
Adaptive Singleton-Based Consistencies∗

Amine Balafrej
CNRS, U. Montpellier, France

U. Mohammed V Agdal, Morocco

Christian Bessiere
CNRS, U. Montpellier

France

El Houssine Bouyakhf
FSR, U. Mohammed V Agdal

Morocco

Gilles Trombettoni
CNRS, U. Montpellier

France

Abstract

Singleton-based consistencies have been shown to dra-
matically improve the performance of constraint solvers
on some difficult instances. However, they are in gen-
eral too expensive to be applied exhaustively during the
whole search. In this paper, we focus on partition-one-
AC, a singleton-based consistency which, as opposed
to singleton arc consistency, is able to prune values on
all variables when it performs singleton tests on one
of them. We propose adaptive variants of partition-one-
AC that do not necessarily run until having proved the
fixpoint. The pruning can be weaker than the full ver-
sion but the computational effort can be significantly
reduced. Our experiments show that adaptive Partition-
one-AC can obtain significant speed-ups over arc con-
sistency and over the full version of partition-one-AC.

1 Introduction
The standard level of consistency that constraint solvers ap-
ply during search for solutions in constraint networks is arc
consistency (AC). Applying stronger levels of consistency
can improve standard AC on some difficult instances, but
they are in general too expensive to be applied exhaustively
everywhere on the network during the whole search.

Some recent works apply a level of strong consistency in
a non exhaustive way. In (Stamatatos and Stergiou 2009), a
preprocessing phase learns which level of consistency to ap-
ply on which parts of the instance. Once the level is learned,
it is statically applied during the whole search. In (Stergiou
2008; Paparrizou and Stergiou 2012), some heuristics al-
low the solver to dynamically select during search AC or
a stronger level of consistency (maxRPC) depending on the
variable/constraint. In (Balafrej et al. 2013), for each vari-
able/constraint the solver learns during search a parameter
that characterizes a parameterized level of consistency to ap-
ply on the variable/constraint. That parameterized level lies
between AC and a stronger level.

∗Supported by the EU project ICON (FP7-284715).
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we focus on singleton-based consistencies.
They have been shown extremely efficient to solve some
classes of hard problems (Bessiere et al. 2011). Singleton-
based consistencies apply the singleton test principle, which
consists in assigning a value to a variable and trying to re-
fute it by enforcing a given level of consistency. If a con-
tradiction occurs during this singleton test, the value is re-
moved from its domain. The first example of such a local
consistency is Singleton Arc Consistency (SAC), introduced
in (Debruyne and Bessiere 1997). In SAC, the singleton test
enforces arc consistency. By definition, SAC can only prune
values in the variable domain on which it currently performs
singleton tests. In (Bennaceur and Affane 2001), Partition-
One-AC (that we call POAC) has been proposed. POAC is
an extension of SAC that can prune values everywhere in
the network as soon as a variable has been completely sin-
gleton tested. As a consequence, the fixpoint in terms of fil-
tering is often quickly reached in practice. This observation
has already been made on numerical CSPs. In (Trombettoni
and Chabert 2007; Neveu and Trombettoni 2013) a consis-
tency called Constructive Interval Disjunction (CID), close
to POAC in its principle, gave good results by simply call-
ing the main procedure once on each variable or by adapting
during search the number of times it is called.

Based on these observations, we propose an adaptive ver-
sion of POAC, called APOAC, where the number of times
variables are processed for singleton tests on their values
is dynamically and automatically adapted during search. A
sequence of singleton tests on all values of one variable is
called a varPOAC call. The number k of times varPOAC
is called will depend on how much POAC is efficient or not
in pruning values. This number k of varPOAC calls will
be learned during a sequence of nodes of the search tree
(learning nodes) by measuring a stagnation in the amount
of pruned values. This amount k of varPOAC calls will be
applied at each node during a sequence of nodes (called ex-
ploitation nodes) before we enter a new learning phase to
adapt k again. Observe that if the number of varPOAC calls
learned is 0, the adaptive POAC will mimic AC.

