
A Support-Based Algorithm for
the Bi-Objective Pareto Constraint

Renaud Hartert∗ and Pierre Schaus
UCLouvain, ICTEAM,
Place Sainte Barbe 2,

1348 Louvain-la-Neuve, Belgium
{renaud.hartert, pierre.schaus}@uclouvain.be

Abstract

Bi-Objective Combinatorial Optimization problems are
ubiquitous in real-world applications and designing
approaches to solve them efficiently is an important
research area of Artificial Intelligence. In Constraint
Programming, the recently introduced bi-objective
Pareto constraint allows one to solve bi-objective
combinatorial optimization problems exactly. Using
this constraint, every non-dominated solution is col-
lected in a single tree-search while pruning sub-trees
that cannot lead to a non-dominated solution. This paper
introduces a simpler and more efficient filtering algo-
rithm for the bi-objective Pareto constraint. The effi-
ciency of this algorithm is experimentally confirmed on
classical bi-objective benchmarks.

Bi-Objective Combinatorial Optimization (BOCO) aims at
optimizing two objective functions simultaneously. Since
these objective functions are often conflicting, there is usu-
ally no perfect solution that is optimal for both objectives
at the same time. In this context, decision makers are look-
ing for all the “best compromises” between the objectives
to choose a posteriori the solution that best fits their needs.
Hence, the notion of optimal solution is replaced by the no-
tion of efficiency and we are searching for the set of all the
efficient solutions (usually called efficient set or Pareto fron-
tier) instead of one single solution (Ehrgott 2005).

During the past years, many approaches were developed
to tackle BOCO problems exactly. However, many of them
were developed in the context of Mathematical Program-
ming (Mavrotas 2007; Ralphs, Saltzman, and Wiecek 2006)
and only a few can be applied efficiently in Constraint
Programming. Among these approaches, the ε-constraint is
probably the most widely used (Haimes, Lasdon, and Wis-
mer 1971; Le Pape et al. 1994; Van Wassenhove and Gelders
1980). The idea is to decompose the original problem into a
sequence of subproblems to optimize with regard to the first
objective function. At each iteration, a new subproblem is
generated by constraining the second objective to take a bet-
ter value than its value in the optimal solution of the previ-
ously solved subproblem. Notice that the number of single-

∗This work was (partially) supported by the ARC grant 13/18-
054 from Communauté française de Belgique.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

objective problems to solve is linear in the efficient set’s car-
dinality (Haimes, Lasdon, and Wismer 1971).

The bi-objective Pareto constraint is an alternative (and
more efficient (Gavanelli 2002)) approach to compute the ef-
ficient set exactly. The idea behind this constraint is to build
an approximation of the efficient set incrementally during
the search and to use this approximation to detect and to
prune sub-trees that can only lead to solutions that are less
efficient than the ones already contained in the approxima-
tion. Eventually, the approximation becomes the efficient set
and its optimality is proven when the search is completed.

The algorithm of the Pareto constraint relies on two op-
erations. The first operation is used to update the approxima-
tion (by inserting new solutions in it) while the second con-
sists to use this approximation to reduce the search space
of the problem. In this work, we show how to use spe-
cific BOCO properties to improve the efficiency of the bi-
objective Pareto constraint. Precisely, we show that both
operations (update and filtering) can benefit from each other
in an iterative way to build a simpler and more efficient al-
gorithm for the constraint.

This document is structured as follows. First, we briefly
introduce constraint programming and its main concepts.
Then, we formalize multi-objective combinatorial optimiza-
tion in the context of constraint programming and present
some important definitions. The third section is dedicated to
the Pareto constraint in its general multi-objective form.
Our support-based algorithm is presented in the fourth sec-
tion. Section five directly follows with our experiments and
results on two classical benchmarks i.e. the bi-objective
knapsack problem and the bi-objective travelling salesman
problem. Finally, the last section offers some conclusions
and perspectives.

