← Ω ∪ Γ ;6
Γ← Ψ← Ψ \ Γ ;7

the extendSatPart function in line 5 of Algorithm 2.
This feature proved important for the efficiency of the CLD
method from (Marques-Silva et al. 2013).

The second tentative improvement (Algo2:line 11) is re-
lated to backbone literals ((Monasson et al. 1999) and more
recently e.g. (Kilby et al. 2005)); it has been investigated
in CoMSS extraction procedures by (Marques-Silva et al.
2013), too. α is the set of unit clauses made of the opposite
literals of α. As α will here belong to the intended CoMSS,
this entails that α is a deductive consequence of the current
value of Π (and any superset of it by monotonicity). These
learnt unit clauses are put inside Π in the hope to speed up
the future satisfiability tests of supersets of Π.

An original tentative improvement occurs when it is tested
whether or not α is a transition clause (Algo2:line 8). In the
positive case, Π ∪ Γ \ {α} is satisfiable whereas Π ∪ Γ is
unsatisfiable. Accordingly, a same result will be obtained by
checking the satisfiability of Π ∪ (Γ \ {α}) ∪ {α}, where
the set of unit clauses α is expected to speed up the test. To
the best of our knowledge, this use of backbones literals in
a logically stronger set of premises that is not only consis-
tent with α but entails α is novel in the search for CoMSS.
We call this feature opposite enforced, in short oe. Interest-
ingly, CMP allows this additional feature because a transi-
tion clause is found in case of satisfiability whereas other
approaches find transition constraints when unsatisfiability
is encountered.

Procedure exploitCore(Π,Γ,Ψ,∆, α)

if ∆ ∩ α = ∅ then Γ← Γ ∩∆ ;1
elsif ∆ ∩ Γ = ∅ then2

Π← Π ∪ {α} ;3
Ψ← Ψ \ {α} ;4

else Π← Π ∪ {∆ \ α � α} ;5

A fourth improvement is the exploitCore function
(Algo2:line 15) that refines in the following original way Γ
thanks to the computed core ∆. Three cases need be distin-
guished.

1. When ∆ does not contain any clause of α, Γ can be as-
signed its set-theoretic intersection with ∆ as a transition
constraint can always be found within this intersection.

2. Otherwise, if no clause of Γ belongs to ∆ then this entails
that ∆ is only made of clauses of α and Π. Consequently,
Π ∧ α is unsatisfiable, i.e., α is a deductive consequence
of Π. Thus, α can be moved into the satisfiable part Π.
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3. Else, ∆ is built from clauses of α and Γ (and possibly
from clauses of Π, too). In this case, since at least one
clause of α is in ∆ and since ∆ is unsatisfiable, we have
that (∆\α)∧α is unsatisfiable, i.e., α is a deductive con-
sequence of ∆ \ α. Although it cannot be represented by
a set of clauses in a direct manner, this information can
be exploited and implemented easily (and without signifi-
cant additional space cost) using clause selectors markers
à la (Oh et al. 2004), as follows. Each clause β of Σ is
associated to a new corresponding dedicated literal noted
¯sβ , called selector, and β is replaced by β ∨ ¬¯sβ in Σ. A
clause is active in (i.e., belongs to) a set of clauses if its
selector is assigned to 1. With these selectors, ∆ \ α � α
can be represented by the clause (¬¯sδ1 ∨ · · · ∨¬¯sδm∨¯sα)
where δi (i ∈ [1..m]) are the m clauses of ∆ \ α. When
all clauses of ∆ \ α are active then α must be also active.

It is easy to show that all those improvements do not alter
the correctness of the algorithm.

Related work
Handling over-constrained systems though maximal satisfi-
able or minimal correction subsets has long been an active
subject of research in A.I. (see pioneering work for exam-
ple in (Meseguer et al. 2003)). In the general constraint net-
works setting, a seminal approach called QUICKXPLAIN has
been described in (Junker 2004). In the same framework, im-
proved techniques can be found in e.g. (Hemery et al. 2006).