The rest of the paper is organized as follows. Section 2

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2601

contains the necessary formal background. In Section 3, we
propose an efficient POAC algorithm that will be used as a
basis for our adaptive versions. We give a quick comparison
to SAC that validates our choices. Section 4 presents our dif-
ferent approaches to learn the number of varPOAC calls to
apply. In Section 5, hard instances from the 2009 CSP com-
petition are used to experimentally select the best among our
learning mechanisms and to validate our approach as a way
to improve the performance of standard AC-based solvers on
instances difficult to solve. Section 6 concludes this work.

2 Background
A constraint network is defined as a set of n variables X =
{x1, ..., xn}, a set of domains D = {D(x1), ..., D(xn)},
and a set of e constraints C = {c1, ..., ce}. Each constraint
ck is defined by a pair (var(ck), sol(ck)), where var(ck) is
an ordered subset of X , and sol(ck) is a set of combinations
of values (tuples) satisfying ck. A tuple t ∈ sol(ck) is valid
iff ∀xi ∈ var(ck), t[xi] ∈ D(xi), where t[xi] is the value
that xi takes in t. In the following Γ(xi) will denote the set
of constraints cj such that xi ∈ var(cj).

A tuple t ∈ sol(ck) is called a support for vi ∈ D(xi),
xi ∈ var(ck), on ck iff t is valid and t[xi] = vi. A value
vi ∈ D(xi) is arc consistent iff for all cj ∈ Γ(xi) vi has a
support on cj . A variable xi is arc consistent if D(xi) 6= ∅
and all values in D(xi) are arc consistent. A network is arc
consistent if all its variables are arc consistent. We denote by
AC(N) the network obtained by enforcing arc consistency
on N . If AC(N) has empty domains, we say that N is arc
inconsistent.

Given a constraint network N = (X,D,C), a value
vi ∈ D(xi) is singleton arc consistent (SAC) iff the net-
work N |xi=vi where D(xi) is reduced to the singleton {vi}
is not arc inconsistent. A variable xi is SAC if D(xi) 6= ∅
and all values in D(xi) are SAC. A network is SAC if all its
variables are SAC.

Given a constraint network N = (X,D,C), a variable
xi is partition-one-AC (POAC) iff D(xi) 6= ∅, all values
in D(xi) are SAC, and ∀j ∈ 1..n, j 6= i,∀vj ∈ D(xj),
∃vi ∈ D(xi) such that vj ∈ AC(N |xi=vi). A constraint
network N = (X,D,C) is POAC iff all its variables are
POAC. Observe that POAC, as opposed to SAC, is able to
prune values from all variable domains when being enforced
on a given variable.

It has been shown in (Bennaceur and Affane 2001) that
POAC is strictly stronger than SAC. Following (Debruyne
and Bessiere 1997), this means that SAC holds on any con-
straint network on which POAC holds and there exists a con-
straint network on which SAC holds but not POAC.

3 POAC
Before moving to adaptive partition-one-AC, we first pro-
pose an efficient algorithm enforcing POAC and we compare
its behaviour to SAC.

3.1 The Algorithm
The efficiency of our POAC algorithm, POAC1, is based on
the use of counters associated with each value in the con-

Algorithm 1: POAC1(X,D,C)

1 begin
2 if ¬EnforceAC(X,D,C) then
3 return false

4 S ← CyclicList(Ordering(X))
5 FPP← 0
6 xi ← first(S)
7 while FPP < |X| do
8 if ¬varPOAC(xi, X,D,C,CHANGE) then
9 return false

10 if CHANGE then FPP← 1 else FPP++
11 xi ← NextElement(xi, S)