Constraint Programming Background
Constraint Programming is a powerful paradigm to solve
constraint satisfaction problems and combinatorial opti-
mization problems. A constraint programming problem is
usually defined by a set of variables with their respective
domain (i.e. the set of values that can be assigned to a vari-
able), and a set of constraints on these variables. The objec-
tive is to find an assignment of the variables that respects all
the constraints of the problem. The constraint programming
process interleaves a tree-search exploration (common in ar-

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2674



tificial intelligence) with an inference procedure (also called
propagation or filtering) to remove values that cannot appear
in a solution. The inference part prunes the branches of the
search-tree and thus reduces the search space to explore.

In an optimization context, an objective function can also
be considered. Usually, this is formulated by the addition of
an objective variable having as domain the set of possible
values that can be taken by the objective function. Each time
a solution is found, a constraint is added to the problem dy-
namically to force the objective variable to be assigned to
a better value.1 The optimality is proven when the search is
exhausted, the last solution being the optimal one.

Multi-Objective Combinatorial Optimization
A Multi-Objective Combinatorial Optimization (MOCO)
problem is a quadruple P = 〈X,D,C,F〉 where X =
{x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} is
a set of domains, C is a set of constraints on the variables in
X, and F = {f1, . . . , fm} is a set of objective functions to
minimize simultaneously. Each objective function fi(X) as-
sociates a discrete cost to the assignment of the variables in
X. In the following, we assume that m objective variables
obj1, . . . , objm have been added to the set of variables X
and constrained to be equal to the value taken by their corre-
sponding objective function i.e. obji = fi(X). In particular,
the minimal and maximal values of the domain of an objec-
tive variable obji are the bounds of this objective with regard
to a given partial assignment of the variables in X.

A solution of a MOCO problem P is a complete assign-
ment of the variables in X that satisfies all the constraints in
C. In this work, we represent a solution sol by its associated
objective vector (sol1, . . . , solm) where soli is the value as-
signed to the corresponding objective variables obji.

As it is not likely that a solution is simultaneously optimal
for all objectives at the same time, we are interested in a way
to define a partial order on the objective vector of the solu-
tions. Among these orderings, the weak Pareto dominance is
a popular choice (see Figure 1). It is defined as follows.
Definition 1 (Weak Pareto dominance). Consider sol =
(sol1, . . . , solm) and sol′ = (sol′1, . . . , sol

′
m), two solutions

of a MOCO problem P . We say that sol dominates sol′, de-
noted sol � sol′, if and only if:

∀i ∈ {1, . . . ,m} : soli ≤ sol′i. (1)
Let sols(P) denote the set of all the solutions of a MOCO

problem P . A solution sol of P is efficient if and only if no
solution sol′ in sols(P) dominates sol:

@sol′ ∈ sols(P) : sol′ 6= sol ∧ sol′ � sol. (2)
In other words, a solution is efficient if it is impossible to
improve the value of one objective without degrading the
value of at least one other objective (i.e. an efficient solution
is an optimal compromise between the objectives).

Solving a MOCO problem usually means finding the set
of all the efficient solutions that is generally called the effi-
cient set or Pareto front (the efficient set of an arbitrary so-
lution space is depicted in Figure 2). Unfortunately, the size

1Notice that the search does not stop but continues after the
addition of the constraint to the problem.

a

c

e

f g

b

d

Figure 1: Solution e domi-
nates the solutions b, c, and
d while being dominated by
solution f . Solutions a and
g do not dominate solution
e and are not dominated by
solution e.

Figure 2: An arbitrary bi-
objective solution space. Ef-
ficient solutions are colored
in black. The efficient set is
the set of all the efficient so-
lutions.

of the efficient set often grows exponentially with the size
of the problem to solve (Ehrgott 2005). Hence, in practice,
only an approximation of the efficient set can be found in a
reasonable amount of time and of memory. We call such an
approximation of the efficient set an archive.
Definition 2 (Archive). An archive A is a domination-free
set of solutions i.e. a set of solutions such that no solution in
A dominates another solution in A:

∀sol ∈ A,@sol′ ∈ A : sol′ 6= sol ∧ sol′ � sol. (3)

Clearly, the efficient set is also an archive.

