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Abstract

We present three new filtering algorithms for the
DISJUNCTIVE constraint that all have a linear running
time complexity in the number of tasks. The first algorithm
filters the tasks according to the rules of the time tabling. The
second algorithm performs an overload check that could also
be used for the CUMULATIVE constraint. The third algorithm
enforces the rules of detectable precedences. The two last
algorithms use a new data structure that we introduce and
that we call the time line. This data structure provides many
constant time operations that were previously implemented
in logarithmic time by the Θ-tree data structure. Experiments
show that these new algorithms are competitive even for a
small number of tasks and outperform existing algorithms as
the number of tasks increases.

Introduction
Constraint programming offers many ways to model and
solve scheduling problems. The DISJUNCTIVE constraint
allows to model problems where the tasks cannot be exe-
cuted concurrently. The CUMULATIVE constraint models
the problems where a limited number of tasks can execute
simultaneously. With these constraints come multiple fil-
tering algorithms that prune the search space. Since these
algorithms are called thousands of times during the search,
it is essential to design them for efficiency. Data structures
can contribute to the efficiency of these algorithms.

For the constraint ALL-DIFFERENT, that is a special
case of the constraints DISJUNCTIVE and CUMULATIVE,
(Puget 1998) proposed an O(n log n) filtering algorithm.
The factor log n comes from the operations achieved on a
balanced tree of depth log n. This algorithm was outper-
formed by linear time algorithms (López-Ortiz et al. 2003;
Mehlhorn and Thiel 2000) that both use union find data
structures to achieve equivalent operations. More recently,
(Vilı́m 2007) proposed new data structures called Θ-tree and
Θ-λ tree that are balanced trees of depth log n. These data
structures led to filtering algorithms for the DISJUNCTIVE
and CUMULATIVE constraints including filtering algo-
rithms based on overload check, not-first / not-last, de-
tectable precedences (Vilı́m, Barták, and C̆epek 2004), edge-
finder (Vilı́m 2009), extended-edge-finder, and time-table-
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extended-edge-finder (Ouellet and Quimper 2013). These
algorithms have a log n factor in their running time com-
plexities that originates from the balanced tree. We propose
to modify some of these algorithms using a union find data
structure, as it was done for the ALL-DIFFERENT, to obtain
linear time filtering algorithms.

The paper is divided as follows. We review the disjunctive
constraint as well as three filtering techniques: time tabling,
overload check, and detectable precedences. We introduce
a new algorithm for time-tabling. We propose the time line
data structure. We present an overload check and an algo-
rithm applying the detectable precedences rules using the
new time line data structure. Finally, we show experimental
results and conclude.

The Disjunctive Constraint
We consider the scheduling problem where n tasks (denoted
I = {1, . . . , n}) compete to be executed, one by one, with-
out interruption, on the same resource. Each task has an
earliest starting time esti ∈ Z, a latest completion time
lcti ∈ Z, and a processing time pi ∈ Z+. From these
properties, one can compute the latest starting time lsti =
lcti−pi and the earliest completion time ecti = esti +pi.
Let Si be the starting time of task i with domain dom(Si) =
[esti, lsti]. The constraint DISJUNCTIVE([S1, . . . , Sn]) is
satisfied when Si + pi ≤ Sj ∨ Sj + pj ≤ Si for all pairs of
tasks i 6= j. A solution to the DISJUNCTIVE constraint is a
solution to the disjunctive scheduling problem.

It is NP-complete to decide whether the DISJUNCTIVE
constraint is satisfiable and therefore it is NP-hard to en-
force bounds consistency on this constraint. However, when
pi = 1, the constraint becomes the ALL-DIFFERENT con-
straint and bounds consistency can be achieved in linear
time (López-Ortiz et al. 2003). When pi = pj for all
i, j ∈ I, the constraint becomes an INTER-DISTANCE con-
straint and bounds consistency can be achieved in quadratic
time (Quimper, López-Ortiz, and Pesant 2006).

The earliest starting time, the latest completion time, and
the processing time can be generalized to a set of tasks.

estΩ = min
i∈Ω

esti lctΩ = max
i∈Ω

lcti pΩ =
∑
i∈Ω

pi

The earliest completion time (latest starting time) of a set of
tasks can be approximated as follows. This corresponds to
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the relaxation where the tasks can be preempted.
ectΩ = max

∅⊂Θ⊆Ω
(estΘ +pΘ) lstΩ = min

∅⊂Θ⊆Ω
(lctΘ−pΘ)

For empty sets, we have ect∅ = lct∅ = −∞ and est∅ =
lst∅ =∞.