12 return true

straint network. These counters are used to count how many
times a value vj from a variable xj is pruned during the se-
quence of POAC tests on all the values of another variable xi
(the varPOAC call to xi). If vj is pruned |D(xi)| times, this
means that it is not POAC and can be removed from D(xj).
POAC1 (Algorithm 1) starts by enforcing arc consistency

on the network (line 2). Then it puts all variables in the or-
dered cyclic list S using any total ordering on X (line 4).
varPOAC iterates on all variables from S (line 8) to make
them POAC until the fixpoint is reached (line 12) or a do-
main wipe-out occurs (line 9). The counter FPP (FixPoint
Proof) counts how many calls to varPOAC have been pro-
cessed in a row without any change in any domain (line 10).

The procedure varPOAC (Algorithm 2) is called to es-
tablish POAC w.r.t. a variable xi. It works in two steps. The
first step enforces arc consistency in each sub-network N =
(X,D,C ∪ {xi = vi}) (line 4) and removes vi from D(xi)
(line 5) if the sub-network is arc-inconsistent. Otherwise, the
procedure TestAC (Algorithm 3) increments the counter
associated with every arc inconsistent value (xj , vj), j 6= i
in the sub-network N = (X,D,C ∪ {xi = vi}). (Lines
6 and 7 have been added for improving the performance
in practice but are not necessary for reaching the required
level of consistency.) In line 9 the Boolean CHANGE is set
to true if D(xi) has changed. The second step deletes all
the values (xj , vj), j 6= i with a counter equal to |D(xi)|
and sets back the counter of each value to 0 (lines 13-15).
Whenever a domain change occurs in D(xj), if the domain
is empty, varPOAC returns failure (line 16); otherwise it
sets the Boolean CHANGE to true (line 17).

Enforcing arc consistency on the sub-networks N =
(X,D,C ∪ {xi = vi}) is done by calling the procedure
TestAC (Algorithm 3). TestAC just checks whether arc
consistency on the sub-networkN = (X,D,C∪{xi = vi})
leads to a domain wipe-out or not. It is an instrumented AC
algorithm that increments a counter for all removed values
and restores them all at the end. In addition to the stan-
dard propagation queue Q, TestAC uses a list L to store
all the removed values. After the initialisation of Q and
L (lines 2-3), TestAC revises each arc (xj , ck) in Q and
adds each removed value (xj , vj) to L (lines 5-10). If a
domain wipe-out occurs (line 11), TestAC restores all re-

2602

Algorithm 2: varPOAC(xi, X,D,C, CHANGE)
1 begin
2 SIZE← |D(xi)|; CHANGE← false
3 foreach vi ∈ D(xi) do
4 if ¬TestAC(X,D,C ∪ {xi = vi}) then
5 remove vi from D(xi)
6 if ¬EnforceAC(X,D,C, xi) then
7 return false

8 if D(xi) = ∅ then return false
9 if SIZE 6= |D(xi)| then CHANGE← true

10 foreach xj ∈ X\{xi} do
11 SIZE← |D(xj)|
12 foreach vj ∈ D(xj) do
13 if counter(xj , vj) = |D(xi)| then
14 remove vj from D(xj)

15 counter(xj , vj)← 0

16 if D(xj) = ∅ then return false
17 if SIZE 6= |D(xj)| then CHANGE← true

18 return true

moved values (line 12) without incrementing the counters
(call to RestoreDomains with UPDATE = false) and
it returns failure (line 13). Otherwise, if values have been
pruned from the revised variable (line 14) it puts in Q the
neighbour arcs to be revised. At the end, removed values are
restored (line 16) and their counters are incremented (call to
RestoreDomains with UPDATE = true) before return-
ing success (line 17).

Proposition 1 POAC1 has a O(n2d2(T + n)) worst-case
time complexity, where T is the time complexity of the arc-
consistency algorithm used for singleton tests, n is the num-
ber of variables, and d is the number of values in the largest
domain.