The Pareto Constraint
The Pareto constraint (Schaus and Hartert 2013) is a
global constraint defined over the m objective variables of
a MOCO problem P and an archive A:

Pareto(obj1, . . . , objm,A). (4)

The aim of the Pareto constraint is to use the archive A
to prune solutions that are dominated by at least one solu-
tion contained in the archiveA. In other words, the Pareto
constraint ensures that a newly discovered solution is not
dominated by any solution in the archive. This definition is
formalized as follows:∧

sol∈A

m∨
i=1

obji < soli (5)

Filtering
The filtering rule of the Pareto constraint was originally
proposed in (Gavanelli 2002). The idea is to use artificial
objective vectors, called dominated points, to adjust the up-
per bounds of the objective variables in order to prevent the
discovery of dominated solutions (5).
Definition 3 (Dominated point). Let objmin

i and objmax
i

denote the lower and upper bounds of the objective variable
obji, the dominated point DP i is defined as follows:

DP i = (DP i
1, . . . , DP

i
m)

where DP i
j =

{
objmax

j if j = i
objmin

j otherwise
(6)

2675



DP 

2

DP 

1

DP 

2

DP 

1

Figure 3: Filtering of the Pareto constraint. Black solu-
tions correspond to the solutions contained in the archive
A. Grey areas represent the parts of the objective space that
are dominated by at least one solution in A. The dominated
pointsDP 1 andDP 2 are represented by the white solutions.
The hashed area corresponds to the reduction of the objec-
tive variables’ domains after applying the filtering rule of
Proposition 1.

In other words, the dominated point DP i can be seen as
an artificial solution for which each objective variable is
assigned to its best possible value except for obji which is
assigned to its worst possible value.
Proposition 1. Let sol be a solution in the archive A such
that sol dominates DP i. Then, the value of the objective
variable obji has to be smaller than the value soli:

∃sol ∈ A, sol � DP i ⇒ obji < soli. (7)

Proof. Consider a solution sol in the archive A such that
sol � DP i. According to (6), we know that solj ≤ objmin

j

(∀j ∈ {1, . . . ,m}, j 6= i). Hence, each newly discovered
solution solnew (i.e. a solution contained in the Cartesian
product of the objective variables) such that soli ≤ solnew

i
is dominated by sol and can thus be safely removed.

Figure 3 illustrates the domain of the objective variables
before (left part) and after (right part) applying the filtering
rule of Proposition 1.

If a dominated point DP i is dominated by several solu-
tions at the same time, the filtering rule of Proposition 1 has
to be applied until no solution in the archive dominatesDP i.
Clearly, the order in which the dominating solutions are se-
lected affects the number of calls of the filtering rule. This
situation is illustrated in Figure 4 where the worst possible
selection order is a, b, and c. From this observation, it ap-
pears that the Pareto constraint can reach its fixed point in
one step if it is able to access directly the solution that dom-
inates DP i with the lowest value in obji. Such a solution is
called the tightest solution of obji.
Definition 4 (Tightest solution). The tightest solution of
obji is the solution in the archive A that dominates DP i

and that has the lowest value for obji:

argminsol∈A{soli | sol � DP i}. (8)

If DP i is not dominated by at least one solution in A, then,
obji has no tightest solution.
Tightest solutions have been used in (Schaus and Hartert
2013) to propose the following idempotent filtering rule:

∃sol ∈ A, sol � DP i ⇒ obji < T i
i (9)

b

DP 

2

a

DP 

2

c

DP 

2

Figure 4: Worst possible selection order. Solution c is the
tightest solution of obj2.

where T i is the tightest solution of obji.