In order to solve a constraint network instance or ex-
tract its MSSes and CoMSSes, it is often more efficient
to encode the network through a set of Boolean clauses
and benefit from SAT technology (provided that the size
of the Boolean instance does not blow-up). In the SAT
domain, many approaches have been proposed to compute
MSSes and CoMSSes. The earliest approaches were based
on DPLL-based SAT solvers (see e.g. (Birnbaum and Lozin-
skii 2003)) but are quite inefficient compared to more recent
approaches (Liffiton and Sakallah 2008) based on MAX-
SAT. As stressed in (Marques-Silva et al. 2013), the lat-
ter approaches also proved more efficient than various al-
gorithms based on iterative calls to a SAT solver like (Bai-
ley and Stuckey 2005). Much research has also been con-
ducted in model-based diagnosis. Noticeably, a recent ap-
proach, called FastDiag (hereafter noted BFD for Basic
FastDiag), (Felfernig, Schubert, and Zehentner 2012) has
adapted QUICKXPLAIN from (Junker 2004) to the Boolean
case and proves often very competitive.

Recently (Marques-Silva et al. 2013) experimentally
compared the best MSS and CoMSS extraction approaches
in the Boolean setting, namely the above BFD algorithm,
BLS (depicted in Algorithm 1), EFD and ELS for Enhanced
FastDiag and Enhanced Linear Search through additional
features discussed in (Marques-Silva et al. 2013). The same
authors also proposed a novel algorithm for computing
CoMSSes that they experimentally showed to be the most
efficient and robust one for CoMSSes computation, com-
pared with the aforementioned list of approaches. Roughly,
this algorithm, called CLD, extracts one CoMSS by using
the extendSatPart principle iteratively (and also using

Figure 2: CMP variants on SAT/MAX-SAT instances

Figure 3: Zoom in on Figure 2

backbone considerations, among other things). The authors
showed that CLD experimentally outperforms all the com-
peting approaches.

Although it implements the backbones and
extendSatPart features, CMP is very different in
nature as its key principle is the search for transition
constraints rather than iterating on extendSatPart.
Moreover, it includes the novel opposite enforced and
exploitCore features.

Experimental results
All experimentations have been conducted on Intel Xeon
E5-2643 (3.30GHz) processors with 7.6Gb RAM on Linux
CentOS. Time limit was set to 30 minutes.

Two series of benchmarks have been considered. The
first one was made of the 1343 benchmarks used and re-
ferred to in (Marques-Silva et al. 2013): they are small-sized
industrial-based instances from SAT competitions www.
satcompetition.org and structured instances from the MAX-
SAT evaluations maxsat.ia.udl.cat:81. We enriched this ex-
perimentation setting by also considering a second series
of benchmarks, made of all the 295 instances used for the
2011 MUS competition organized in parallel with the SAT
one. Note that in all Figures that we are going to present,
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Figure 4: CMP variants on MUS instances

SAT/MAX-SAT inst. MUS inst.
Number of instances 1343 295

CMP-basic 1312 285
CMP-core 1321 285
CMP-core-oe 1321 286
CMP-core-oe-backbone 1322 286
CMP (all options) 1327 292

Table 1: Number of successfully partitioned instances

when the y-values represent the CPU times to partition a
given number x of instances through different approaches,
this does not mean that the x partitioned instances are nec-
essarily identical and that each instance is partitioned in an
identical way by all the considered approaches.

CMP is implemented in C++. MINISAT (Eén and
Sörensson 2004) was selected as the CDCL SAT-solver. CMP
and all experimentation data are available from www.cril.
univ-artois.fr/documents/cmp/.

First, the actual benefits of the four optional parts of CMP
have been assessed experimentally.