Proof. The cost of calling varPOAC on a single variable is
O(dT + nd) because varPOAC runs AC on d values and
updates nd counters. In the worst case, each of the nd value
removals provoke n calls to varPOAC. Therefore POAC1
has a time complexity in O(n2d2(T + n)). �

3.2 Comparison of POAC and SAC behaviors
Although POAC has a worst-case time complexity greater
than SAC, we observed in practice that maintaining POAC
during search is often faster than maintaining SAC. This be-
havior occurs even when POAC cannot remove more values
than SAC, i.e., when the same number of nodes is visited
with the same static variable ordering. This is due to what
we call the (filtering) convergence speed: when both POAC
and SAC reach the same fixpoint, POAC reaches the fixpoint
with less singleton tests than SAC.

Figure 1 compares the convergence speed of POAC and
SAC on an instance where they have the same fixpoint. We
observe that POAC is able to reduce the domains, to reach
the fixpoint, and to prove the fixpoint, all in less singleton
tests than SAC. This pattern has been observed on most of

Algorithm 3: TestAC(X,D,C ∪ {xi = vi})
1 begin
2 Q ← {(xj , ck)|ck ∈ Γ(xi), xj ∈ var(ck), xj 6= xi}
3 L← ∅
4 while Q 6= ∅ do
5 pick and delete (xj , ck) from Q
6 SIZE← |D(xj)|
7 foreach vj ∈ D(xj) do
8 if ¬HasSupport(xj , vj , ck) then
9 remove vj from D(xj)

10 L← L ∪ (xj , vj)

11 if D(xj) = ∅ then
12 RestoreDomains(L, false)
13 return false

14 if |D(xj)| < SIZE then
15 Q ← Q ∪ {(xj′ , ck′)|ck′ ∈ Γ(xj), xj′ ∈

var(ck′), xj′ 6= xj , ck′ 6= ck}

16 RestoreDomains(L, true)
17 return true

Algorithm 4: RestoreDomains(L,UPDATE)

1 begin
2 if UPDATE then
3 foreach (xj , vj) ∈ L do
4 D(xj)← D(xj) ∪ {vj}
5 counter(xj , vj)← counter(xj , vj) + 1

6 else
7 foreach (xj , vj) ∈ L do
8 D(xj)← D(xj) ∪ {vj}

the instances and whatever ordering was used in the list S.
The reason is that each time POAC applies varPOAC to
a variable xi, it is able to remove inconsistent values from
D(xi) (like SAC), but also from any other variable domain
(unlike SAC).

The fact that SAC cannot remove values in variables other
than the one on which the singleton test is performed makes
it a poor candidate for adapting the number of singleton
tests. A SAC-inconsistent variable/value pair never single-
ton tested has no chance to be pruned by such a technique.

4 Adaptive POAC
This section presents an adaptive version of POAC that ap-
proximates POAC by monitoring the number of variables on
which to perform singleton tests.

To achieve POAC, POAC1 calls the procedure varPOAC
until it has proved that the fixpoint is reached. This means
that, when the fixpoint is reached, POAC1 needs to call
n (additional) times the procedure varPOAC without any
pruning to prove that the fixpoint was reached. Furthermore,
we experimentally observed that in most cases there is a long
sequence of calls to varPOAC that prune very few values,
even before the fixpoint has been reached (see Figure 1 as an
example). The goal of Adaptive POAC (APOAC) is to stop

2603

 0

 100

 200

 300

 400

 500

0 200 400 600 800 1000

#
v
a
lu

e
s

#singleton tests

 0

 100

 200

 300

 400

 500

0 200 400 600 800 1000

#
v
a
lu

e
s

#singleton tests

 0

 100

 200

 300

 400

 500

0 200 400 600 800 1000

#
v
a
lu

e
s

#singleton tests

POAC SAC

Figure 1: The convergence speed of POAC and SAC.

iterating on varPOAC as soon as possible. We want to bene-
fit from strong propagation of singleton tests while avoiding
the cost of the last calls to varPOAC that delete very few
values or no value at all.

