
Cached Iterative Weakening for
Optimal Multi-Way Number Partitioning

Ethan L. Schreiber and Richard E. Korf
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095 USA
{ethan,korf}@cs.ucla.edu

Abstract

The NP-hard number-partitioning problem is to separate a
multiset S of n positive integers into k subsets, such that the
largest sum of the integers assigned to any subset is mini-
mized. The classic application is scheduling a set of n jobs
with different run times onto k identical machines such that
the makespan, the time to complete the schedule, is mini-
mized. We present a new algorithm, cached iterative weaken-
ing (CIW), for solving this problem optimally. It incorporates
three ideas distinct from the previous state of the art: it ex-
plores the search space using iterative weakening instead of
branch and bound; generates feasible subsets once and caches
them instead of at each node of the search tree; and explores
subsets in cardinality order instead of an arbitrary order. The
previous state of the art is represented by three different al-
gorithms depending on the values of n and k. We provide
one algorithm which outperforms all previous algorithms for
k ≥ 4. Our run times are up to two orders of magnitude faster.

1 Introduction and Overview
The NP-hard number-partitioning problem is to separate a
multiset S of n positive integers into k mutually exclusive
and collectively exhaustive subsets 〈S1, ..., Sk〉 such that the
largest subset sum is minimized (Garey and Johnson 1979).
For example, consider S={8, 6, 5, 3, 2, 2, 1} and k=3. The
optimal partition is 〈{8, 1}, {5, 2, 2}, {6, 3}〉 with cost 9.
This is a perfect partition since we can’t do better than divid-
ing the total sum of 27 into three subsets with sums 9 each.
The classic application is scheduling a set of n jobs with
different run times onto k identical machines such that the
makespan, the time to complete the schedule, is minimized.

There is a large literature on solving this problem. The
early work (Graham 1969; Coffman Jr, Garey, and John-
son 1978; Karmarkar and Karp 1982; França et al. 1994;
Frangioni, Necciari, and Scutella 2004; Alvim and Ribeiro
2004) focused on approximation algorithms. (Korf 1998)
presented an optimal algorithm for the 2-way partition prob-
lem. Since then, there has been work on number parti-
tioning in both the artificial intelligence (Korf 2009; 2011;
Moffitt 2013; Schreiber and Korf 2013) and operations re-
search (Dell’Amico and Martello 1995; Mokotoff 2004;
Dell’Amico et al. 2008) communities.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Number partitioning is closely related to the bin-packing
problem (Garey and Johnson 1979). While number parti-
tioning fixes the number of subsets k and minimizes the sum
of the largest subset, bin packing fixes the maximum sum
of the subsets (bins) and minimizes the number of subsets
needed. Any number-partitioning algorithm can be used to
solve a bin-packing problem and any bin-packing algorithm
can be used to solve a number-partitioning problem.

In section 2, we describe the previous state of the art for
optimally solving number partitioning. In section 3, we de-
scribe cached iterative weakening (CIW), our new state-of-
the-art algorithm. In section 4, we experimentally compare
CIW to the previous state of the art.

2 Background: SNP, MOF and BSBCP
The previous state of the art is represented by three different
algorithms depending on n and k. There are two artificial in-
telligence algorithms, sequential number partitioning (SNP)
(Korf, Schreiber, and Moffitt 2013) and the (Moffitt 2013)
algorithm (MOF); and one operations research algorithm,
binary search branch-and-cut-and-price (Belov and Schei-
thauer 2006; Schreiber and Korf 2013). Conceptually, CIW
builds upon the AI algorithms, which we describe in detail
in the remainder of this section. Abstractly, both SNP and
MOF generate all feasible first subsets, then for each subset,
recursively partition the remaining integers k − 1 ways.

2.1 Bounds on the Subset Sums
The multiway version of the Karmarkar-Karp (KK) (Kar-
markar and Karp 1982; Korf and Schreiber 2013) set dif-
ferencing algorithm is an approximation algorithm for par-
titioning n integers into k sets. SNP and MOF calculate the
initial upper bound (ub) on the sum of each subset using the
cost of the KK partition of S into k subsets.

Given an upper bound (ub), the lower bound (lb) is lb =
sum(S) − (k − 1)(ub − 1) where sum(S) is the sum of all
integers of the set S. This is the smallest sum for the first
subset that allows the remaining integers to be partitioned
into k − 1 subsets, all of whose sums are less than ub.

2.2 Recursive Partitioning
Both SNP and MOF generate all first subsets S1 whose sums
are between lb and ub − 1. Then, they recursively parti-
tion the remaining integers k − 1 ways into the partition

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2738

〈S2, ..., Sk〉. The algorithms look for lowest-cost complete
partitions using depth-first branch and bound. The upper
bound (ub) is the cost of the lowest-cost complete partition
found so far. Initially, ub is set to the KK partition cost. As
complete partitions with lower cost are found, ub is set to
the new cost. For each partial partition 〈S1, ..., Sd〉, SNP and
MOF use ub, the remaining integers SR and the depth d to
compute a lower bound lb = sum(SR) − (k − d)(ub − 1).
If lb ≥ ub, the search returns ub.

