
Non-Restarting SAT Solvers with Simple
Preprocessing Can Efficiently Simulate Resolution

Paul Beame
Computer Science and Engineering

University of Washington
Seattle, WA 98195, USA

beame@cs.washington.edu

Ashish Sabharwal
IBM Watson Research Center

1101 Kitchawan Road
Yorktown Heights, NY 10598, USA

ashish.sabharwal@us.ibm.com

Abstract

Propositional satisfiability (SAT) solvers based on conflict di-
rected clause learning (CDCL) implicitly produce resolution
refutations of unsatisfiable formulas. The precise class of for-
mulas for which they can produce polynomial size refutations
has been the subject of several studies, with special focus
on the clause learning aspect of these solvers. The results,
however, assume the use of non-standard and non-asserting
learning schemes, or rely on polynomially many restarts for
simulating individual steps of a resolution refutation, or work
with a theoretical model that significantly deviates from cer-
tain key aspects of all modern CDCL solvers such as learning
only one asserting clause from each conflict and other tech-
niques such as conflict guided backjumping and phase sav-
ing. We study non-restarting CDCL solvers that learn only
one asserting clause per conflict and show that, with simple
preprocessing that depends only on the number of variables
of the input formula, such solvers can polynomially simulate
resolution. We show, moreover, that this preprocessing allows
one to convert any CDCL solver to one that is non-restarting.

Introduction
The design of practically efficient algorithms for the
Boolean Satisfiability (SAT) problem has witnessed tremen-
dous advances since the 1990s, most notably in the fam-
ily of CDCL or conflict-directed clause learning solvers
(Marques-Silva, Lynce, and Malik 2009). These practical
advances in turn have sparked much interest in formally
understanding the strengths and limitations of various key
techniques employed by today’s sophisticated implementa-
tions that can handle instances with several million vari-
ables. Among these techniques are clause learning schemes,
which cache and reuse information about subformulas the
solver has proved unsatisfiable, and rapid restarts, which at-
tempt to prevent the solver from getting stuck in parts of the
search space that are difficult to reason about.

Clause learning, with early ideas originating as far back
as the 1970s (Stallman and Sussman 1977; de Kleer and
Williams 1987), has been studied heavily from a practi-
cal perspective, leading to the exploration of many differ-
ent learning approaches but an eventual convergence on the
so-called asserting learning schemes (Marques-Silva and

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sakallah 1996; Moskewicz et al. 2001; Zhang et al. 2001;
Marques-Silva, Lynce, and Malik 2009). At the same time,
restarts, with their roots in the study of heavy-tailed run-
time distributions of non-learning search algorithms (Frost,
Rish, and Vila 1997; Gomes, Selman, and Crato 1997), have
also been the focus of much attention in the AI community
(Hogg and Williams 1994; Gomes, Selman, and Kautz 1998;
Luby, Sinclair, and Zuckerman 1993; Walsh 1999; Haim and
Walsh 2009; Audemard and Simon 2012).

Clause learning and restarts are also the two key CDCL
techniques that have been analyzed from a formal perspec-
tive, adding substantially to the observation that DPLL based
complete SAT solvers (implicitly) produce tree-like resolu-
tion refutations (Robinson 1965) when presented with an un-
satisfiable instance. However, as we will discuss shortly, the
best known answer to the fundamental question of whether
today’s CDCL solvers can efficiently simulate any (general)
resolution refutation involves a heavy use of both (asserting)
clause learning and restarts. Are both of these techniques es-
sential to simulating resolution?

Our main result is that with a simple preprocessing step
a non-restarting CDCL solver S′ can simulate the execution
of any restarting CDCL solver S, with only a small over-
head. In particular, both S and S′ produce identical resolu-
tion refutations when the input formula F is unsatisfiable.
However, our method applies not only to resolution refuta-
tions or the use of CDCL solvers on unsatisfiable formulas.
We show, more generally, that our simple preprocessing ap-
plied to any CNF formula, together with a modified vari-
able selection heuristic, allows one to eliminate all explicit
restarts of any CDCL solver at the additive total overhead
of only O(n + R) variable assignments (decisions or unit
propagations) where n is the number of variables and R is
the number of restarts in the original CDCL execution. The
idea is to interleave the execution of S on an n variable in-
put formula with the processing of a new formula on disjoint
variables that essentially implements an n-bit counter. As a
consequence, we prove that with simple preprocessing, non-
restarting CDCL solvers can efficiently simulate resolution.

Background and Related Work
Beame, Kautz, and Sabharwal (2003; 2004) initiated a for-
mal study of CDCL SAT solvers, specifically seeking to un-
derstand the theoretical power of clause learning and restarts

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2608

from a proof complexity perspective. One of their findings
was that for any natural refinementR of (general) resolution,
there exists CNF formulas FR such that CDCL solvers—if
allowed to selectively ignore unit propagations or conflicts
and to perform clause learning using a specific scheme—
can produce polynomial size refutations (in the associated
CL proof system) of certain derived formulas F ′R that re-
quire exponential size R refutations. This result did not re-
quire the use of any restarts. However, the construction of
F ′R relied on the specifics of some polynomial size resolu-
tion refutation of FR. Further, their construction does not
work for asserting clause learning schemes. Specifically, any
asserting scheme would simply learn that all extension vari-
ables of F ′R must be true, reducing F ′R back to FR.