4.1 Principle
The APOAC approach alternates between two phases dur-
ing search: a short learning phase and a longer exploitation
phase. One of the two phases is executed on a sequence of
nodes before switching to the other phase for another se-
quence of nodes. The search starts with a learning phase.
The total length of a pair of sequences learning + exploita-
tion is fixed to the parameter LE.

Before going to a more detailed description, let us de-
fine the (log2 of the) volume of a constraint network N =
(X,D,C), used to approximate the size of the search space:

V = log2

n∏
i=1

|D(xi)|

We use the logarithm of the volume instead of the volume
itself because of the large integers the volume generates. We
also could have used the perimeter (i.e.,

∑
i |D(xi)|) for ap-

proximating the search space, as done in (Neveu and Trom-
bettoni 2013). However, experiments have confirmed that
the volume is a finer and better criterion for adaptive POAC.

The ith learning phase is applied to a sequence of L =
1
10 · LE consecutive nodes. During that phase, we learn a
cutoff value ki which is the maximum number of calls to
the procedure varPOAC that each node of the next (ith) ex-
ploitation phase will be allowed to perform. A good cutoff
ki is such that varPOAC removes many inconsistent values
(that is, obtains a significant volume reduction in the net-
work) while avoiding calls to varPOAC that delete very few
values or no value at all. During the ith exploitation phase,
applied to a sequence of 9

10 · LE consecutive nodes, the
procedure varPOAC is called at each node until fixpoint is
proved or the cutoff limit of ki calls to varPOAC is reached.

The ith learning phase works as follows. Let ki−1 be
the cutoff learned at the previous learning phase. We ini-
tialize maxK to max(2 · ki−1, 2). At each node nj in

the new learning sequence n1, n2, . . . nL, APOAC is used
with a cutoff maxK on the number of calls to the proce-
dure varPOAC. APOAC stores the sequence of volumes
(V1, . . . , Vlast), where Vp is the volume resulting from the
pth call to varPOAC and last is the smallest among maxK
and the number of calls needed to prove fixpoint. Once the
fixpoint is proved or the maxKth call to varPOAC per-
formed, APOAC computes ki(j), the number of varPOAC
calls that are enough to sufficiently reduce the volume while
avoiding the extra cost of the last calls that remove few or no
value. (The criteria to decide what ’sufficiently’ means are
described in Section 4.2.) Then, to make the learning phase
more adaptive,maxK is updated before starting node nj+1.
If ki(j) is close to maxK, that is, greater than 3

4maxK,
we increase maxK by 20%. If ki(j) is less than 1

2maxK,
we reduce maxK by 20%. Otherwise maxK is unchanged.
Once the learning phase ends, APOAC computes the cutoff
ki that will be applied to the next exploitation phase. ki is an
aggregation of the ki(j)s, j = 1, ..., L, following one of the
aggregation techniques presented in Section 4.3.

4.2 Computing ki(j)
We implemented APOAC using two different techniques to
compute ki(j) at a node nj of the learning phase:

• LR (Last Reduction) ki(j) is the rank of the last call to
varPOAC that reduced the volume of the constraint net-
work.

• LD (Last Drop) ki(j) is the rank of the last call to
varPOAC that has produced a significant drop of the
volume. The significance of a drop is captured by a ra-
tio β ∈ [0, 1]. More formally, ki(j) = max{p | Vp ≤
(1− β)Vp−1}.

4.3 Aggregation of the ki(j)s
Once the ith learning phase completed, APOAC aggregates
the ki(j)s computed during that phase to generate ki, the
new cutoff value on the number of calls to the procedure
varPOAC allowed at each node of the ith exploitation
phase. We propose two techniques to aggregate the ki(j)s
into ki.

• Med ki is the median of the ki(j), j ∈ 1..L.