Multi-Objective Branch-and-Bound
The Pareto constraint can be used to find the exact ef-
ficient set of any MOCO problem. The idea is to improve
the quality of the archive A used by the constraint dynam-
ically during the search. Initially, the archive is the empty
set. Then, each time a new solution is discovered, it is in-
serted into the archive and the search continues. According
to (5), every newly discovered solution is guaranteed to be
dominated by none of the solutions in the archive. Hence, a
newly discovered solution inserted in the archive improves
its quality and consequently strengthens the filtering. Two
situations are possible when inserting a new solution in the
archive:

1. The new solution does not dominate any solution in the
archive and nothing has to be done after the insertion
(see Figure 5 left);

2. The new solution dominates one or several solutions in
the archive. In this case, these dominated solutions have
to be removed from the archive to ensure that the archive
remains domination-free (see Figure 5 right).

In both cases, adding the new solution in the archive strictly
increases the size of the subspace of the objective space that
is dominated by the archive.2 Eventually, the archive be-
comes the efficient set and its optimality is proven when the
search is exhausted. The use of the Pareto constraint with
a dynamically improving archive can be seen as a multi-
objective branch-and-bound that generalizes the classical
branch-and-bound algorithms used in constraint program-
ming (Gavanelli 2002).3

Implementation and data structure
The multi-objective branch-and-bound algorithm based on
the Pareto constraint relies on two distinct operations:

• Access the tightest solution of each objective to adjust
the upper bound of the objective variables (9);

• Insert a newly discovered solution in the archive and
remove potentially dominated solutions from the archive.

2The size of the subspace that is dominated by an archive is
a common indicator, known as the Hypervolume, used to measure
the quality of an archive (Zitzler et al. 2003).

3In single objective optimization, the archive is either the empty
set or a singleton containing the best-so-far solution. The only dom-
inated point DP 1 corresponds to the upper bound of the objective
variable to minimize.

2676



sol 

new

sol 

new

Figure 5: Insertion of a new solution in an archive. Hashed
areas correspond to the additional parts of the objective
space that are dominated after the insertion of the new so-
lution in the archive.

Clearly, the efficiency of these operations is impacted by the
underlying data structure used to implement the inner mech-
anisms of the constraint and to store its archive.

In (Gavanelli 2002), the author suggests the use of point
quad trees (simply quad-trees in the sequel) to imple-
ment the archive. A quad-tree (Finkel and Bentley 1974;
Habenicht 1983; Samet 2006) is a data structure that gen-
eralizes binary search trees to store m-dimensional vectors.
Any node of a quad-tree divides its subspace into 2m dis-
joint subspaces. More precisely, the root of the tree divides
the space into 2m subspaces originating at the root. The 2m

children of the root (exactly one for each subspace of the
root) divides their subspaces into 2m subspaces and so on
(see Figure 6).

As for binary search trees, quad-trees are very sensitive
to the order in which solutions are inserted. In the best case,
when the tree is well-balanced, a quad-tree ensures a loga-
rithmic complexity for the access operation. In the worst
case however, the quad-tree is structured as a linear list and
the access operation needs to traverse the entire data struc-
ture to find the tightest solutions. The removal operations are
also a weakness of this data structure. Indeed, removing a
solution in a quad-tree leads to the destruction of the sub-
tree rooted at this solution and often leads to an expensive
computational cost to repair it. Unfortunately, the insert
operation may require several expensive removals to main-
tain the archive domination-free (i.e. to remove the solutions
that are dominated by the inserted solution).

A

C
B

E
D

G

F

A

B C D E

GF

Figure 6: Illustration of the space partition (left) of a bi-
dimensional quad-tree (right). The node A is the root of the
quad-tree. Nodes B, C, D, and E are the sons of A. Nodes F
and G are the sons of D.

b

a

c

d
e

Figure 7: Illustration of an
arbitrary bi-objective archive
A stored in a bi-ordered
linked-list. Each solution has
a pointer to its direct succes-
sor in A>1 and in A>2 .

b

a

c

d
e

Figure 8: Solutions b and e
are respectively the supports
of obj2 and obj1. Both sup-
ports are not included in the
Cartesian product of the ob-
jective variables.