Hertel et al. (2008) presented a clever transformation of
FR into F ′′R which did not rely on knowing a resolution refu-
tation of FR. However, their finding was that F ′′R has poly-
nomial size proofs in a system called pool resolution (Van
Gelder 2005). While pool resolution is a clean framework
that can be used to capture certain aspects of CDCL SAT
solvers, it has some features that could, at least in princi-
ple, make it much more powerful than actual CDCL solvers.
First, pool resolution is not restricted to backtracking to as-
serting levels or, in its full generality, to always propagate
a unit clause when one exists. More importantly, when sim-
ulating conflict analysis and clause learning as performed
by a CDCL solver S, pool resolution effectively learns one
clause per node in the conflict graph analyzed by S, thus
learning not just one asserting clause from each conflict but
up to n clauses in total.

Buss, Hoffmann, and Johannsen (2008) introduced the
RTL family of proof systems to capture CDCL solvers and
showed several interesting results about them, such as the
strength of limited width variants of RTL. Using this system,
Buss and Bonet (2012) and Buss and Kolodziejczyk (2012)
recently showed that every family of formulas currently
known to separate resolution from some natural refinement
of it admits polynomial size refutations in the weakest RTL
variant, regWRTI. However, RTL based proof systems, in-
cluding regWRTI, share the drawback of pool resolution that
they effectively allow learning and re-using up to n clauses
in situations where a CDCL solver would be allowed to learn
only one, very specific kind of clause, namely an asserting
clause. Further, they also allow the weakening rule of reso-
lution, which essentially amounts to letting the solver selec-
tively ignore unit propagations or conflicts.

The model that comes perhaps the closest to how mod-
ern CDCL solvers work—and the model we use for our
results—is the one proposed by Pipatsrisawat and Dar-
wiche (2009; 2011). While pool resolution and RTL sys-
tems do not explicitly model the highly interconnected no-
tions of decision level, unit propagation, and 1-UIP or assert-
ing clauses, Pipatsrisawat and Darwiche showed that, with
enough restarts, CDCL solvers learning only one asserting
clause per conflict and being free to employ other com-
mon search strategies such as conflict-guided backjumping,
can simulate any resolution refutation with only a polyno-
mial overhead. However, unlike the previously mentioned
results, their result relies heavily on the ability of CDCL

solvers to restart. In particular, in the worst case, the CDCL
solver restartsO(n2) times per learned clause, and generates
O(n4) new clauses per clause, in the resolution proof it tries
to simulate.

Main Idea
Our main contribution is a combination and extension of the
above ideas to develop a novel way of preprocessing an input
formula F to produce F̃ such that a non-restarting CDCL
solver S′ operating on F̃ can be seen as interleaving two ex-
ecutions, one of which mimics a counter and the other pre-
cisely mimics the steps of a restarting solver S that S′ tries
to simulate without restarts. F̃ is obtained by conjoining F
with a counting formulaG.G is defined on a set of variables
disjoint from F and, like the construction of Beame, Kautz,
and Sabharwal (2004), is trivially satisfiable. The counting
aspect of G is inspired by the construction of Hertel et al.
(2008) but is substantially simpler. Moreover, not only does
G not rely on the knowledge of a short refutation of F , it
does not even rely on F except for the number of variables
in it. Finally, as in the model of Pipatsrisawat and Darwiche
(2011), S′ learns one asserting clause per conflict. It may
optionally use fast backjumping or phase saving.

We show that S′ operating on F̃ can simulate S operat-
ing on any satisfiable or unsatisfiable formula F , with little
overhead. If F is unsatisfiable and S produces a resolution
refutation P of F , then S′ also produces P . Combining this
result with the construction of Pipatsrisawat and Darwiche
(2011) allows us to prove that S′ can efficiently simulate
any resolution refutation.

Our correctness analysis for simulating resolution is an
extension of ideas from Pipatsrisawat and Darwiche (2011),
Atserias, Fichte, and Thurley (2009; 2011), and Hertel et
al. (2008). The first two papers provide the concept of em-
powerment or absorption of clauses w.r.t. unit propagation,
which is the key to reason about resolution derivations in the
presence of dynamic aspects of CDCL solvers such as eager
unit propagation, learning asserting clauses, backjumping,
etc. Following Pipatsrisawat and Darwiche (2011), the goal
when trying to simulate a resolution refutation P should not
be to derive every individual clause in P but rather to derive
clauses that progressively absorb all clauses in P . Our con-
struction and analysis follow the same structure, except for
the fact that we do not allow the solver to restart. Instead,
borrowing ideas from Hertel et al. (2008), we interleave the
execution on F with an execution on G, which helps simu-
late restarts through a counter.

Preliminaries
We are interested in Conjunctive Normal Form (CNF) for-
mulas over propositional or Boolean variables taking values
in {0, 1}. The value is also referred to as the variable’s po-
larity or phase. A literal is a variable x or its negation x, with
x = 0 iff x = 1. A clause is a disjunction (∨) of literals, and
a CNF formula F is a conjunction (∧) of clauses. We will
write ` ∈ C if ` is a literal appearing in clause C. If ` ∈ C
and ` ∈ C ′, then C and C ′ are said to clash on the literal
`. |C| denotes the number of literals in C. C is referred to

2609

as a unit clause if |C| = 1. ⊥ denotes the empty (and thus
unsatisfiable) clause.