Otherwise, SNP and MOF generate all subsets Sd with
sums in the range [lb, ub−1] one at a time from SR to create
the partial partitions Pd = 〈S1, ..., Sd−1, Sd〉 at depth d. For
each partial partition Pd, the algorithms recursively partition
SR, the remaining integers, k− d ways. If the cost of any of
these recursive partitions is less than maxsum(Pd), the re-
cursive search returns immediately. Since the cost of a par-
tial partition is the max over its subset sums, maxsum(Pd)
is the lowest possible cost for a complete partition that in-
cludes Pd. Otherwise, the algorithm returns the lesser of ub
and the lowest-cost recursive partitioning.

Avoiding Duplicates The order of subsets in a parti-
tion is not important. For example, the partition 〈{8, 1},
{5, 2, 2}, {6, 3}〉 is equivalent to 〈{5, 2, 2}, {8, 1}, {6, 3}〉.
In order to avoid such duplicates, the largest remaining inte-
ger is always included in the next subset of the partition.

2.3 Generating Subsets with sums in a Given
Range

The first step of each partitioning is to generate all subsets
from the remaining integers SR whose sums fall in the range
[lb,ub − 1]. The core difference between SNP and MOF is
the method for generating these subsets.

Inclusion-Exclusion (IE) MOF uses the inclusion-
exclusion algorithm (IE) to generate subsets (Korf 2009). It
searches a binary tree with each depth corresponding to an
integer of S. Each node includes the integer in the subset
on the left branch and excludes it on the right. The leaves
correspond to complete subsets. IE sorts S then considers
the integers in decreasing order, searching the tree from left
to right always including integers before excluding them.
It prunes the tree if the sum of the integers included at a
node exceeds ub − 1. Similarly, it prunes if the sum of the
included integers at a node plus all non-assigned integers
below the node is less than lb. In the worst case, this runs in
time O(2n) and space O(n). An IE tree is searched at each
node of the partition search tree.

Extended Schroeppel and Shamir (ESS) The (Horowitz
and Sahni 1974) algorithm (HS) for the subset sum problem
(Is there a subset of S whose sum is equal to a target value?)
uses memory to improve upon the run time of IE. HS runs in
time O

(
n
2 2n/2

)
and space O

(
2

n
2

)
. This is much faster than

IE for large n but its memory requirements limit it to about
n = 50 integers. It is not as fast for small n because of initial
overhead. The (Schroeppel and Shamir 1981) algorithm (SS)
is based on HS, but uses only O(2n/4) space, limiting it to
about n = 100 integers.

Both HS and SS solve the subset sum problem. With a
little extra work, they can generate all sets in a range (Korf
2011). SNP generates subsets using the ranged version of
SS, called extended Schroeppel and Shamir (ESS).

2.4 Binary-Search Branch-and-Cut-and-Price
Binary-search branch-and-cut-and-price (BSBCP), an op-
erations research algorithm, solves number partitioning by
solving a sequence of bin packing problems on S, varying
the bin capacity C (maximum subset size). BSBCP performs
a binary search over [lb, ub] searching for the smallest value
of C such that S can be packed into k bins. Our BSBCP im-
plementation uses the BCP bin-packing solver from (Belov
and Scheithauer 2006). Also see (Coffman Jr, Garey, and
Johnson 1978; Schreiber and Korf 2013).

3 Cached Iterative Weakening (CIW)
Our new algorithm, cached iterative weakening (CIW), per-
forms a recursive partitioning like sequential number par-
titioning (SNP) and the (Moffitt 2013) (MOF) algorithm.
However, the methodology is different.

Call C∗ the largest subset sum of an optimal partition for a
particular number-partitioning problem. While searching for
C∗, both SNP and MOF start with ub set to the KK partition
which is typically much larger than C∗. They then search
for better partitions until they find one with cost C∗. At this
point, they verify optimality by proving there is no partition
with all subsets having sums less than C∗. In contrast, CIW
only considers partitions with cost less than or equal to C∗.

When constructing partitions, for each partial partition
〈S1, ..., Sd−1〉, SNP and MOF generate the next subsets Sd

using extended Schroeppel and Shamir (ESS) and inclusion-
exclusion (IE) respectively. In contrast, CIW generates feasi-
ble sets once using ESS and caches them before performing
the recursive partitioning.

3.1 Iterative Weakening
CIW begins by calculating perfect = dsum(S)/ke, a lower
bound on partition cost, achieved if the sum of each of the
k subsets of a partition differ by no more than one. In any
partition, there must be at least one subset whose sum is at
least as large as perfect.