• q-PER This technique generalizes the previous one. In-
stead of taking the median, we use any percentile. That is,
ki is equal to the smallest value among ki(1), . . . , ki(L)
such that q% of the values among ki(1), . . . , ki(L) are
less than or equal to ki.

Several variants of APOAC can be proposed, depending
on how we compute the ki(j) values in the learning phase
and how we aggregate the different ki(j)s. In the next sec-
tion, we give an experimental comparison of the different
variants we tested.

5 Experiments
This section presents experiments that compare the perfor-
mance of maintaining AC, POAC, or adaptive variants of
POAC during search. For the adaptive variants we use two

2604

Table 1: Total number of instances solved by AC, several variants of APOAC, and POAC.

ki(j) ki AC APOAC-2 APOAC-n APOAC-fp POAC
LR 70-PER #solved 115 116 119 118 115

Med #solved 115 114 118 118 115
LD 70-PER #solved 115 117 121 120 115

Med #solved 115 116 119 119 115

Table 2: CPU time for AC, APOAC-2, APOAC-n, APOAC-fp and POAC on the eight problem classes.

#SolvedbyOne AC APOAC-2 APOAC-n APOAC-fp POAC
Tsp-20 15(/15) #solved instances 15 15 15 15 15

sum CPU(s) 1,596.38 3,215.07 4,830.10 7,768.33 18,878.81
Tsp-25 15(/15) #solved instances 15 14 15 15 11

sum CPU(s) 20,260.08 >37,160.63 16,408.35 33,546.10 >100,947.01
renault 50(/50) #solved instances 50 50 50 50 50

sum CPU(s) 837.72 2,885.66 11,488.61 15,673.81 18,660.01
cril 7(/8) #solved instances 4 5 7 7 7

sum CPU(s) >45,332.55 >42,436.17 747.05 876.57 1,882.88
mug 6(/8) #solved instances 5 6 6 6 6

sum CPU(s) >29,931.45 12,267.39 12,491.38 12,475.66 2,758.10
K-insertions 6(/10) #solved instances 4 5 6 5 5

sum CPU(s) >30,614.45 >29,229.71 27,775.40 >29,839.39 >20,790.69
myciel 12(/15) #solved instances 12 12 12 12 11

sum CPU(s) 1,737.12 2,490.15 2,688.80 2,695.32 >20,399.70
Qwh-20 10(/10) #solved instances 10 10 10 10 10

sum CPU(s) 16,489.63 12,588.54 11,791.27 12,333.89 27,033.73
Sum of CPU times >146,799 >142,273 88,221 >115,209 >211,351

Sum of average CPU times per class >18,484 >14,717 8,773 >9,467 >10,229

techniques to determine ki(j): the last reduction (LR) and
the last drop (LD) with β = 5% (see Section 4.2). We
also use two techniques to aggregate these ki(j)s: the me-
dian (Med) and the qth percentile (q-PER) with q = 70%
(see Section 4.3). In experiments not presented in this pa-
per we tested the performance of APOAC using percentiles
10, 20, . . . 90. The 70th percentile showed the best behav-
ior. We have performed experiments for the four variants ob-
tained by combining two by two the parameters LR vs LD
and Med vs 70-PER. For each variant we compared three
initial values for the initial maxK used by the first learning
phase: maxK ∈ {2, n,∞}, where n is the number of vari-
able in the instance to be solved. These three versions are de-
noted respectively by APOAC-2, APOAC-n and APOAC-fp.

We compare these search algorithms on problems avail-
able from Lecoutre’s webpage.1 We selected four binary
classes containing at least one difficult instance for MAC
(> 10 seconds): mug, K-insertions, myciel and Qwh-20.
We also selected all the n-ary classes in extension: the
traveling-salesman problem (TSP-20, TSP-25), the Renault
Megane configuration problem (Renault) and the Cril in-
stances (Cril). These eight problem classes contain instances
with 11 to 1406 variables, domains of size 3 to 1600 and 20
to 9695 constraints.