The basic version of CMP, i.e. Algorithm 2 without any of
the options, was re-named CMP-basic. CMP-basic was then
tentatively enhanced by taking the options into account in an
incremental way. Only adding exploitCore (Algo2:line
15) gave rise to CMP-core; adding also the opposite-enforced
feature (Algo2:line 8) yielded CMP-core-oe. CMP-core-oe-
backbone was obtained by also activating the backbone lit-
erals tentative enhancement (Algo2:line 11). From now on,
CMP denotes Algorithm 2 with all options, which thus in-
cluded extendSatPart (Algo2:line 5) as well.

Figures 2 and 4 show gradual improvements when each
of the options was taken into account in a cumulative way:
each additional option allowed for some additional effi-
ciency gain. Figure 3 is a focus on the rightest part of curves
of Figure 2. Table 1 shows that the number of successful par-
titionings also increased according to the considered range
of options. Noticeably, the exploitCore (core) option
delivered the most significant improvement in terms of both
computing time and number of successfully partitioned in-
stances. Other ways to combine the options together allowed

Figure 5: Comparison on SAT and MAX-SAT instances

Figure 6: Comparison on MUS instances

similar observations to be made.
Then, we compared CMP with existing approaches that

we mentioned earlier: namely, the BFD, BLS, CLD, EFD
and ELS algorithms, which are described in (Marques-Silva
et al. 2013) and implemented in the MCSLS tool logos.
ucd.ie/wiki/doku.php?id=mcsls. The version 2 of CAMUS (sun.
iwu.edu/∼mliffito/camus/ (Liffiton and Sakallah 2008; 2009)),
named CAMUS2, was also tested on SAT/MAX-SAT bench-
marks but this earlier system allowed a significantly smaller
number of instances to be partitioned, only. Table 2 shows
that CMP-basic itself allows more instances to be partitioned
than any of the competitors. Figures 5 and 6 also compare
the investigated approaches. We have also drawn the VBS
(Virtual Best Solver) curve, which represents for each in-
stance the best computing time amongst the tested methods.
Clearly, CMP appeared best performing and was very close
to VBS. For each method, Table 2 gives the number of in-
stances that were successfully partitioned, with the highest
score for CMP, too.

Discussion and perspectives
The extensive experimentations that we have conducted
show that CMP is more robust than previous approaches
and allows more Boolean instances to be successfully par-
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SAT/MAX-SAT inst. MUS inst.
Number of instances 1343 295
BLS 1287 273
BFD 1287 276
ELS 1293 277
EFD 1291 277
CLD 1307 279
CMP-basic 1312 285
CMP (all options) 1327 292
VBS 1327 293

Table 2: Number of successfully partitioned instances

Figure 7: Number of calls by CMP to the SAT solver

titioned. Obviously, this does not entail that CMP would be
more efficient for every instance. In this respect, it is worth
mentioning that CMP exhibits a higher worst-case complex-
ity than for example BLS, namely the basic linear search
approach. Indeed, when n is the number of clauses in the
instance, CMP requires O(n2) calls to a SAT solver in the
worst case whereas BLS requires a linear number of such
calls, only. Note however that the number of calls by CMP to
the SAT solver always remains very significantly lower than
n for all successfully partitioned instances (Figure 7).

We envision several paths for further research. First, the
method could be enhanced by making use of incremental
SAT solvers (Lagniez and Biere 2013; Audemard, Lagniez,
and Simon 2013). Second, CMP can offer a way to approx-
imate MAX-SAT when solving this latter problem is out of
reach for hard instances. In this respect, although the fea-
tures in CMP are not directly exportable to MAX-SAT al-
gorithms, we believe that the way MSSes are computed in
CMP can lead to novel ways to compute MAX-SAT. Also,
CMP delivers approximate solutions for a basic version of
MAX-SAT: in the future, we plan to study how to push the
envelope in order to address weighted MAX-SAT. Finally, it
would also be interesting to extend CMP to address the prob-
lem of enumerating CoMSS (or MSS) and study whether or
not this could improve recent practical computational results
about this issue (Marques-Silva et al. 2013).
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