Even though it is NP-Hard to filter the DISJUNCTIVE con-
straint, there exist pruning rules that can be enforced in poly-
nomial time. All the rules we present aim at delaying the
earliest starting time of the tasks. To advance the latest com-
pletion time, one can create the symmetric problem where
task i is transformed into a task i′ such that esti′ = − lcti,
lcti′ = − esti, and pi′ = pi. Delaying the earliest comple-
tion time in the symmetric problem prunes the latest com-
pletion time in the original problem.

Time-tabling The time-tabling rule exploits the fact that
a task i must execute within the semi-open time interval
[lsti, ecti) when lsti < ecti. This interval is called the com-
pulsory part. The compulsory part of a task makes the re-
source unavailable for the execution of the other tasks. Con-
sequently, if there exists a task i such that lsti < ecti and
there exists a task j that satisfies ectj > lsti, then j must
execute after i.

lsti < ecti ∧ lsti < ectj ⇒ est′j = max(estj , ecti) (1)
Several algorithms apply the time-tabling rules (Le Pape

1988; Beldiceanu and Carlsson 2002; Beldiceanu, Carlsson,
and Poder 2008; Letort, Beldiceanu, and Carlsson 2012;
Ouellet and Quimper 2013). Most of them were designed
for the CUMULATIVE constraint but can also be used for
the more restrictive case of the DISJUNCTIVE constraint.
The fastest algorithm by (Ouellet and Quimper 2013) runs
in O(n log n) time.

Overload check The overload check does not filter the
search space, but detects an inconsistency and triggers a
backtrack during the search process. The overload fails
when it detects a set of task Ω ⊆ I for which the earliest
completion time exceeds the latest completion time.

ectΩ > lctΩ ⇒ Fail (2)
(Vilı́m 2004) proposes an algorithm that runs in

O(n log n). (Wolf and Schrader 2005) propose an overload
check for the CUMULATIVE constraint.

Detectable precedences The precedence relation i � j
indicates that the task i must execute before task j. The
precedence can also be established between sets of tasks,
for instance, Ω � i indicates that the task i must execute
after all tasks in Ω. When ecti > lstj holds, we say that the
precedence j � i is detectable. The technique of detectable
precedences consists of finding, for a task i, the set of tasks
Ωi = {j ∈ I \ {i} | ecti > lstj} for which there exists
a detectable precedence with i. Once this set is discovered,
one can delay the earliest starting time of i up to ectΩi

.
est′i = max(esti, ect{j∈I\{i}|ecti>lsti}) (3)

(Vilı́m 2002) proposed this filtering technique that he later
improved in (Vilı́m 2004) to obtain an algorithm with a run-
ning time complexity of O(n log n).

Preliminaries
Let Iest, Ilct, Iect, Ilst Ip be the ordered set of tasks I
sorted by est, lct, ect, lst, and processing times. We assume
that all time points are encoded with w-bit integers and that
these sets can be sorted in linear time O(n). This assump-
tion is supported by the fact that a word of w = 32 bits is
sufficient to encode all time points, with a precision of a sec-
ond, within a period longer than a century. This is sufficient
for most industrial applications. An algorithm such as radix
sort can sort the time points in time O(wn) which is linear
when w is constant. In practice, the filtering algorithms are
called multiple times during the search process and a con-
stant number of tasks are modified between each call. In
such cases, algorithms as simple as insertion sort can resort
the tasks in linear time.

The new algorithms we present rely on the Union-Find
data structure. The function UnionFind(n) initializes n
disjoint sets {0}, {1}, . . . , {n − 1} in O(n) steps. The
function Union(a, b) merges the set that contains element
a with the set that contains the element b. The functions
FindSmallest(a) and FindGreatest(a) return the
smallest and greatest element of the set that contains a.
These three functions run inO(α(n)) steps, where α is Ack-
ermann’s inverse function. (Cormen et al. 2001) present how
to implement this data structure using trees. The smallest
and greatest element of each set can be stored in the root
of these trees. This implementation is the fastest in prac-
tice. However, we use this data structure in a very spe-
cific context where the function Union(a, b) is called only
when FindGreatest(a) + 1 = FindSmallest(b).
Such a restriction allows to use the Union-Find data struc-
ture as presented by (Gabow and Tarjan 1983) that imple-
ment the functions Union(a, b), FindSmallest(a) and
FindGreatest(a) in constant time. This implementation
is the fastest in theory, but not in practice due to a large hid-
den constant.