For a literal `, the simplified formula F |` is obtained by re-
moving from F all clauses containing ` and removing ` from
all clauses of F that contain `. A partial assignment σ to the
variables of F can be thought of as the set of literals that σ
sets to 1. F |σ is defined as the formula obtained by simpli-
fying F w.r.t. all literals in σ. Unit propagation applied to F
w.r.t. σ extends σ by adding to it all literals in unit clauses of
F |σ , simplifying Fσ further w.r.t. these newly added literals,
and repeating until no more unit clauses are identified. Unit
propagation is said to infer a conflict if it identifies a unit
clause ` in F |σ such that ` ∈ σ.
F is said to absorb a clause C if F and F ∧ C have iden-

tical inference power w.r.t. unit propagation, i.e., whatever
one can derive from F ∧ C using unit propagation one can
also derive from F itself. Formally:
Definition 1. A clause C is said to be absorbed by a CNF
formula F if for every literal `∗ ∈ C, unit propagation on
F |{`:`∈C\{`∗}} either infers a conflict or infers `∗.

Given two clauses D = (x ∨C) and D′ = (x ∨C ′) such
that C and C ′ do not clash on any literal, one can apply the
resolution rule (Robinson 1965) to resolve D with D′ over
x and derive the resolvent (C ∨ C ′) which is satisfied by a
truth assignment if and only if both D and D′ are.
Definition 2. A resolution derivation P of a clause C from
a CNF formula F is a sequence C1, C2, . . . , Cs such that
Cs = C and each Ci, 1 ≤ i ≤ s, is either a clause of F or is
derived by applying the resolution rule to clauses Cj and Ck
such that j, k < i. P is minimal if every clause Ci, 1 ≤ i <
s, is used in the derivation of some clause Cj , j > i. The
length of P , denoted length(P), is s. The size of P , denoted
size(P), is

∑s
i=1 |Ci|.

Definition 3. A resolution refutation P of a CNF formula
F is a resolution derivation of ⊥ from F .

CDCL SAT Solvers. Our goal is to analyze the strength
of Conflict-Directed Clause Learning (CDCL) SAT solvers
as combinatorial algorithms that search for resolution refu-
tations of unsatisfiable formulas. In the interest of space, we
refer the reader to several surveys that discuss CDCL solvers
in detail, in particular the relevant chapter in the Handbook
of Satisfiability (Marques-Silva, Lynce, and Malik 2009)
and the model of Pipatsrisawat and Darwiche (2011) that
we closely follow. We provide an intuitive description be-
low, highlighting the key aspects and terms we will need.

Suppose we have a CDCL solver S and a CNF formula F
over variables V, |V | = n. S maintains a partial assignment
σ and a decision level d. Initially, σ is empty and d = 0.
First, S applies unit propagation to F w.r.t. the empty σ at
the current decision level, 0. If unit propagation infers a con-
flict, S halts and declares F to be unsatisfiable. Otherwise, S
repeats the following process involving branching decisions,
unit propagation, and conflict analysis until unit propagation
at decision level 0 infers a conflict. To branch, S increments
d by 1, selects a literal ` such that `, ` 6∈ σ, extends σ by
adding ` to it, and associates ` with decision level d. Then S

applies unit propagation on F w.r.t. σ and associates all liter-
als newly added to σ also with decision level d. If there is no
conflict, then S proceeds as follows: if |σ| < n it repeats the
branching process, otherwise it declares F to be satisfiable
with σ as a satisfying assignment. More interestingly, if unit
propagation infers a conflict, there must be a conflict clause
Cconf in F such that σ falsifies Cconf and, furthermore, Cconf
has at least one literal associated with decision level d. At
this point, S performs conflict analysis to derive a learned
clause CL that is not in F and has the property that unit
propagating F ∧

∧
`∈CL

` w.r.t. the empty partial assignment
infers a conflict. Conflict analysis also yields a backtrack
level b < d. How CL and b are determined is something we
will discuss shortly. At this point, S learns CL by adding it
to F , backtracks to decision level b by removing from σ all
literals associated with decision levels greater than b, and ap-
plies unit propagation taking the learned clause CL into ac-
count. If there is an immediate conflict, it repeats the conflict
analysis process, otherwise it repeats the branching decision
process.

Our main interest is in learning strategies that derive an
asserting clause CL when encountering a conflict at deci-
sion level d. CL is called asserting if it has exactly one lit-
eral associated with decision level d. It is always possible
to learn such a clause; e.g., the clause containing the nega-
tions of the literals in σ that are set by branching decisions
is one such clause. The backtracking level b associated with
such a clause is 0 if CL is a unit clause, and it is the second
largest decision level associated with the literals in CL (thus
b ≤ d − 1). In general, b can be much smaller than d − 1,
so backtracking to level b is sometimes referred to as non-
chronological backtracking or backjumping. Suppose that `
is the unique literal in CL associated with decision level d.
Then, when S backjumps to decision level b, all other lit-
erals of CL must still be falsified, making unit propagation
“assert” or infer `. b is therefore referred as the asserting
level of CL, and ` as the asserted literal.