Support-Based Algorithms
Bi-Objective Combinatorial Optimization (BOCO) prob-
lems are MOCO problems with only two objectives (m =
2). Usually, BOCO problems are easier to reason about and
have properties that cannot be generalized to MOCO prob-
lems with more than two objectives. One of these properties
is the bi-objective ordering property that is defined as fol-
lows.

Property 1 (bi-objective ordering). Let A be an arbitrary
bi-objective archive. We denoteA>i (resp.A<i ) the archive
A ordered by decreasing (resp. increasing) value of obji.
Then, sorting the solutions ofA by decreasing order of their
value in a first objective (i.e. A>1 ) amounts to sorting these
solutions by increasing order of their value in the second
objective (i.e. A<2 ) and vice-versa.

Proof. Let sol and sol′ be two solutions in A. Since A is
domination-free, sol does not dominate sol′ and sol′ does
not dominate sol. Hence, if sol1 < sol′1 we know that
sol2 > sol′2. Symmetrically, if sol1 > sol′1 then sol2 <
sol′2.

In the remainder of this section, we introduce an incre-
mental algorithm to implement the bi-objective Pareto
constraint. The idea behind this algorithm is to use the bi-
objective ordering property to store the archive A in a bi-
ordered linked-list i.e. a linked-list such that each solution
has a pointer to its direct successor in A>1 and in A>2 (see
Figure 7). Precisely, the algorithm relies on special solu-
tions, called supports, to maintain the tightest solutions of
each objective (Definition 4) incrementally during the ex-
ploration of the search tree.

Definition 5 (Support). Let sol be a solution in a bi-
objective archive A. We say that sol is the support of obj1 if
and only if:

sol = argminsol′∈A{sol′1 | sol′2 < objmin
2 }. (10)

The support of obj2 is defined symmetrically.

Figure 8 illustrates the supports of both objective variables
obj1 and obj2.

2677



Proposition 2. Supports are never included in the Cartesian
product of the domain of the objective variables i.e. supports
cannot be dominated by newly discovered solutions.

Proof. Let solsup be the support of obj1 (resp. obj2). By Def-
inition 5, we know that solsup

2 < objmin
2 (resp. solsup

1 <
objmin

1 ). Hence, solsup cannot be dominated by a newly dis-
covered solution that is at best (objmin

1 , objmin
2 ).

Proposition 3. If it exists, the tightest solution of obji is the
support of obji or its direct successor in A>i .

Proof. Let DP1 be dominated by a solution sol such that
sol is the tightest solution of obj1. If sol2 < objmin

2 , by
Definition 5 we know that sol is the support of obj1. Else,
sol2 = objmin

2 and sol is the direct successor of the support
of obj1.

The link between supports and tightest solutions is illus-
trated in Figure 8 where d is the tightest solution of obj1
and b is the tightest solution of obj2.

Proposition 4. Let solnew = (objmin
1 , objmin

2 ) be a newly
discovered solution. If the archive is ordered according to
the value of one objective (i.e. A>1 or A>2 ), then, solnew

dominates all the solutions contained between both sup-
ports.

Proof. Let Si denote the set of all the successors of the sup-
port of obji in the ordered archive A>i . By Definition 5, we
know that Si = {sol ∈ A | soli ≥ objmin

i }. The intersection
of S1 and S2 is thus the set of solutions that is dominated by
(objmin

1 , objmin
2 ):

S1 ∩ S2 = {sol ∈ A | sol1 ≥ objmin
1 ∧ sol2 ≥ objmin

2 }.

Since solnew = (objmin
1 , objmin

2 ), the solutions contained in
the intersection of the successors of both supports are domi-
nated by solnew.

The insertion of a new solution is illustrated in Figure 9.
This operation is performed in constant time by updating
the pointers of both supports.

We use Propositions 2, 3, and 4 to design an incremental
algorithm for the bi-objective Pareto constraint. As men-
tioned above, the algorithm maintains the tightest solutions
of each objective by adjusting the supports incrementally
during the exploration of the search tree. More precisely, we
describe the algorithm to adjust the upper bound of obj1 as
follows:4

1. Each time the lower bound of obj2 is adjusted, we know
that we have to reconsider the support of obj1. To do so,
we iterate on the direct successors of the old support in
A>1 until we reach the new support. Let ∆ denote this
number of iterations. Clearly, the sum of the ∆ cannot
exceed the size of A along a branch of the search tree.