Whereas SNP and MOF recursively partition S into k
subsets decreasing ub until the optimal cost C∗ is found and
subsequently verified, CIW starts with ub set to perfect and
tries to recursively partition S into k sets no greater than ub.
It iteratively increases ub until it finds C∗, the first value
for which a partition is possible. This process is called iter-
ative weakening (Provost 1993). In order to verify optimal-
ity, any optimal algorithm must consider all partial partitions
with costs between perfect and C∗. Even after a branch and
bound algorithm finds an optimal partition of cost C∗, it still
needs to verify its optimality. Iterative weakening only ex-
plores partial partitions with costs between perfect and C∗.

Suppose we could efficiently generate subsets one by one
in sum order starting with perfect. CIW iteratively chooses
each of these subsets as the first subset S1 of a partial parti-
tion. It sets ub to sum(S1) and lb to sum(S)− (k − 1)(ub).

2739

Then, given that it can efficiently generate all subsets in the
range [lb, ub], it determines whether there are k − 1 of these
subsets that are mutually exclusive and contain all the inte-
gers in SR = S − S1. If this is possible, ub is returned as
the optimal partition cost. Otherwise, CIW moves onto the
subset with the next larger sum. In this scheme, the cost of a
partial partition is always the sum of its first subset S1.

In the next section, we will discuss how to enable CIW to
efficiently examine subsets one by one in sum order starting
with perfect. In section 3.3, we will discuss how to effi-
ciently determine if it is possible to partition the remaining
integers SR into k − 1 subsets with sums in range [lb, ub] at
each iteration of iterative weakening.

S={127, 125, 122, 105, 87, 75, 68, 64, 30, 22}
k=4 m=6 sum(S) = 825 perfect = 207

Cardinality 4

87

68 68

30

22

64

30

22

75

68

30

22

87

root

Cardinality 3
root

122 122

64

22

105

75 75

30 30

22

68 68

30 30

22

64

30

75

68

64

Sum
192
192
193
195
195
195
197
199
200
202
202
203
203
207
207
208
209
210
211

Iter
5

5

4

4

3

2

2

1

3

5

5

4

4

3

2

2

1

2

4

{105, 87}
{87, 75, 30}
{125, 68}
{75, 68, 30, 22}
{127, 68}
{105, 68, 22}
{122, 75}
{105, 64, 30}
{125, 75}
{105, 75, 22}
{127, 75}
{105, 68, 30}
{87, 64, 30, 22}
{87, 68, 30, 22}
{75, 68, 64}
{122, 64, 22}
{122, 87}
{105, 75, 30}
{125, 64, 22}

Sets

Cardinality 2

127

75 75

68

125

125

75

122

87 87

75

127

root

Cached IE Trees
Iter=4; Range=[195, 210]

Preprocessed Subsets

Figure 1: CIW example with the list of precomputed subsets
and cached trees for cardinality 2, 3 and 4 during iteration 4.

3.2 Precomputing: Generating Subsets in Sum
Order

We are not aware of an efficient algorithm for generating
subsets one by one in sum order. Instead, we describe an al-
gorithm for efficiently generating and storing the m subsets
with the smallest sums greater than or equal to perfect.

Call max the mth smallest subset sum greater than or
equal to perfect. The minimum sum of any subset in a par-
tition of cost max is min = sum(S) − (k − 1)(max).
CIW generates all subsets in the range [min,max], which
includes m subsets with sums in the range [perfect,max]
and all subsets in the range [min, perfect− 1].

Extended Schroeppel and Shamir (ESS) efficiently gen-
erates all subsets in a given range. We wish to generate all
subsets with sums in the range [min,max]. Unfortunately,
we do not know the values of min and max before generat-
ing the m subsets with sums greater than or equal to perfect.

Therefore, in order to generate all subsets in the range
[min,max], CIW modifies ESS to use a min-heap and a
max-heap. It initially sets max to the KK ub and min to
the corresponding lb using ESS to generate sets with sums
in this range. It puts each subset found with sum in the
range [min, perfect − 1] into the min-heap and those in
the range [perfect,max] into the max-heap. This continues
until the max-heap contains m subsets. At this point, CIW
resets max to the sum of the largest subset in the max-heap
and recalculates min as sum(S)−(k−1)(max). It then pops
all subsets with sums less than min from the min-heap.

ESS continues searching for all sets in the new range
[min,max]. Each time a subset with sum greater than or
equal to perfect but less than max is found, CIW pops the
top subset from the max-heap and pushes this new subset
onto the heap. max is set to the new max sum and min is
updated accordingly, popping all subsets with sum less than
min from the min-heap. When this modified ESS search is
complete, the subsets from the min-heap and the max-heap
are moved to one array sorted by subset sum.

After this is done, iterative weakening iterates through this
array one by one in sum order starting with the subset with
smallest sum no less than perfect. If m iterations are per-
formed without finding an optimal partition, the algorithm is
run again to generate the next 2m subsets. If the 2m subsets
are exhausted without finding an optimal solution, then 4m
subsets are generated, then 8m, etc. Thus, m is a parameter
of CIW. We discuss setting m experimentally in section 4.