Learned clauses can be associated with cuts in an under-
lying conflict graph G (Marques-Silva and Sakallah 1996;
Beame, Kautz, and Sabharwal 2004). Nearly all of today’s
CDCL solvers learn asserting clauses, in fact a particular
kind of asserting clause called the 1-UIP clause, which cor-
responds to the asserting cut that is “closest” to the conflict
end of G. A precise understanding of 1-UIP clauses is not
necessary for our results.
S is said to use chronological backtracking if it always

backtracks to decision level d−1, irrespective of the decision
level b provided by conflict analysis.
S is said to restart if, rather than backtracking to the de-

cision level b provided by conflict analysis, S backtracks all
the way to decision level 0, empties out σ, retains all clauses
learned so far, and starts the search again.
S is said to use phase saving if it maintains a phase as-

signment ρ ∈ {0, 1}n (initialized arbitrarily) that stores the
last phase (if any) assigned by it through a branching deci-
sion or unit propagation to each variable x, and it always
prefers this phase when choosing between x and x during a
branching decision.

2610

Simulating Restarts with Preprocessing
In the rest of this paper, unless otherwise specified, CDCL
solvers will be assumed to learn one asserting clause per
conflict, employ backjumping to the asserting level, and not
use phase saving. The last two conditions are merely for clar-
ity of exposition. As we will later argue, our results hold ir-
respective of whether or not the solver uses backjumping or
phase saving.

We describe how a non-restarting CDCL SAT solver us-
ing a simple preprocessing step can efficiently simulate the
behavior of a CDCL solver that employs as many as 2m − 1
restarts. The simulation uses the following formula:

Definition 4. Let Y = {u, v, y0, . . . ym−1, z0, . . . , zm−1}
be a set of 2m + 2 Boolean variables. The CNF formula
Gm(Y) with 4m+ 1 clauses over Y is defined as:

Gm(Y) =
(
u∨z0∨. . .∨zm−1

)
∧
m−1∧
i=0

(
u ∨ yi ∨ zi ∨ v

)
∧
(
u ∨ yi ∨ zi ∨ v

)
∧
(
u ∨ yi ∨ zi ∨ v

)
∧
(
u ∨ yi ∨ zi ∨ v

)

We first see how a CDCL solver S operating on Gm(Y)

acts like an m-bit counter. We can think of y as an m-bit
number that starts at 0 and is incremented by 1 after every
2 conflicts when S operates on Gm(Y). Later, we will in-
terleave the execution of S on Gm(Y) with the execution of
S on Fn(X), and the counter will be incremented by 1 (and
the number of conflicts involvingGm(Y) will increase by 2)
each time S would have restarted on Fn(X). To understand
the operation of the counter, we use the following definition
for clauses that are equivalent w.r.t. unit propagation.

Definition 5. We say that two clauses C and D are 1-
equivalent with respect to a CNF formula F ′ if and only if
for every partial assignment σ and literal `, ` follows by unit
propagation from (F ′ ∧ C)|σ if and only ` follows by unit
propagation from (F ′ ∧ D)|σ . When 1-equivalence is de-
fined between potential learned clauses at the same conflict
in a CDCL solver, the set F ′ is implicitly fixed to be the con-
junction of the input clauses plus all prior learned clauses.
It is easy to see that the unit propagations made and con-
flicts found by a CDCL solver do not distinguish between
1-equivalent learned clauses.

Lemma 1. Consider the execution of any non-restarting
CDCL solver S on input Gm(Y) that chooses decision vari-
ables u, ym−1, . . . , y0, v in order, each with initial phase 0
at every option, and learns one asserting clause per conflict.
For 0 ≤ J ≤ 2m − 1, write J in binary as Jm−1 . . . J0, let
ν2(J) = min{i | Ji = 1}, and write ∨yJ for the disjunction
consisting of all yi such that Ji = 0. Then,

• the (2J + 1)-st conflict in the execution of S occurs
when u = 0, ym−1 = Jm−1, . . . , y0 = J0, v = 0,
and the asserting clause learned by S is 1-equivalent to
(u ∨ (∨yJ) ∨ v), which we denote by DJ,v , and
• after the (2J+2)-nd conflict, the asserting clause learned

by S is 1-equivalent to (u ∨ (∨yJ)), which we denote by
DJ .

Figure 1: Conflict graphs for (a) 1st conflict (b) 2nd conflict
(c) conflict 2J for some J .

Moreover, the (2J +2)-nd conflict occurs after at most m+
4J + 2 variable assignments are made either via decisions
or unit propagation.

Proof. For simplicity, we denote the clauses of Gm(Y) by
G0 = (u ∨ z0 ∨ . . . ∨ zm−1), Gi11 = (u ∨ yi ∨ zi ∨ v),
Gi10 = (u ∨ yi ∨ zi ∨ v), Gi01 = (u ∨ yi ∨ zi ∨ v), and
Gi00 = (u∨yi∨zi∨v). We start with J = 0. After the solver
sets decision variables u, ym−1, . . . , y0 to 0 in order, setting
v to 0 yields each zi by unit propagation using clauses Gi11,
which results in a conflict with clauseG0. The conflict graph
is shown in Figure 1(a) (where the final conflicting literal is
shown as z0 w.l.o.g.). Since all propagated literals are at de-
cision level m + 2 (associated with v), the only asserting
clause to learn from this conflict is the one that contains the
negation of the decision variables, namelyD0,v , with assert-
ing level m + 1. Learning D0,v and backtracking to level
m + 1 causes a propagation of v after the y0 = 0 assign-
ment, and then unit propagation with each Gi10 again yields
a conflict with clause G0. The conflict graph is shown in
Figure 1(b) and again because all propagated literals are at
decision level m + 1 (associated with y0), the only absorb-
ing clause to learn is the one that contains the negation of
the decision variables, namely D0, with asserting level m.