Time-Tabling
We present a linear time algorithm that enforces the time-
tabling rule. Like most time-tabling algorithms, this new al-
gorithm is not idempotent. However, it provides some guar-
anties on the level of filtering it achieves. Consider the set of
compulsory parts F = {[lsti, ecti) | i ∈ I ∧ lsti < ecti}.
Consider a task j ∈ I. The algorithm guarantees that after
the filtering occurs, the interval [est′j , ect′j) does not inter-
sect with any intervals in F . However, the pruning of estj
to est′j might create a new compulsory part [lstj , ect′j) that
could cause some filtering in a further execution of the algo-
rithm.

Algorithm 1 proceeds in three steps, each of them is as-
sociated to a for loop. The first for loop on line 1 cre-
ates the vectors l and u that contain the lower bounds and
upper bounds of the compulsory parts. The compulsory
parts [l[0], u[0]), [l[1], u[1]), . . . , [l[m − 1], u[m − 1]) form
a sequence of sorted and disjoint semi-open intervals such
that each of them is associated to a task i that satisfies
lsti < ecti. If two compulsory parts overlap, the algorithm,
on line 2, returns Inconsistent. When processing the task i
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Algorithm 1: TimeTabling (I)
m← 0, k ← 0, l← [ ], u← [ ], r ← [ ];
est′i ← esti,∀ i ∈ I;
for i ∈ Ilst do1

if lsti < ecti then
if m > 0 then

if u[m− 1] > lsti then return Inconsistent;2
else est′i ← max(est′i, u[m− 1]);3

l.append(lsti);
u.append(est′i +pi);
m← m+ 1;

if m = 0 then return Consistent;
for i ∈ Iest do4

while k < m ∧ esti ≥ u[k] do
k ← k + 1;

r[i]← k;
s← UnionFind(m);
for i ∈ Ip do5

if ecti ≤ lsti then
c← r[i];
first update← True;
while c < m ∧ est′i +pi > l[c] do6

c← s.FindGreatest(c);
est′i ← max(est′i, u[c]);
if est′i +pi > lcti then return Inconsistent;
if ¬first update then s.Union(r[i], c);
first update← False;
c← c+ 1;

return Consistent;

that has a compulsory part [l[k], u[k]), the algorithm makes
sure, on line 3 that the task i starts no earlier than u[k − 1],
so that the tasks that have a compulsory part are all filtered.

The second for loop on line 4 creates a vector r that maps
a task i to the compulsory part whose upper bound is the
smallest one to be greater than esti. We therefore have the
relation u[r[i]− 1] ≤ esti < u[r[i]].

The third for loop on line 5 filters the tasks that do not
have a compulsory part. The tasks are processed by non-
decreasing order of processing times. Line 6 checks whether
est′i +pi > l[r[i]]. If so, then the time-tabling rule ap-
plies and the new value of est′i is pruned to u[c]. The
same task is then checked against the next compulsory part
[l[r[i] + 1], u[r[i] + 1]) and so on. Suppose that a task is
filtered both by the compulsory part [l[c], u[c]) and the com-
pulsory part [l[c + 1], u[c + 1]). Since we process the tasks
by non-decreasing order of processing time, any further task
that is filtered by the compulsory part [l[c], u[c]) will also be
filtered by the compulsory part [l[c + 1], u[c + 1]). The al-
gorithm uses a Union-Find data structure to keep track that
these two compulsory parts are glued together. The next task
j that satisfies est′j +pj > l[c] will be filtered to u[c + 1] in
a single iteration. The Union-Find data structure can union
an arbitrary long sequence of compulsory parts.

Theorem 1 Algorithm 1 enforces the time-tabling rule in

O(n) steps.