1www.cril.univ-artois.fr/˜lecoutre/benchmarks.html

For the search algorithm maintaining AC, the algorithm
AC2001 (resp. GAC2001) (Bessiere et al. 2005) is used for
the binary (resp. non-binary) problems. The same AC al-
gorithms are used as refutation procedure for POAC and
APOAC algorithms. The dom/wdeg heuristic (Bousse-
mart et al. 2004) is used both to order variables in the
Ordering(X) function (see line 4 of Algorithm 1) and to
order variables during search for all the search algorithms.
The results presented involve all the instances solved before
the cutoff of 15,000 seconds by at least one algorithm. All
the algorithms are implemented in our JAVA CSP solver.

Table 1 compares all the competitors and gives the num-
ber of instances (#solved) solved before the cutoff. We ob-
serve that, on the set of instances tested, adaptive versions
of POAC are better than AC and POAC. All of them, ex-
cept APOAC-2+LR+Med, solve more instances than AC
and POAC. All the versions using the last drop (LD) tech-
nique to determine the ki(j)s in the learning phase are better
than those using the last reduction (LR). We also see that the
versions that use the 70th percentile (70-PER) to aggregate
the ki(j)s are better than those using the median (Med). This
suggests that the best combination is LD+70-PER. This is
the only combination we will use in the following.

Table 2 focuses on the performance of the three variants
of APOAC (APOAC-2, APOAC-n and APOAC-fp), all with
the combination (LD+70-PER). The second column reports

2605

 30

 40

 50

 60

 70

 80

1000 5000 10000 15000

#
S
o
lv

e
d
 I
n
st

a
n
ce

s

CPU(s)

AC
APOAC-2
APOAC-n
APOAC-fp
POAC

Figure 2: Number of instances solved when the time allowed increases.

the number #SolvedbyOne of instances solved before the
cutoff by at least one algorithm. For each algorithm and
each class, Table 2 shows the sum of CPU times required
to solve those #SolvedbyOne instances. When a competitor
cannot solve an instance before the cutoff, we count 15,000
seconds for that instance and we write ’>’ in front of the
corresponding sum of CPU times. The last two rows of the
table give the total sum of CPU times and the sum of av-
erage CPU times per class. For each class taken separately,
the three versions of APOAC are never worse than AC and
POAC at the same time. APOAC-n solves all the instances
solved by AC and POAC and for four of the eight problem
classes it outperforms both AC and POAC. However, there
remain a few classes, such as Tsp-20 and renault, where even
the first learning phase of APOAC is too costly to compete
with AC despite our agile auto-adaptation policy that limits
the number of calls to varPOAC during learning (see Sec-
tion 4.1). Table 2 also shows that maintaining a high level
of consistency such as POAC throughout the whole network
generally produces a significant overhead.

Table 3 and Figure 2 sum up the performance results ob-
tained on all the instances with n-ary constraints. The bi-
nary classes are not taken into account by these summarized
table and figure because they have not been exhaustively
tested. Figure 2 gives the performance profile for each al-
gorithm presented in Table 2: AC, APOAC-2, APOAC-n,
APOAC-fp and POAC. Each point (t, i) on a curve indi-
cates the number i of instances that an algorithm can solve in
less than t seconds. The performance profile underlines that
AC and APOAC are better than POAC: whatever the time
given, they solve more instances than POAC. The compari-
son between AC and APOAC highlights two phases. A first
phase (for easy instances) where AC is better than APOAC,
and a second phase where APOAC becomes better than AC.

Table 3: Performance of APOAC-n compared to AC and
POAC on n-ary problems.

AC APOAC-n POAC
#solved instances 84(/87) 87(/87) 83(/87)
sum CPU(s) >68,027 33,474 >140,369

gain w.r.t. AC – >51% –
gain w.r.t. POAC – >76% –

Among the adaptive versions, APOAC-n is the variant with
the shortest first phase (it adapts quite well to easy instances)
and it remains the best even when time increases.