In a more general situation for conflicts 2J + 1
and 2J + 2, assume by the inductive hypothesis that
the solver has learned clauses that are 1-equivalent to
D0,v, D0, . . . , DJ−1,v, DJ−1. Let i∗ = ν2(J). For each

2611

i ≥ i∗ for which Ji = 1, define J [i] < J to be the in-
teger whose binary expansion agrees with that of J for all
i′ ∈ [i+1,m−1] and ends in 01i. In particular, observe that
using the order ym−1, . . . , y0, for all i with Ji = 1, if we set
yi′ = 0 for each i′ ≥ i such that Ji′ = 0 then unit propaga-
tion using the learned clause 1-equivalent to DJ [i] will infer
yi = 1. Therefore, setting the decision variables u, (yi)Ji=0,
in order, all to 0, will, by unit propagation, yield the partial
assignment with yi = Ji for all i. Now setting decision vari-
able v to 0 will yield a conflict (using clausesG0 andGi01 or
Gi11 depending on the assignment to yi) and any asserting
clause that might be learned must involve all the decision
variables and hence contain all of DJ,v plus some subset of
the yi for those yi that were set to 1 by unit propagation from
previously learned clauses and the decision variables. Such
an asserting clause is clearly 1-equivalent to DJ,v given the
learned clauses so far. This in turn immediately propagates v
and then using clauses G0 and Gi00 or Gi10 produces a con-
flict that infers a clause 1-equivalent to asserting clause DJ

as shown in the example in Figure 1(c). (The cut shown there
is precisely DJ , but the actual cut may also include some yi
for some of the unit-propagated yi literals.) We observe that
the asserting level is the one associated with variable yi∗ for
i∗ = ν2(J). The solver then backtracks to this level, sets de-
cision variables yi = 0 for i < i∗, and continues inductively
with the new assignment.

Observe that there is always a decision on v at conflicts
2J + 1 and 2J + 2. Further, at conflict 2J + 2, the value of
y0 is always changed, the value of y1 is changed when J+1
is even, the value of y2 is changed when J+1 is a multiple of
4, and, in general, the value of yi is changed when J +1 is a
multiple of 2i. Therefore the total number of variable assign-
ments (either via decision or unit propagation) up through
2J+2 conflicts is at mostm+2J+2+

∑m−1
i=0 b(J+1)/2ic ≤

m+ 4J + 2.

Remark 1. In the above proof, literals at all decision lev-
els are involved in all conflicts. Hence, the asserting level is
always one less than the current decision level, making back-
jumping behave the same as chronological backtracking.
Remark 2. S operating on Gm(Y) acts like a counter even
if S uses phase saving, albeit the semantics of the underlying
counter changes to that of a Gray code (Gray 1953). In a
Gray code counter, the bits change in exactly one position
when the counter is incremented. The position that changes
is precisely the least significant bit that yields a previously
unseen number when flipped. E.g., a 3-bit Gray code counter
proceeds like 000, 001, 011, 010, 110, 111, 101, and 100.
The only change in the operation of S when it uses phase
saving is that upon backjumping to the asserting level after
the (2J + 2)-nd conflict, rather than proceeding to set yi to
0 for i < i∗, it will set yi to their saved phases. It can be
verified that the asserted literal will correspond to the bit in
the Gray code that flips when the counter increments from
J to J + 1. The overall structure of the argument remains
intact, only the polarities of some of the literals in clauses
DJ,v and DJ change.

Let Fn(X) be a CNF formula defined over n variables
X = {x1, x2, . . . , xn} such that X ∩ Y = φ. The pre-

processing of Fn(X) that we referred to earlier simply con-
joins it with Gm(Y), for an appropriately chosen m. Our
main result is that the execution of a CDCL solver employ-
ing R restarts on Fn(X) can be simulated with very lit-
tle overhead by a non-restarting CDCL solver operating on
Fn(X) ∧Gm(Y) as long as m ≥ dlog2(R+ 1)e.
Theorem 1. For every execution of a CDCL solver S that
learns one asserting clause per conflict and uses at most
R ≤ 2m−1 restarts on CNF formula Fn(X) on n variables,
there is a non-restarting CDCL solver S′ that learns one as-
serting clause per conflict, that on input Fn(X) ∧ Gm(Y)
makes precisely the same literal selection decisions as S on
X , that makes precisely the same set of inferences involving
the variables in X as S does on input Fn(X), and that in
total makes at most an additional O(m + R) variable as-
signments on Y .