Proof: Each of the two first for loops iterate through the
tasks once and execute operations in constant time. Each
time the while loop on line 6 executes more than once, the
Union-Find data structure merges two compulsory parts.
This can occur at most n times. 2

The Time Line Data Structure
We introduce the time line data structure. This data structure
is initialized with an empty set of tasks Θ = ∅. It is possi-
ble to add, in constant time, a task to Θ and to compute,
in constant time, the earliest completion time ectΘ. (Vilı́m
2004) proposes the Θ-tree data structure that supports the
same operations. It differs in two points from the time line.
Inserting a task in a Θ-tree requires O(log n) steps. Remov-
ing a task from a Θ-tree is done in O(log n) steps while this
operation is not supported in a time line. The time line is
therefore faster than a Θ-tree but can only be used for algo-
rithms where the removal of a task is not needed.

The data structure is inspired from (López-Ortiz et al.
2003). We consider a sequence t[0..|t| − 1] of unique time
points sorted in chronological order formed by the earliest
starting times of the tasks and a sufficiently large time point,
for instance maxi∈I lcti +

∑n
i=1 pi. The vector m[0..n−1]

maps a task i to the time point index such that t[m[i]] = esti.
The time points, except for the last one, have a capacity
stored in the vector c[0..|t| − 2]. The capacity c[a] denotes
the amount of time the resource is available within the semi-
open time interval [t[a], t[a+ 1]) should the tasks in Θ be
scheduled at their earliest starting time with preemption.
Initially, since Θ = ∅, the resource is fully available and
c[a] = t[a+ 1]− t[a]. A Union-Find data structure s is ini-
tialized with |t| elements. This data structure will maintain
the invariant that a and a + 1 belong to the same set in s if
and only if c[a] = 0. This will allow us to quickly request,
by calling s.FindGreatest(a), the earliest time point no
earlier than t[a] with a positive capacity. Finally, the data
structure has an index e which is the index of the latest time
point whose capacity has been decremented. Algorithm 2
initializes the components t, m, c, s, and e that define the
time line data structure.

Algorithm 2: InitializeTimeline (I)
t← [], c← [];
for i ∈ Iest do

if |t| = 0 ∨ t[|t| − 1] 6= esti then t.append(esti);
m[i]← |t| − 1;

t.append(maxi lcti +
∑n

i=1 pi);
for k = 0..|t| − 2 do c[k]← t[k + 1]− t[k];
s← UnionFind(|t|);
e← −1;

The data structure allows to schedule a task i over the time
line at its earliest time and with preemption. The value m[i]
maps the task i to the time point associated to the earliest
starting time of task i. Algorithm 3 iterates through the time
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intervals [t[m[i]], t[m[i] + 1]), [t[m[i] + 1], t[m[i] + 2]), . . .
and decreases the capacity of each interval down to 0 until
a total of pi units of capacity is decreased. Each time a ca-
pacity c[k] reaches zero, the union-find merges the index k
with k+1 which allows, in the future, to skip arbitrarily long
sequences of intervals with null capacities in constant time.

Algorithm 3: ScheduleTask (i)
ρ← pi;
k ← s.FindGreatest(m[i]);
while ρ > 0 do

∆← min(c[k], ρ);
ρ← ρ−∆;
c[k]← c[k]−∆;
if c[k] = 0 then

s.Union(k, k + 1);
k ← s.FindGreatest(k);

e← max(e, k);

Let Θ be the tasks that were scheduled using Algorithm 3,
then Algorithm 4 computes in constant time the earliest
completion time ectΘ.

Algorithm 4: EarliestCompletionTime ()
return t[e + 1] - c[e]

Example 1 Consider three tasks whose parameters
(esti, lcti, pi) are in {(4, 15, 5), (1, 10, 6), (5, 8, 2)}. Initial-
izing the time line produces the structure {1} 3→ {4} 1→
{5} 23→ {28} where the numbers in the sets are time points
and numbers on the arrows are capacities. After schedul-
ing the first task, the capacity between the time points 4 and
5 becomes null and the union-find merges both time points
into the same set. The structure becomes {1} 3→ {4, 5} 19→
{28}. After scheduling the second task, the time line be-
comes {1, 4, 5} 16→ {28} and after scheduling the last task,
it becomes {1, 4, 5} 14→ {28}. The earliest completion time
is given by 28− 14 = 14.

Theorem 2 Algorithm 2 runs in O(n) amortized time while
Algorithm 3 and Algorithm 4 run in constant amortized time.