Finally, Table 3 compares the best APOAC version
(APOAC-n) to AC and POAC on n-ary problems. The first
row of the table gives the number of solved instances by
each algorithm before the cutoff. We observe that APOAC-n
solves more instances than AC and POAC. The second row
of the table gives the sum of CPU time required to solve all
the instances. Again, when an instance cannot be solved be-
fore the cutoff of 15,000 seconds, we count 15,000 seconds
for that instance. We observe that APOAC-n significantly
outperforms both AC and POAC. The last two rows of the
table give the gain of APOAC-n w.r.t. AC and w.r.t. POAC.
We see that APOAC-n has a positive total gain greater than
51% compared to AC and greater than 76% compared to
POAC.

6 Conclusion
We have proposed POAC1, an algorithm that enforces
partition-one-AC efficiently in practice. We have shown that
POAC converges faster than SAC to the fixpoint due to its
ability to prune values from all variable domains when be-

2606

ing enforced on a given variable. We proposed an adaptive
version of POAC that monitors the number of variables on
which to perform singleton tests. Experiments show that the
adaptive version of POAC gives a good trade-off between fil-
tering and search. This leads to a number of solved instances
greater than with AC or POAC and in a significant gain in
CPU time.

References
Balafrej, A.; Bessiere, C.; Coletta, R.; and Bouyakhf, E.
2013. Adaptive parameterized consistency. In Proceedings
of the Eighteenth International Conference on Principles
and Practice of Constraint Programming (CP’13), LNCS
8124, Springer–Verlag, 143–158.
Bennaceur, H., and Affane, M.-S. 2001. Partition-k-AC: An
Efficient Filtering Technique Combining Domain Partition
and Arc Consistency. In Proceedings of the Seventh Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP’01), LNCS 2239, Springer–Verlag, 560–
564.
Bessiere, C.; Régin, J.-C.; Yap, R. H. C.; and Zhang, Y.
2005. An Optimal Coarse-grained Arc Consistency Algo-
rithm. Artif. Intell. 165(2):165–185.
Bessiere, C.; Cardon, S.; Debruyne, R.; and Lecoutre, C.
2011. Efficient algorithms for singleton arc consistency.
Constraints 16(1):25–53.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting Systematic Search by Weighting Constraints. In
Proceedings of the Sixteenth European Conference on Arti-
ficial Intelligence (ECAI’04), 146–150.
Debruyne, R., and Bessiere, C. 1997. Some Practicable Fil-
tering Techniques for the Constraint Satisfaction Problem.
In Proceedings of the Fifteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI’97), 412–417.
Neveu, B., and Trombettoni, G. 2013. Adaptive Construc-
tive Interval Disjunction. In Proceedings of the 25th IEEE
International Conference on Tools for Artificial Intelligence
(IEEE-ICTAI’13), 900–906.
Paparrizou, A., and Stergiou, K. 2012. Evaluating simple
fully automated heuristics for adaptive constraint propaga-
tion. In Proceedings of the 24th IEEE International Confer-
ence on Tools for Artificial Intelligence (IEEE-ICTAI’12),
880–885.
Stamatatos, E., and Stergiou, K. 2009. Learning how to
propagate using random probing. In Proceedings of the Sixth
International Conference on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Op-
timization Problems (CPAIOR’09), LNCS 5547, Springer,
263–278.
Stergiou, K. 2008. Heuristics for dynamically adapting
propagation. In Proceedings of the Eighteenth European
Conference on Artificial Intelligence (ECAI’08), 485–489.
Trombettoni, G., and Chabert, G. 2007. Constructive Inter-
val Disjunction. In Proceedings of the Thirteenth Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP’07), LNCS 4741, Springer–Verlag, 635–
650.

2607