Proof. The solver S′ on Fn(X) ∧Gm(Y) will exactly sim-
ulate S on Fn(X) except that it will interleave the execution
of a CDCL solver as shown in Lemma 1 with the actions of
S on Fn(X). Note that since the X and Y variables never
occur in a clause together, the learned clauses on Fn(X)
and on Gm(Y) will depend only on Fn(X) or on Gm(Y),
respectively. In particular, no learned clause will have vari-
ables from both X and Y .

1. S′ begins by branching on decision variables
u, ym−1, . . . , y0, in order, with preferred phase 0.

2. It then simulates S on Fn(X) until S would restart, or
until it learns a unit clause on theX variables and wants to
backjump to decision level 0. In the former case, let this be
the (J + 1)-st time S wants to restart and proceed to step
3. In the latter case, S′ backjumps to decision level 0 and
repeats the same branching decisions (and corresponding
propagations) on the Y variables as their current phase.

3. Instead of restarting, S′ makes a branching decision on
v. By Lemma 1, this causes a conflict on Gm(Y) and S′
learns a clause 1-equivalent to D2J+1 involving only the
Y variables. The asserting level b of this learned clause
clearly must be the level of some Y variable. S′ back-
jumps to level b. This has the effect of retracting all deci-
sions on X variables just as S would in a restart.

4. S′ immediately realizes another conflict, learns a clause
1-equivalent to D2J+2 as in Lemma 1, and continues to
operate onGm(Y) until just after the value of y0 is set. S′
now returns to step 2.

AfterR restarts, the total number of variable assignments on
Y is at most m+ 2 + 4R by Lemma 1.

Remark 3. Even if S′ does not employ backjumping, the
simulation will still work. In this case, S′ will learn clauses
on Y variables 1-equivalent to D2J+1 and D2J+2 in steps
2 and 3 while still at the decision level of some X variable.
However, having learned the clause 1-equivalent to D2J+2,
which involves only Y literals all of which are falsified by
the current assignment, S′ will continue to infer immedi-
ate conflicts and keep backtracking chronologically until it
reaches the asserting level b referenced in step 3 above.

2612

Remark 4. We note that every clause of Gm(Y) contains
the pure literal u. Therefore if pure literal elimination were
run during preprocessing by a CDCL solver then it would
simply remove the clauses of Gm(Y). However, it is not
hard to modify Gm(Y) by appending extra clauses H ob-
tained by adding u to an arbitrary satisfiable formula on a
new small set of extra variables that does not contain any
pure literals. The pure literal preprocessing would then not
prune the clauses of Gm(Y) and the initial branch setting
u = 0 would immediately satisfy these extra clauses H
which would eliminate their impact on the CDCL execution
in any of our arguments.

Simulating Resolution Without Restarts
We begin with the observation that if a given refutation P
is too large, the simulation can simply discard it and instead
start with an obvious tree-like resolution refutation with at
most 2n − 1 derived clauses.
Lemma 2. Let P be a given resolution refutation of Fn(X).
If length(P) > (2n − 1)/n2, then there is a non-restarting
CDCL solver that, even without employing clause learning,
when run on Fn(X) produces a tree-like resolution refuta-
tion after fewer than n2 · length(P) branching decisions.

Proof. Let S be a non-restarting CDCL solver that sim-
ply discards P and instead simulates an obvious tree-like
resolution refutation P ′ (w.r.t. any fixed variable order) of
Fn(X). P ′ essentially enumerates the 2n possible variable
assignments σ and identifies a clause of Fn(X) (or a learned
clause, if S uses clause learning) falsified by each such σ.
P ′ will need no more than 2 · (2n−1 − 1) = 2n − 2 branch-
ing decisions as the (n − 1)-st assignment for any σ will
either satisfy all clauses of Fn(X) or unit propagate the
remaining variable. By the precondition on the length of
P , the number of branching decisions is thus smaller than
n2 · length(P).

In the rest of this section, we will thus assume w.l.o.g.
that length(P) ≤ (2n − 1)/n2. Pipatsrisawat and Darwiche
(2011) provide a CDCL simulation of P , henceforth referred
to as the PD simulation, that usesR ≤ n2·length(P) restarts
and has size O(n4 ·length(P)). By the above observation re-
garding length(P), we have R ≤ (2n − 1). Applying The-
orem 1 using a counter with m = n bits thus yields the
following:
Corollary 1. Let P be a resolution refutation of Fn(X).
Then there is a non-restarting CDCL solver that infers
any one asserting clause per conflict when run on formula
Fn(X)∧Gn(Y) produces a resolution refutation of Fn(X)
of size O(n4 · length(P)).

We can strengthen this by using a variant of the PD simu-
lation together with a somewhat sharpened analysis.
Theorem 2. Let P be a resolution refutation of Fn(X).
Then a resolution refutation of Fn(X) of length O(n2 ·
size(P)) may be found using only O(n2 · size(P)) vari-
able assignments by a non-restarting CDCL solver that in-
fers any one asserting clause per conflict when run on for-
mula Fn(X) ∧Gn(Y).