Example Consider the example number-partitioning
problem with S = {127, 125, 122, 105, 87, 75, 68, 64,
30, 22} and k = 4. Figure 1 shows the array of 19 sets
generated by modified ESS with m = 6 in the table at
the top left. The final range [min,max] is [192, 211] and
perfect = 207. There are 13 sets with sums in the range
[min, perfect − 1] shown above the horizontal line and 6
sets with sums in the range [perfect,max] shown below
the horizontal line. The 6 subset sums below the horizontal
line are the candidate first subsets that CIW iterates over.

The last column of the table is called Iter. This column
corresponds to the iteration in which the subset in that row
first appears in the range [lb, ub]. For example, in the first
iteration, ub = 207 and lb = 825 − 3 × 207 = 204 with
two subsets in range. In the second iteration, ub = 208 and
lb = 825− 3× 208 = 201 with seven sets in range, namely
the rows with Iter equal to 1 or 2. In the sixth iteration, all
19 sets in the table are in range.

2740

3.3 Recursive Partitioning
At each iteration of iterative weakening, CIW chooses the
first subset S1 as the next subset with sum at least as large as
perfect from the stored array of subsets, sets ub = sum(S1)
and lb = sum(S)−(k−1)(ub). At this point, CIW attempts
to recursively partition SR = S−S1 into 〈S2, ..., Sk〉. Since
all of the subsets in the range [lb, ub] have already been gen-
erated, this is a matter of finding k−1 of these subsets which
are mutually exclusive and contain all the integers of SR.

A Simple Algorithm Given an array A of subsets, we
present a recursive algorithm for determining if there are k
mutually exclusive subsets containing all the integers of S.

For each first subset S1 in A, copy all subsets of A that
do not contain an integer in S1 into a new array B. Then,
recursively try to select k− 1 disjoint subsets from B which
contain the remaining integers of S − S1. If k = 0, return
true, else if the input array A is empty, return false.

While this algorithm is correct, it is inefficient, as the
entire input array must be scanned for each recursive call.
In the next two sections, we present an efficient algorithm
which performs the same function.

Cached Inclusion-Exclusion (CIE) Trees After CIW
chooses the first subset S1 from the precomputed array, it
uses cached inclusion-exclusion (CIE) to test if there are
k − 1 mutually exclusive subsets which contain all integers
in SR=S − S1. CIE trees store all subsets whose sums are
in the range [lb, ub] of the current iterative weakening itera-
tion. They are built incrementally by inserting all subsets in
the new range [lb, ub] at each iteration of iterative weaken-
ing. CIE trees are similar to IE trees (Section 2.3).

With IE trees, all feasible subsets, regardless of cardinal-
ity, can be found in one tree. In contrast, there is one CIE tree
for each unique cardinality of feasible subset. The distribu-
tion of the cardinality of the subsets in range [lb, ub] is not
even. The average cardinality of a subset in an optimal so-
lution is n/k. Typically, most subsets in an optimal solution
have cardinality close to this average. Yet, there are often
many more subsets with higher cardinality than n/k. In sec-
tion 3.3, we will show how to leverage these cardinality trees
so CIW never has to examine the higher cardinality subsets.
In the example of figure 1, there are separate trees for sub-
sets of cardinality 2, 3 and 4 storing all subsets with sums in
the range [195, 210] (every subset in iteration 1 through 4).

IE searches an implicit tree, meaning only the recursive
stack of IE is stored in memory. In contrast, the entire
CIE trees are explicitly stored in memory before they are
searched. In each iterative weakening iteration, all subsets
with sums in the range [lb, ub] are represented in the CIE
tree of appropriate cardinality. These subsets were already
generated in the precomputing step, so this is a matter of it-
erating over the array of subsets and adding all subsets with
sums in range that were not added in previous iterations.

The nodes of each CIE tree correspond to one of the in-
tegers in S. The integer is included on the left branch and
excluded on the right. In figure 1, solid arrows correspond
to inclusion of the integer pointed to while dashed arrows
correspond to exclusion. For example, in the cardinality two
tree, from the root, following the left solid arrow to 127, then

{122, 87} 2 * 3 > 5
PRUNE

2 * 3 > 5
PRUNE

S3:

{125, 64, 22}S4:

{105, 75, 30}S1: {127, 125, 122,
 87, 68, 64, 22}

S
R
=

{122, 87}{127, 68}S2: {125, 122,
 87, 64, 22}

S
R
= {127, 125,

 68, 64, 22}
S

R
=

Figure 2: The recursive partitioning search tree for iteration
4.

the left solid arrow to 75 (root→ 127→ 75) corresponds to
the subset {127, 75}. Similarly, root → 127 99K 75 → 68
corresponds to the subset {127, 68}.

Recursive Partitioning with CIE Trees After selecting
S1 and calculating lb and ub, CIW adds all subsets with sums
newly in the range [lb, ub] from the stored array of subsets
into the CIE tree of proper cardinality. If CIW finds k −
1 mutually exclusive subsets containing all the integers of
SR = S − S1, then the optimal cost is ub = sum(S1).