Proof: Let ci be the capacity vector after the ith call to
an algorithm among Algorithm 2, Algorithm 3, and Algo-
rithm 4. We define a potential function φ(i) = |{k ∈ 0..|t|−
2 | ci[k] > 0}| that is equal to the number of positive com-
ponents in the vector ci. Prior to the initialization of the time
line data structure, we have φ(0) = 0 since the capacity vec-
tor is not even initialized and in all time, we have φ(i) ≥ 0.
After the initialization, we have φ(1) = |t|−1 ≤ n. The two
for loops in Algorithm 2 execute n + |t| − 1 ≤ 2n ∈ O(n)
times. Therefore, the amortized complexity of the initializa-
tion is O(n) + φ(1)− φ(0) = O(n).

Suppose the while loop in Algorithm 3 executes a times.
There are at least a − 1 and at most a components in the
capacity vector that are set to zero hence a − 1 ≤ φ(i) −

φ(i − 1) ≤ a. The amortized complexity of Algorithm 3 is
therefore a+ φ(i)− φ(i− 1) ≤ a− (a− 1) ∈ O(1).

Algorithm 4 executes in constant time and does
not modify the capacity vector c which implies
φ(i) = φ(i − 1). The amortized complexity is there-
fore O(1) + φ(i)− φ(i− 1) = O(1). 2

Overload check
The overload check, as described by (Vilı́m 2004), can be
directly used with a time line data structure rather than a
Θ-tree. One schedules the tasks, using Algorithm 3, in non-
decreasing order of latest completion times. If after schedul-
ing a task i, Algorithm 4 returns an earliest completion time
greater than lcti, then the overload check fails. The total run-
ning time complexity of this algorithm is O(n). The proof
of correctness is identical to Vilı́m’s.

The overload check can be adapted to the CUMULATIVE
constraint with a resource of capacity C. One can transform
the task i of height hi into a task i′ with esti′ = C esti,
lcti′ = C(lcti +1) − 1, and pi′ = hipi. The overload
check fails on the original problem if and on if it fails on
the transformed model. The transformation preserves the
running time complexity of O(n).

Detectable Precedences
We introduce a new algorithm to enforce the rule of de-
tectable precedences. One cannot simply adapt the algo-
rithm in (Vilı́m, Barták, and C̆epek 2004) for the time line
data structure as it requires to temporarily remove a task
among the scheduled tasks which is an operation the time
line cannot do. Algorithm 5 applies the rules of the de-
tectable precedences in linear time using the time line data
structure.

Suppose that the problem has no tasks with a compulsory
part, i.e. ecti ≤ lsti for all task i ∈ I. The algorithm
simultaneously iterates over all the tasks i in non-decreasing
order of earliest completion times and on all the tasks k in
non-decreasing order of latest starting times. Each time the
algorithm iterates over the next task i, it iterates (line 2) and
schedules (line 3) all tasks k whose latest starting time lstk
is smaller than the earliest completion time ecti. Once the
while loop completes, the set of scheduled tasks is {k ∈
I \ {i} | lstk < ecti}. We apply the detectable precedence
rule by pruning the earliest starting time of task i up to the
earliest completion time of the time line (line 4).

Suppose that there exists a task k with a compulsory part,
i.e. ectk > lstk. This task could be visited in the while
loop before being visited in the main for loop. We do not
want to schedule the task k before it is filtered. We therefore
call the task k the blocking task. When a blocking task k
is encountered in the while loop, the algorithm waits to en-
counter the same task in the for loop. During this waiting
period, the filtering of all tasks is postponed. A postponed
task i necessarily satisfies the conditions lstk < ecti ≤ ectk
and ecti < lsti and therefore the precedence k � i holds.
When the for loop reaches the blocking task k, it filters the
blocking task, schedules the blocking task, and filters the
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Algorithm 5: DetectablePrecedences (I)
InitializeTimeline (I)
j ← 0

k ← Ilst[j]

postponed tasks← ∅
blocking task← null
for i ∈ Iect do1

while j < |I| ∧ lstk < ecti do2
if lstk ≥ ectk then

ScheduleTask (k)3
else

if blocking task 6= null then
return Inconsistent

blocking task← k

j ← j + 1

k ← Ilst[j]

if blocking task = null then
est′i ← max(esti,4

EarliestCompletionTime())

else
if blocking task = i then

est′i ← max(esti,

EarliestCompletionTime())

ScheduleTask (blocking task)
for z ∈ postponed tasks do

est′z ← max(estz,5
EarliestCompletionTime())

blocking task← null
postponed tasks← ∅

else
postponed tasks← postponed tasks ∪ {i}

for i ∈ I do esti ← est′i

postponed tasks. The blocking task and the set of postponed
tasks are reset. It is not possible to simultaneously have two
blocking tasks since their compulsory parts would overlap,
which is inconsistent with the time-tabling rule.