Algorithm 1: p-simulation of a resolution refutation by
a CDCL solver with simple preprocessing

Input : CNF formula Fn(X) with a resolution
refutation P = (C1, . . . , Cs)

Output: A resolution refutation Q of Fn(X)
begin1

F ′ ← Fn(X) ∧Gn(Y)2
Q← a sequence with all clauses of Fn(X)3
J ← 04
for k in 1..s do5

if Ck is absorbed by F ′ then6
continue7

Continue CDCL execution on the Y variables8
as in Lemma 1 until y0 is assigned a value

Let d be the current decision level9
while Ck is not absorbed by F ′ do10

Let ` ∈ Ck be a literal witnessing that Ck is11
not absorbed by F ′

repeat12

Branch on `′ for all `′ ∈ Ck \ {`}13

Branch on ` at decision level d+ |Ck|14
Realize a conflict involving only X15
Derive an asserting clause C over X16
Append to Q resolution proof of C17

from F ′ given by the conflict graph
F ′ ← F ′ ∧ C18
b← asserting level of C (0 or > d)19
Backjump to decision level b20

until Ck is absorbed by F ′ w.r.t. `21
if b > d then22

Branch on v at level b+ 1 (continues23
execution on Gn(Y) as in Lemma 1)

Learn clause 1-equivalent to D2J+124
with asserting level d

Backtrack to decision level d25
Learn clause 1-equivalent to D2J+226

with asserting level d− 1
Backtrack to decision level d− 127
J ← J + 128

Backtrack to decision level 0; Realize a conflict29
return Q30

end31

Proof. If length(P) > (2n− 1)/n2, the result follows from
Lemma 2. Otherwise we proceed as follows. We assume
w.l.o.g. that P is minimal. We observe that since Gn(Y) is
satisfiable and on disjoint variables from Fn(X), any mini-
mal resolution refutation of Fn(X)∧Gn(Y) must be a refu-
tation of Fn(X).

The CDCL solver execution is given by Algorithm 1. The
simulation begins (Line 2) by setting F ′ to Fn(X)∧Gn(Y).
The idea, following the PD simulation, is to have F ′ absorb
each of the inferred clauses one by one. When the outer for-
loop (Line 5) of the algorithm finishes, F ′ must have ab-
sorbed the empty clause and hence produced a resolution

2613

refutation of Fn(X) ∧Gn(Y) and thus of Fn(X).
We start (Line 8) by branching on the Y variables as

in Lemma 1 until y0 is assigned a value at some deci-
sion level d. In order to absorb a clause Ck that is cur-
rently not absorbed by F ′, the simulation identifies a literal
` ∈ C witnessing that Ck is not yet absorbed (Line 11) and
then branches negatively on all literals of Ck other than `
(Line 13). Since C is not absorbed, making these |Ck| − 1
branching decisions will be possible in spite of eager unit
propagation, will not cause a conflict by unit propagation,
and will allow branching on `. This last branch (Line 14),
however, will cause a conflict because C1, . . . Ck−1 are al-
ready absorbed by F ′. From this conflict, S will learn an
asserting clause C (Line 16) whose resolution derivation in-
volves `. Since these clauses are only derived from Fn(X),
C must be a clause over X . If the asserted literal in C is dif-
ferent from ` and Ck remains unabsorbed w.r.t. `, this pro-
cess of branching on ` is repeated (Lines 12-21) no more
than n − |Ck| + 1 times until ` becomes the asserted literal
(this holds because all asserted variables here must be dis-
tinct and cannot belong to Ck \ {`}). S will backtrack to
some asserting level b (Line 19), which must either be the
level of some X variable or be 0 (if S learns a unit clause).
At this point, we have absorbed Ck w.r.t. `. If b > d, how-
ever, the “leftover” branching decisions on the X variables
of Ck may interfere with the derivation of clauses needed
to absorb Ck w.r.t. other literals or to absorb Ck+1, . . . Cs.
In order to avoid this situation, the PD simulation simply
restarts the solver and forcibly returns to decision level 0.
Since S is a non-restarting CDCL solver, our construction
employs the counter involving the Y variables and a deci-
sion setting v = 0 (Line 23) to backtrack over any leftover
branching decisions on the X variables that remain after ab-
sorbing Ck. This increments the counter and brings us back
to decision level d− 1 (Lines 24-27).

Repeating this process (Lines 10-28) for other literals
of Ck witnessing that Ck is not yet absorbed will even-
tually result in Ck being absorbed. Thus, after no more
than (n − |Ck| + 1)|Ck| repetitions, each of which in-
volves at most |Ck| branching decisions or at most n res-
olution steps, we are able to absorb Ck. This yields a total
of at most n

∑s
k=1 |Ck|2 branching decisions and at most

n2
∑s
k=1 |Ck| = n2 · size(P) resolution steps, to absorb all

clauses of P .
The total number R of restarts needed to be simulated is

at most n2 · length(P) which, by our earlier argument, is at
most 2n−1. Hence, log2(R+1) ≤ n and, from Theorem 1,
it suffices to use Gn(Y) as the counter for Fn(X).

Concluding Remarks
Known efficient simulations of resolution refutations by
modern CDCL SAT solvers that learn one asserting clause
per conflict have so far relied heavily on the ability of such
solvers to restart several times per resolution derivation step
that they are trying to simulate. Our result shows that sim-
ple preprocessing and an associated branching heuristic can
replace the need for these solvers to explicitly restart. As
a consequence, from a theoretical standpoint, such solvers

are in fact powerful enough to efficiently simulate resolution
refutations without relying on restarts at all.