Like the standard IE algorithm, CIE searches its trees left
to right, including integers before excluding them. However,
each node of a CIE tree corresponds to an integer in S and
not all of these integers still remain in SR. At each node of
the CIE tree, an integer can only be included if it is a member
of SR, the integers remaining.

Iterative weakening selects the first subset S1. To generate
each S2, CIE searches its smallest cardinality tree first. Call
card the cardinality of the tree CIE is searching to generate
Sd in partial partition 〈S1, ..., Sd〉. If CIE finds a subset Sd

of cardinality card, the recursive search begins searching
for subset Sd+1 in the card CIE tree. If no more subsets are
found in the card CIE tree, the card+1 CIE tree is searched
until no higher cardinality CIE tree exists. CIW prunes if
k−d× card > |SR| since there are not enough integers left
in SR to create k− d subsets, each with cardinality ≥ card.

Avoiding Duplicates Choosing subsets in cardinality or-
der avoids many duplicates. However, if Sd and Sd+1 in
partial solution Pd+1 have equal cardinality, to remove
duplicates, the largest integer in Sd+1 must be smaller
than in Sd. For example, CIE generates the partition
〈{8, 1}, {6, 3}, {5, 2, 2}〉 and not 〈{6, 3}, {8, 1}, {5, 2, 2}〉
since the ’8’ in {8, 1} is larger than the ’6’ in {6, 3}.

Example Figure 2 shows the recursive partitioning search
tree for iteration 4 of our running example using the CIE
trees from figure 1. The root of the tree is the subset S1 =
{105, 75, 30} whose sum 210 is the ub for iteration 4 of it-
erative weakening. The search of candidate subsets for S2

begins in the cardinality 2 CIE tree, including nodes before
excluding them. Starting from the root of the CIE tree, CIW
includes 127 but cannot include 75 since it is included in S1.
It excludes 75 and includes 68 giving us S2 = {127, 68}.
We continue to search the cardinality 2 CIE tree for S3 but
the largest integer must be less than 127 to avoid duplicates,
so we exclude 127 and then include 125. We cannot in-
clude 75 since it is not in SR, so we backtrack to exclude

2741

k → 3-Way 4-Way 5-Way 6-Way 7-Way
n ↓ CIW SNP R CIW SNP R CIW SNP R CIW SNP R CIW SNP R
40 .161 .066 .408 .153 .149 .973 .158 .364 2.30 .228 .834 3.66 .219 1.96 8.97
41 .237 .114 .481 .225 .247 1.10 .217 .586 2.70 .201 1.29 6.41 .207 3.02 14.6
42 .313 .136 .433 .298 .328 1.10 .299 .856 2.87 .292 2.16 7.38 .292 5.03 17.2
43 .498 .221 .444 .465 .513 1.10 .460 1.27 2.77 .432 3.17 7.35 .407 7.47 18.4
44 .672 .278 .414 .602 .680 1.13 .528 1.77 3.36 .552 4.35 7.87 .522 11.1 21.3
45 .972 .486 .500 .929 1.13 1.22 .822 2.64 3.21 .781 7.07 9.05 .753 19.5 25.9
46 1.37 .592 .431 1.22 1.47 1.20 1.06 4.27 4.04 .952 10.9 11.4 .899 26.7 29.7
47 2.10 .971 .462 2.07 2.26 1.09 1.83 6.30 3.43 1.67 16.6 9.89 1.41 41.4 29.3
48 3.07 1.18 .385 2.58 3.18 1.23 2.16 9.30 4.30 1.93 24.6 12.7 1.61 62.9 39.1
49 4.68 2.06 .440 3.96 5.09 1.29 3.53 14.0 3.95 3.09 37.9 12.3 2.67 92.9 34.8
50 6.12 2.44 .399 5.25 6.89 1.31 4.35 18.6 4.28 3.44 50.7 14.7 2.93 135 46.3
51 9.40 4.10 .436 8.79 10.7 1.22 7.76 32.2 4.15 6.74 89.2 13.2 5.43 233 43.0
52 13.8 4.93 .357 11.1 14.4 1.30 8.93 44.4 4.97 7.55 125 16.5 6.36 364 57.1
53 20.4 8.81 .433 17.9 22.6 1.26 15.5 67.1 4.33 13.6 199 14.7 10.6 529 49.8
54 27.3 10.5 .384 22.8 31.7 1.39 18.8 104 5.52 15.4 309 20.1 12.2 864 70.8
55 44.6 17.2 .385 39.3 48.4 1.23 35.3 157 4.45 30.4 472 15.5 24.2 1328 55.0
56 66.9 20.7 .309 52.5 67.8 1.29 41.3 225 5.46 35.2 698 19.9 27.1 1945 71.8
57 98.0 36.7 .374 86.1 103 1.20 73.3 349 4.76 59.8 1119 18.7 46.6 3158 67.8
58 135 45.4 .336 108 143 1.33 83.1 536 6.45 68.0 1677 24.7 53.0 5015 94.7
59 221 73.6 .334 191 237 1.24 164 771 4.70 139 2448 17.6 106 7520 70.8
60 301 89.6 .298 260 307 1.18 206 1140 5.54 154 3728 24.1 119 10715 90.0

Table 1: Average time in seconds to optimally partition uniform random 48-bit integers 3, 4, 5, 6 and 7 ways.