Example 2 Figure 1 shows a trace of the algorithm. The
for loop on line 1 processes the tasks Iect = {1, 2, 3, 4}
in that order. For the two first tasks 1 and 2, nothing hap-
pens: the while loop is not executed and no pruning occurs
as no tasks are scheduled on the time line. When the for loop
processes task 3, the while loop processes three tasks. The
while loop processes the task 2 which is scheduled on the
time line. When it processes task 4, the while loop detects
that task 4 has a compulsory part in [14, 18) making task
4 the blocking task. Finally, the while loop processes task
1 which is scheduled on the time line. Once the while loop
completes, the task 3 is not filtered since there exists a block-
ing task. Its filtering is postponed until the blocking task is
processed. Finally, the for loop processes the task 4. In this
iteration, the while loop does not execute. Since task 4 is
the blocking task, it is first filtered to the earliest completion
time computed by the time line data structure (est′4 ← 13).
Task 4 is then scheduled on the time line. Finally, the post-
poned task 3 is filtered to the earliest completion time com-
puted by the time line data structure (est′3 ← 19).

Theorem 3 The algorithm DetectablePrecedences

i esti lcti pi ecti lsti postponed tasks est′i
1 0 19 4 4 15 ∅ 0
2 2 22 9 11 13 ∅ 2
3 9 30 7 16 23 {3} 19
4 12 20 6 18 14 ∅ 13

0 2 4 6 8 10 12 14 16 18

1

20 22 24 26 28 30

2

3

4

lst1

lst2

ect3

Figure 1: The tasks Iect = {1, 2, 3, 4} and the visual repre-
sentation of a solution to the DISJUNCTIVE constraint. The
algorithm DetectablePrecedences prunes the earli-
est starting times est′3 = 19 and est′4 = 13.

runs in linear time.

Proof: The for loop on line 1 processes each task only
once, idem for the while loop. Finally, a task can be
postponed only once during the execution of the algorithm
and therefore line 5 is executed at most n times. Except
for InitializeTimeline and the sorting of Iect

and Ilst that are executed once in O(n) time, all other
operations execute in amortized constant time. Therefore,
DetectablePrecedences runs in linear time. 2

Experimental Results
We experimented with the job-shop and open-shop schedul-
ing problems where n jobs, consisting of a set of non-
preemptive tasks, execute on m machines. Each task exe-
cutes on a predetermined machine with a given processing
time. In the job-shop problem, the tasks belonging to the
same job execute in a predetermined order. In the open-shop
problem, the number of tasks per job is fixed tom and the or-
der in which the tasks of a job are processed is not provided.
In both problems, the goal is to minimize the makespan.

We model the problems with a starting time variable Si,j

for each task j of job i. We post a DISJUNCTIVE con-
straint over the starting time variables of tasks running on
the same machine. For the job-shop scheduling problem, we
add the precedence constraints Si,j + pi,j ≤ Si,j+1. For
the open-shop scheduling problem, we add a DISJUNCTIVE
constraint among all tasks of a job. We use the bench-
mark provided by (Taillard 1993) that includes 82 and 60
instances of the job-shop and open-shop problems.

We implemented our algorithms in Choco 2.1.5 and, as a
point of comparison, the overload check and the detectable
precedences from (Vilı́m 2004) as well as the time tabling al-
gorithm from (Ouellet and Quimper 2013). For the six algo-
rithms, we sort the tasks using the function Arrays.sort
provided by Java 1.7. All experiments were run on an In-
tel Xeon X5560 2.667GHz quad-core processor. We used
the impact based search heuristic with a timeout of 10 min-
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Overload Check Detectable Precedences Time-Tabling
n Θ-tree (ms) time line (ms) bt Θ-tree (ms) time line (ms) bt Ouellet et al. (ms) Union-Find (ms) bt