The result holds for all CDCL solvers that learn (at
least) one asserting clause from each conflict, irrespective of
whether or not they employ other common techniques such
as backjumping and phase saving. As remarked briefly ear-
lier, the construction can be extended to withstand simplifi-
cation techniques such as pure literal elimination.

The kind of preprocessing used in our non-restarting sim-
ulation is admittedly of a rather different nature than the
commonly used preprocessing techniques geared towards
increasing the efficiency of SAT solvers. It adds a counting
formula on a brand new set of variables such that branching
first on (a subset of) these new variables enables the solver
to freely backtrack out of any “leftover” partial assignment
after realizing a conflict.

While our simulation result answers an open theoretical
question, research on effective restart strategies continues to
be relevant for CDCL solvers in practice. The question of
whether modern CDCL solvers can polynomially simulate
resolution proofs without restarting and without preprocess-
ing the input formula remains open.

Acknowledgments
The work of the first author was supported by NSF grant
CCF-1217099. Part of this research was conducted when
the authors were visiting the BIRS Workshop on Theoretical
Foundations of Applied SAT Solving during January 2014.

References
Atserias, A.; Fichte, J. K.; and Thurley, M. 2009. Clause-
learning algorithms with many restarts and bounded-width
resolution. In 12th SAT, volume 5584 of LNCS, 114–127.
Atserias, A.; Fichte, J. K.; and Thurley, M. 2011. Clause-
learning algorithms with many restarts and bounded-width
resolution. JAIR 40:353–373.
Audemard, G., and Simon, L. 2012. Refining restarts strate-
gies for SAT and UNSAT. In 18th CP, volume 7514 of
LNCS, 118–126.
Beame, P.; Kautz, H.; and Sabharwal, A. 2003. Understand-
ing the power of clause learning. In 18th IJCAI, 1194–1201.
Beame, P.; Kautz, H.; and Sabharwal, A. 2004. Understand-
ing and harnessing the potential of clause learning. JAIR
22:319–351.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability. IOS Press.
Buss, S. R., and Bonet, M. L. 2012. An improved sepa-
ration of regular resolution from pool resolution and clause
learning. In 15th SAT, volume 7313 of LNCS, 244–57.
Buss, S. R., and Kolodziejczyk, L. 2012. Small stone in
pool. Manuscript, 2012.
Buss, S. R.; Hoffmann, J.; and Johannsen, J. 2008. Resolu-
tion trees with lemmas: Resolution renements that character-
ize DLL-algorithms with clause learning. Logical Methods
in Computer Science 4(4):13.

2614

de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple
faults. AI J. 32(1):97–130.
Frost, D.; Rish, I.; and Vila, L. 1997. Summarizing csp
hardness with continuous probability distributions. In 14th
AAAI, 327–333.
Gomes, C. P.; Selman, B.; and Crato, N. 1997. Heavy-tailed
distributions in combinatorial search. In 3rd CP, volume
1330 of LNCS, 121–135.
Gomes, C. P.; Selman, B.; and Kautz, H. 1998. Boosting
combinatorial search through randomization. In 15th AAAI,
431–437.
Gray, F. 1953. Pulse code communication. US Patent
#2632058, (filed 1947).
Haim, S., and Walsh, T. 2009. Restart strategy selection
using machine learning techniques. In 12th SAT, volume
5584 of LNCS, 312–325.
Hertel, P.; Bacchus, F.; Pitassi, T.; and Van Gelder, A. 2008.
Clause learning can effectively p-simulate general proposi-
tional resolution. In 23rd AAAI, 283–290.
Hogg, T., and Williams, C. P. 1994. Expected gains from
parallelizing constraint solving for hard problems. In 12th
AAAI, 331–336.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Opti-
mal speedup of Las Vegas algorithms. Inf. Process. Lett.
47(4):173–180.
Marques-Silva, J. P., and Sakallah, K. A. 1996. GRASP – a
new search algorithm for satisfiability. In ICCAD, 220–227.
Marques-Silva, J. P.; Lynce, I.; and Malik, S. 2009. CDCL
solvers. In Biere et al. (2009). chapter 4, 131–154.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT solver.
In 38th DAC, 530–535.
Pipatsrisawat, K., and Darwiche, A. 2009. On the power
of clause-learning SAT solvers with restarts. In 15th CP,
volume 5732 of LNCS, 654–668.
Pipatsrisawat, K., and Darwiche, A. 2011. On the power
of clause-learning SAT solvers as resolution engines. AI J.
175(2):512–525.
Robinson, J. A. 1965. A machine-oriented logic based on
the resolution principle. J. Assoc. Comput. Mach. 12(1):23–
41.
Stallman, R. M., and Sussman, G. J. 1977. Forward reason-
ing and dependency-directed backtracking in a system for
computer-aided circuit analysis. AI J. 9:135–196.
Van Gelder, A. 2005. Pool resolution and its relation to
regular resolution and DPLL with clause learning. In 12th
Intl. Conf. Logic for Prog., AI, and Reason., volume 3835 of
LNCS, 580–594.
Walsh, T. 1999. Search in a small world. In 16th IJCAI,
1172–1177.
Zhang, L.; Madigan, C. F.; Moskewicz, M. H.; and Malik, S.
2001. Efficient conflict driven learning in a Boolean satisfi-
ability solver. In ICCAD, 279–285.

2615