2. When the new support is found, we access and use the
tightest solution of obj1 to adjust the upper bound of obj1
(see Proposition 3 and (9)).

4The upper bound of obj2 is adjusted symmetrically.

s 

2

s 

1

sol new

s 

2

s 

1

sol new

Figure 9: Insertion of a new solution in constant time. So-
lutions s1 and s2 are respectively the support of obj1 and
obj2.

3. When a new solution solnew is discovered, we insert it
in A by simply updating the pointers of its supports (see
Proposition 4).

Assuming a trail-based CP solver, reversible pointers can
be used to maintain the supports.5 Hence, each time a back-
track occurs, the algorithm is able to restore its previous sup-
ports in amortized constant time. Observe that, according to
Proposition 2, we know that these supports are not domi-
nated by a previously discovered solution.

Experiments and Results
This section presents the experimental evaluation of our
support-based algorithm against the quad-tree algorithm
commonly used to implement the bi-objective Pareto
constraint. Our experiments used classical instances of the
bi-objective binary knapsack problem (Xavier Gandibleux
2013) and instances of the bi-objective traveling salesman
problem (Paquete and Stützle 2009). All algorithms were
implemented in the open-source OscaR solver (OscaR Team
2012) that runs on the Java Virtual Machine using a com-
puter running Mac Os X 10.9 on an Intel i7 2.6 Ghz proces-
sor.

First, we compare the number of search nodes explored
using both algorithms on instances of the bi-objective binary
knapsack problem within a time limit of 30 seconds. In this
experiment, the bi-objective Pareto constraint starts with
an empty archive and explores the search-space with a ran-
dom heuristic. The usage of a random heuristic should favor
the quad-tree, highly sensitive to the order in which solutions
are inserted. Indeed, using a heuristic dedicated to one of the
objectives would lead to an unbalanced quad-tree negatively
impacting its efficiency. Table 1 gives the mean and the stan-
dard deviation of the number of nodes explored over 10 runs
for each algorithm. We observe that our support-based algo-
rithm is always the fastest despite the fair heuristic that we
have chosen. It explores on average 20% more nodes.

Our second experiment compares both algorithms on in-
stances of the bi-objective traveling salesman problem. In
this experiments, the Pareto constraint starts with an ini-
tial archive that is a good approximation of the exact efficient
set. In fact, the efficient set of these instance is currently

5This functionality can easily be adapted for copy-based CP
Solvers.

2678



Quad-tree Support-based
instance mean st. dev. mean st. dev.

500A 635461.0 4953.8 758585.8 6567.3
500B 548185.3 6864.1 653769.3 7307.3
500C 531152.3 7631.5 642077.7 8158.2
500D 593904.0 4658.0 712250.0 5818.4

Table 1: Number of search nodes explored within a time
limit of 30 seconds on instances of the bi-objective binary
knapsack problem with 500 items.

Quad-tree Quad-tree (bal.) Support-based
instance mean st. dev. mean st. dev. mean st. dev.

KroAB100 505.3 17.6 60034.0 2565.0 63850.0 227.3
KroAB150 234.3 9.4 23776.3 950.1 25138.7 339.8
KroAB200 361.0 1.6 18574.0 542.0 21443.3 143.5
KroAB300 247.3 17.9 9080.3 362.4 9337.7 176.4
KroAB400 176.0 0.4 4516.0 174.5 4798.3 70.4
KroAB500 116.0 1.6 3893.7 137.7 4033.0 107.3

Table 2: Number of search nodes explored within a time
limit of 30 seconds on instances of the bi-objective travel-
ling salesman problem with 100, 150, 200, 300, 400, and
500 cities.

unknown and the given set is the union of the approxima-
tion of many state-of-the-art algorithm to solve this prob-
lem (Lust and Teghem 2010). Since the internal structure of
the Pareto constraint is initialized in advance, we consider
both cases of an unbalanced and well-balanced quad-tree. As
for the previous experiments, the mean and standard devia-
tion over 10 runs are presented in the Table 2.