10 11420 10716 142843 7559 7519 6803 18652 15545 154202
20 7751 7711 377305 17311 14847 322384 11313 8902 140229
30 9606 9412 443407 13326 11109 136142 11772 8984 139346
40 4433 4112 5969 19098 16493 115986 9551 7205 62901
50 5904 5299 34454 14895 12012 65043 3487 2871 3082
60 6150 5250 27491 7816 6952 3995 6300 5107 2612
70 5508 4737 17894 5425 4495 1514 5505 3940 22766
80 28800 26236 201453 5915 4942 481 2965 2148 317
90 31480 29461 174305 10016 7993 32318 3708 2939 509

100 48686 46104 262883 9879 8156 2360 7393 5564 1190

Table 1: Random instances with n tasks. Times are reported in milliseconds. Algorithms implementing the same filtering
technique lead to the same number of backtracks (bt).

n×m OC DP TT
4× 4 0.96 1.00 1.00
5× 5 1.03 1.12 1.75
7× 7 1.02 1.16 2.09
10× 10 1.06 1.33 2.14
15× 15 1.03 1.39 2.15
20× 20 1.06 1.56 2.17
p-value 0.25 8.28E-14 5.95E-14

Table 2: Open-shop with n jobs and m tasks per job. Ra-
tio of the cumulative number of backtracks between all in-
stances of size n×m after 10 minutes of computations. OC:
our overload check vs. Vilı́m’s. DP: our detectable prece-
dences vs Vilı́m’s. TT: Our time tabling vs Ouellet et al.

utes. Each filtering algorithm is individually tested, i.e. we
did not combine the filtering algorithms. For the few in-
stances that were solved to optimality within 10 minutes,
the two filtering algorithms of the same technique, whether
it is overload check, detectable precedences, or time tabling,
produce the same number of backtracks since they achieve
the same filtering. To compare the algorithms, we sum up,
for each instance of the same size, the number of backtracks
achieved within 10 minutes and we report the ratio of these
backtracks between both algorithms. A ratio greater than 1
indicates that our algorithm explores a larger portion of the
search tree and thus is faster. We also ran a Student’s t-Test
on all instances to verify whether the new algorithms are
faster. Table 2 and Table 3 present the results.

The new overload check seems to be faster with 10 tasks
and more. However, on all instances, the p-values prevent
us from drawing a conclusion about its performance.

The new algorithm of detectable precedences shows im-
provements on both problems especially when the number
of variables increases. The p-values confirm our hypothesis.
One way to explain why the ratios are greater than with the
overload check is that the most costly operations in Vilı́m’s
algorithm is the insertion and removal of a task in the Θ-tree
which can occur up to 3 times for each task. With the new
algorithm, the most costly operation is the scheduling of a
task on the time line which occurs only once per task.

Student’s test confirms that the new time tabling algo-
rithm is faster. Ratios are higher than with the algorithm

n×m OC DP TT
10× 5 1.07 1.27 2.11
15× 5 1.02 1.35 2.27
20× 5 1.00 1.55 2.12
10× 10 1.01 1.25 2.18
15× 10 1.26 1.42 1.97
20× 10 1.00 1.47 2.14
30× 10 1.08 1.56 2.36
50× 10 1.05 1.48 3.18
15× 15 0.95 1.48 2.16
20× 15 1.04 1.61 2.13
20× 20 1.09 1.46 1.71
p-value 0.17 1.41E-12 3.38E-20

Table 3: Job-shop with n jobs and m tasks per job. Ratio of
the cumulative number of backtracks between all instances
of size n × m after 10 minutes of computations. OC: our
overload check vs. Vilı́m’s. DP: our detectable precedences
vs Vilı́m’s. TT: Our time tabling vs Ouellet et al.

by (Ouellet and Quimper 2013) since the latter one was de-
signed for the CUMULATIVE constraint.

We randomly generated large but easy instances with
a single DISJUNCTIVE constraint over variables with uni-
formly generated domains. Unsatisfiable instances and in-
stances solved with zero backtracks were discarded. Table 1
shows that the new algorithms are consistently faster.

Conclusion
We introduced a new data structure, called the time line.
We took advantage of this data structure to present three
new filtering algorithms for the disjunctive constraint that
all have a linear running time complexity in the number of
tasks. Moreover, the overload check can be adapted to the
CUMULATIVE constraint. The new algorithms outperform
the best algorithms known so far. Future works include the
adaptation of the algorithms to the problems with optional
tasks.
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