125 and include 122 and then 87 giving us the 3rd subset
S3 = {122, 87}. Since there is only S4 left, we can put
all remaining integers into S4, but the sum of the remain-
ing integers 125+64+22 = 211 is greater than the ub, so we
prune. (Note that the set {125, 64, 22} is not in the cardinal-
ity 3 CIE tree.) We backtrack to generate the next S3 subset.
Continuing where we left off in the cardinality 2 tree when
we generated S3 = {122, 87}, we backtrack to exclude 87
but since 75 is not in SR, we have exhaustively searched
the cardinality 2 CIE tree. We move to the cardinality 3 tree.
However, there are five integers left to partition into two sub-
sets and the cardinality of the subsets left must be three or
greater. Since 2× 3 > 5, we prune.

We now backtrack to generate the next S2 subset con-
tinuing where we left off in the cardinality 2 cached-IE
tree when we generated {127, 68}. Since the first child was
{127, 68}, and there are no more subsets containing 127 we
backtrack to exclude 127. We then include 125 but 75 is
not in SR, so we backtrack and exclude 125. We then in-
clude 122 and 87, giving us S2 = {122, 87}. We continue
to search the cardinality 2 tree for S3 but the largest integer
must now be less than 122 to avoid duplicates. We exclude
127 and 125, but there are no more exclusion branches so
we move to the cardinality 3 tree. Again, we can prune since
2× 3 > 5 and thus there is no optimal partition of cost 210.

In the next iteration, iterative weakening will set S1 =
{125, 64, 22} with ub = sum(S1) = 211 and add the four
gray rows with Iter = 5 from the table in figure 1 to the
CIE trees. It is possible to partition S into k = 4 subsets all
with sums less than 211, resulting in the optimal partition
〈{125, 64, 22}, {127, 75}, {122, 87}, {105, 68, 30}〉.

4 Experiments
We ran experiments for n from 40 to 60 and k from 3 to 12. 1

Generally, for these values of n, sequential number partition-
ing (SNP) is the previous state of the art for k = 3 to 7, the
(Moffitt 2013) algorithm (MOF) for k = 8 to 10 and binary-
search branch-and-cut-and-price (BSBCP) for k = 11 and
12. 2 We compare cached iterative weakening (CIW) to SNP
for k ≤ 7, to MOF for k from 8 to 10 and to BSBCP for k =
11 and 12. For each combination of n and k, we generated
100 problem instances. Each instance consists of n integers
sampled uniformly at random in the range [1, 248 − 1] in
order to generate hard instances without perfect partitions
(Korf 2011). These are the first published results for high-
precision number partitioning with n > 50. All experiments
were run on an Intel Xeon X5680 CPU at 3.33GHz.

For a particular k, since the previous state of the art de-
pends on n, one might infer that a hybrid recursive algorithm
that uses one of SNP, MOF or BSBCP for recursive calls de-
pending on n and k would outperform the individual algo-
rithms. However, (Korf, Schreiber, and Moffitt 2013) shows
that the hybrid algorithm in fact does not significantly out-
perform the best of the individual algorithms.

For CIW, we need to choose a value for m, the number of
subsets to initially generate during the precomputing phase
(section 3.2). Ideally, we want m to be exactly the number
of subsets in the range [perfect, C∗], but we do not know
this number in advance. If m is set too small, CIW will have
to run ESS multiple times. If m is set too large, CIW will
waste time generating subsets in the precomputing step that

1Benchmarks at https://sites.google.com/site/elsbenchmarks/.
2There are exceptions for (n ≤ 45; k=7), where MOF is faster

than SNP and (n ≤ 46; k=11), where MOF is faster than BSBCP.