Again, the support-based is the fastest approach. As men-
tioned above, we observe that the quad-tree algorithm is very
sensitive to the order in which solutions are added in its
structure. On one hand, a well-balanced quad-tree is compet-
itive with the support-based algorithm (but still always dom-
inated). On the other hand, a poorly balanced quad-tree sub-
stantially deteriorates the number of search nodes explored.
Interestingly, the balanced quad-tree and the support-based
algorithms were able to add 3 solutions in the approxima-
tion of the KroAB300 efficient set and 4 solutions in the ap-
proximation of the KroAB500 efficient set. This experiment
illustrates the flexibility of the Pareto constraint and one
of its possible uses to improve an existing approximation of
the efficient set or to prove its optimality.

Conclusion

This paper introduced a support-based algorithm to imple-
ment the bi-objective Pareto constraint. This incremental
filtering algorithm relies on the bi-objective ordering prop-
erty of BOCO problems. Experiments demonstrate that the
support-based algorithm is more efficient than the classical
algorithm used to implement the Pareto constraint. Also,
this algorithm is simpler to implement than the quad-tree
based propagator since it only relies on a linked list and two
reversible pointers.

References
Ehrgott, M. 2005. Multicriteria optimization, volume 2.
Springer Berlin.
Finkel, R. A., and Bentley, J. L. 1974. Quad trees a data
structure for retrieval on composite keys. Acta informatica
4(1):1–9.
Gavanelli, M. 2002. An algorithm for multi-criteria opti-
mization in CSPs. ECAI’02 136–140.
Habenicht, W. 1983. Quad trees, a datastructure for dis-
crete vector optimization problems. In Essays and Surveys
on Multiple Criteria Decision Making. Springer. 136–145.
Haimes, Y. Y.; Lasdon, L. S.; and Wismer, D. A. 1971. On a
bicriterion formulation of the problems of integrated system
identification and system optimization. IEEE Transactions
on Systems, Man, and Cybernetics 1(3):296–297.
Le Pape, C.; Couronné, P.; Vergamini, D.; and Gosselin,
V. 1994. Time-versus-capacity compromises in project
scheduling.
Lust, T., and Teghem, J. 2010. Two-phase Pareto local
search for the biobjective traveling salesman problem. Jour-
nal of Heuristics 16(3):475–510.
Mavrotas, G. 2007. Generation of efficient solutions
in multiobjective mathematical programming problems us-
ing GAMS. Effective implementation of the ε-constraint
method.
OscaR Team. 2012. OscaR: Scala in OR. Available from
https://bitbucket.org/oscarlib/oscar.
Paquete, L., and Stützle, T. 2009. Design and analy-
sis of stochastic local search for the multiobjective travel-
ing salesman problem. Computers & operations research
36(9):2619–2631.
Ralphs, T. K.; Saltzman, M. J.; and Wiecek, M. M. 2006.
An improved algorithm for solving biobjective integer pro-
grams. Annals of Operations Research 147(1):43–70.
Samet, H. 2006. Foundations of multidimensional and met-
ric data structures. Morgan Kaufmann.
Schaus, P., and Hartert, R. 2013. Multi-Objective Large
Neighborhood Search. In 19th International Conference on
Principles and Practice of Constraint Programming.
Van Wassenhove, L. N., and Gelders, L. F. 1980. Solving a
bicriterion scheduling problem. European Journal of Oper-
ations Research 4:42–48.
Xavier Gandibleux. 2013. A collection of test instances for
multiobjective combinatorial optimization problems. Avail-
able from http://xgandibleux.free.fr/MOCOlib/.
Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C. M.; and
da Fonseca, V. G. 2003. Performance assessment of multi-
objective optimizers: An analysis and review. Evolutionary
Computation, IEEE Transactions on 7(2):117–132.

2679