2742

k → 8-Way 9-Way 10-Way 11-Way 12-Way
n ↓ CIW MOF R CIW MOF R CIW MOF R CIW BCP R CIW BCP R
40 .189 1.24 6.58 .275 1.25 4.54 .404 1.39 3.45 .490 2.68 5.47 3.27 1.12 .342
41 .226 2.24 9.89 .247 2.08 8.44 .441 2.03 4.60 .427 3.29 7.70 1.98 1.52 .769
42 .330 3.77 11.4 .344 3.26 9.48 .630 3.27 5.20 .567 4.54 8.00 1.60 2.25 1.41
43 .433 5.88 13.6 .447 5.35 12.0 .644 5.27 8.18 .883 6.22 7.05 1.23 3.33 2.70
44 .510 8.45 16.6 .506 8.65 17.1 .840 9.25 11.0 1.18 8.60 7.28 1.12 4.28 3.82
45 .677 14.3 21.1 .713 13.7 19.1 .968 14.0 14.5 2.00 15.1 7.53 1.63 6.55 4.02
46 .820 23.7 28.9 .935 24.8 26.6 .913 21.9 24.0 2.43 21.2 8.74 1.91 8.85 4.63
47 1.25 38.2 30.6 1.39 41.4 29.7 1.35 42.6 31.6 2.79 30.5 10.9 3.38 14.7 4.36
48 1.48 60.0 40.4 1.55 59.4 38.2 1.42 56.5 40.0 3.10 48.9 15.8 4.72 24.4 5.16
49 2.20 100 45.6 2.04 98.0 48.0 1.93 92.8 48.2 3.32 65.6 19.7 7.56 32.4 4.28
50 2.29 166 72.6 2.23 154 68.8 2.32 141 60.9 3.14 92.8 29.6 13.9 55.3 3.97
51 4.25 281 66.1 3.42 274 80.0 3.82 263 69.0 3.91 146 37.5 13.5 64.3 4.75
52 5.08 418 82.3 3.97 382 96.1 5.28 362 68.5 4.23 187 44.3 13.8 85.6 6.19
53 8.45 707 83.7 6.77 724 107 7.56 735 97.2 5.44 273 50.3 16.2 109 6.71
54 9.33 1189 127 8.12 1116 137 8.02 1120 140 8.30 445 53.6 13.6 138 10.1
55 18.4 2082 113 14.5 1701 117 14.5 1920 133 14.9 721 48.4 17.4 250 14.4
56 20.6 3078 149 16.7 2878 172 14.4 2700 187 18.9 1325 70.2 14.6 315 21.5
57 34.7 5589 161 23.8 4983 209 18.0 4950 275 25.7 2354 91.6 16.2 464 28.7
58 41.1 9182 223 29.1 7636 262 23.7 8508 359 32.8 3962 121 23.8 807 33.9
59 71.2 13441 189 48.9 11874 243 35.6 12249 344 41.3 7292 177 36.1 1245 34.5
60 80.9 23085 285 56.6 21414 378 42.0 18036 429 47.8 11971 250 68.2 2225 32.6

Table 2: Average time in seconds to optimally partition uniform random 48-bit integers 8, 9, 10, 11 and 12 ways.

are never used in the iterative weakening step.
For each combination of n and k, we initially set

m to 10,000. Call mi the number of sets in the range
[perfect, C∗] for problem instance i. After instance 1 is
complete, m is set to m1. After instance i is complete, m
is set to the max of m1 through mi. The values of m used
ranged from 24 for the second instance of (n = 56; k = 3)
to 180,085 for the last eight instances of (n = 59; k = 12).

Table 1 compares CIW to SNP for k from 3 to 7. Each
row corresponds to a value of n. There are three columns
for each value of k. The first two columns report the average
time to partition n integers into k subsets over 100 instances
using CIW and SNP respectively. The third column is the
ratio of the run time of SNP to CIW.

CIW is faster than SNP for k ≥ 4 with the exception
of (n ≤ 42; k = 4). SNP is faster than CIW for k = 3.
For fixed n, SNP tends to get slower as k gets larger while
CIW tends to get faster as k gets larger. For 5 ≤ k ≤ 7,
the ratios of the run times of SNP to CIW tend to grow as
n gets larger, suggesting CIW is asymptotically faster than
SNP. For k = 3 and 4, there is no clear trend. The biggest
difference in the average run times is for (n = 58; k = 7)
where SNP takes 94.7 times longer than CIW.

Table 2 shows data in the same format as table 1 but for
k from 8 to 12 and this time comparing CIW to MOF for
k from 8 to 10 and CIW to BSBCP for 11 and 12. CIW
outperforms both MOF and BSBCP for all n and k. The
ratios of the run times of MOF to CIW and BSBCP to CIW
grow as n gets larger for all k, again suggesting that CIW
is asymptotically faster than MOF and BSBCP. The biggest
difference in the average run times of MOF and CIW is for
(n = 60; k = 10) where MOF takes 429 times longer than
CIW. The biggest difference for BSBCP is for (n = 60; k =
11) where BSBCP takes 250 times longer than CIW.

There is memory overhead for CIW due to both ESS and
the CIE trees, proportional to the number of subsets with
sums in the range [perfect,C∗]. All of the experiments re-
quire less than 4.5GB of memory and 95% require less than
325MB. However, it is possible that with increased n, mem-
ory could become a limiting factor as well as time. Better
understanding and reducing the memory usage is the subject
of future work.

For each value of k, we are showing a comparison of CIW
to the best of SNP, MOF and BSBCP. If we compared CIW
to any of the other two algorithms, the ratio of the run time
of the other algorithms to CIW would be even higher, up to
multiple orders of magnitude more.

5 Conclusions
The previous state of the art for optimally partitioning
integers was represented by sequential number partition-
ing (Korf, Schreiber, and Moffitt 2013), the (Moffitt 2013)
algorithm and binary-search branch and cut and price
(Dell’Amico et al. 2008; Schreiber and Korf 2013) depend-
ing on n and k. We have presented cached iterative weaken-
ing (CIW), which outperforms all algorithms for k ≥ 4.

CIW partitions S into k subsets like the previous AI al-
gorithms but has three major improvements. It explores the
search space using iterative weakening instead of branch and
bound; generates feasible subsets once and caches them in-
stead of at each node of the search tree; and explores subsets
in cardinality order instead of an arbitrary order. These im-
provements make CIW up to two orders of magnitude faster
than the previous state of the art.

Number partitioning is sometimes called the “easiest hard
problem” (Mertens 2006). As compared to other NP-hard
problems, it has very little structure. Nonetheless, there

2743

have been continuous algorithmic improvements of orders
of magnitude for solving this problem for over four decades.
This leads us to believe that similar gains should be possible
for more highly structured NP-hard problems.

References
Alvim, A. C., and Ribeiro, C. C. 2004. A hybrid bin-packing
heuristic to multiprocessor scheduling. In Experimental and
Efficient Algorithms. Springer. 1–13.
Belov, G., and Scheithauer, G. 2006. A branch-and-cut-and-
price algorithm for one-dimensional stock cutting and two-
dimensional two-stage cutting. European Journal of Opera-
tional Research 171(1):85–106.
Coffman Jr, E.; Garey, M.; and Johnson, D. 1978. An appli-
cation of bin-packing to multiprocessor scheduling. SIAM
Journal on Computing 7(1):1–17.
Dell’Amico, M., and Martello, S. 1995. Optimal scheduling
of tasks on identical parallel processors. ORSA Journal on
Computing 7(2):191–200.
Dell’Amico, M.; Iori, M.; Martello, S.; and Monaci, M.
2008. Heuristic and exact algorithms for the identical par-
allel machine scheduling problem. INFORMS Journal on
Computing 20(3):333–344.
França, P. M.; Gendreau, M.; Laporte, G.; and Müller, F. M.
1994. A composite heuristic for the identical parallel ma-
chine scheduling problem with minimum makespan objec-
tive. Computers & operations research 21(2):205–210.
Frangioni, A.; Necciari, E.; and Scutella, M. G. 2004. A
multi-exchange neighborhood for minimum makespan par-
allel machine scheduling problems. Journal of Combinato-
rial Optimization 8(2):195–220.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
San Francisco: W. H. Freeman.
Graham, R. L. 1969. Bounds on multiprocessing tim-
ing anomalies. SIAM Journal on Applied Mathematics
17(2):416–429.
Horowitz, E., and Sahni, S. 1974. Computing partitions with
applications to the knapsack problem. Journal of the ACM
(JACM) 21(2):277–292.
Karmarkar, N., and Karp, R. M. 1982. The differenc-
ing method of set partitioning. Computer Science Division
(EECS), University of California Berkeley.
Korf, R. E., and Schreiber, E. L. 2013. Optimally scheduling
small numbers of identical parallel machines. In Twenty-
Third International Conference on Automated Planning and
Scheduling.
Korf, R. E.; Schreiber, E. L.; and Moffitt, M. D. 2013. Op-
timal sequential multi-way number partitioning. In Interna-
tional Symposium on Artificial Intelligence and Mathemat-
ics (ISAIM-2014).
Korf, R. E. 1998. A complete anytime algorithm for number
partitioning. Artificial Intelligence 106(2):181–203.
Korf, R. E. 2009. Multi-way number partitioning. In Pro-
ceedings of the 20nd International Joint Conference on Ar-
tificial Intelligence (IJCAI-09), 538–543.

Korf, R. E. 2011. A hybrid recursive multi-way number
partitioning algorithm. In Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-11)
Barcelona, Catalonia, Spain, 591–596.
Mertens, S. 2006. The easiest hard problem: Number parti-
tioning. Computational Complexity and Statistical Physics
125(2):125–140.
Moffitt, M. D. 2013. Search strategies for optimal multi-way
number partitioning. In Proceedings of the Twenty-Third in-
ternational joint conference on Artificial Intelligence, 623–
629. AAAI Press.
Mokotoff, E. 2004. An exact algorithm for the identical
parallel machine scheduling problem. European Journal of
Operational Research 152(3):758–769.
Provost, F. J. 1993. Iterative weakening: Optimal and near-
optimal policies for the selection of search bias. In AAAI,
749–755.
Schreiber, E. L., and Korf, R. E. 2013. Improved bin com-
pletion for optimal bin packing and number partitioning. In
Proceedings of the Twenty-Third international joint confer-
ence on Artificial Intelligence, 651–658. AAAI Press.
Schroeppel, R., and Shamir, A. 1981. A t=o(2ˆn/2),
s=o(2ˆn/4) algorithm for certain np-complete problems.
SIAM journal on Computing 10(3):456–464.

2744

