
DJAO: A Communication-Constrained DCOP Algorithm
that Combines Features of ADOPT and Action-GDL

Yoonheui Kim and Victor Lesser
University of Massachusetts at Amherst

MA 01003, USA
{ykim,lesser}@cs.umass.edu

Abstract
In this paper we propose a novel DCOP algorithm,
called DJAO, that is able to efficiently find a solution
with low communication overhead; this algorithm can
be used for optimal and bounded approximate solutions
by appropriately setting the error bounds. Our approach
builds on distributed junction trees used in Action-GDL
to represent independence relations among variables.
We construct an AND/OR search space based on these
junction trees. This new type of search space results in
higher degrees for each OR node, consequently yield-
ing a more efficient search graph in the distributed set-
tings. DJAO uses a branch-and-bound search algorithm
to distributedly find solutions within this search graph.
We introduce heuristics to compute the upper and lower
bound estimates that the search starts with, which is
integral to our approach for reducing communication
overhead. We empirically evaluate our approach in var-
ious settings.

Introduction
In this paper, we formulate a new algorithm for distributed
constraint optimization problems (DCOPs), called DJAO,
which works on a distributed junction tree (Paskin, Guestrin,
and McFadden 2005). DJAO operates in two phases. In the
first phase, heuristic upper and lower bounds for variable
value configurations are created using a bottom-up propaga-
tion scheme similar in character to Action-GDL (Vinyals,
Rodriguez-Aguilar, and Cerquides 2011). Except that in-
stead of transmitting values for all configurations, we trans-
mit only the filtered upper and lower bounds of configura-
tion values. The next phase using these heuristics conducts
an ADOPT-like (Modi et al. 2005; Yeoh, Felner, and Koenig
2008) search on AND/OR search graph based on the junc-
tion tree, which we call AND/OR search junction graph, to
find a solution with desired precision. This two-phase strat-
egy reduces overall communication significantly.

AND/OR search tree and context-minimal
AND/OR search graph

An AND/OR search space (Marinescu and Dechter 2005) is
introduced to exploit independencies encoded by the graph-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ical model upon which DCOP algorithms such as Action-
GDL and Max-Sum (Farinelli et al. 2008) are constructed.
An AND/OR search tree is a search space with additive
AND nodes whose subtrees denote disjoint search spaces
under different variables in addition to OR nodes in tra-
ditional search trees whose subtrees denote disjoint search
spaces under values of variables. AND nodes decompose the
search space in their subtrees under Generalized Distributive
Law framework (Aji and McEliece 2000). It reduces the size
of DCOP search space from O(exp(n)) to O(n · exp(m)),
where m is the depth of the pseudo-tree (Koller and Fried-
man 2009) and n is the number of variables. DCOP al-
gorithms such as ADOPT (Modi et al. 2005) and BnB-
ADOPT (Yeoh, Felner, and Koenig 2008) can be viewed as
distributed search algorithms on this AND/OR search space.
Definition 1 (AND/OR search tree)
Given a COP instance P, its primal graph G and a pseudo-
tree T of G, the associated AND/OR search tree ST (P) has
alternating levels of OR nodes and AND nodes. The OR
nodes are labeledXi and correspond to variables. The AND
nodes are labeled 〈Xi, a〉 and correspond to value assign-
ments in the domains of variables. The root of the AND/OR
search tree is an OR node, labeled with the root of T. The
children of an OR node Xi are AND nodes labeled with as-
signments 〈Xi, a〉, consistent along the path from the root.
The children of an AND node 〈Xi, a〉 are OR nodes labeled
with the children of variable Xi in T. The path of a node
n ∈ ST , denoted PathST

(n), is the path from the root of
ST to n, and corresponds to a partial value assignment to
all variables along the path.

An example of AND/OR search tree is given in Fig. 1a.
Because AND nodes decompose the problem into separate
subproblems, variables in different subtrees of an AND node
n are considered independently given the value assignment
along the path to n. The arcs in ST are annotated by appro-
priate labels of the cost functions.
Definition 2 (label) The label l(Xi, 〈Xi, a〉) is defined as
the sum of all the cost function values for which variable Xi

is contained in their scope and whose scope is fully assigned
along the path from root to n.

Definition 3 (value) The value v(n) of a node n ∈ ST , is
defined recursively as follows: (i) if n = 〈Xi, a〉 is a ter-
minal AND node then v(n) = l(Xi, 〈Xi, a〉); (ii) if n =

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2680

〈Xi, a〉 is an internal AND node then v(n)=(Xi, 〈Xi, a〉)+∑
n′∈succ(n) v(n

′); (iii) if n =Xi is an internal OR node
then v(n) = maxn′∈succ(n) v(n

′), where succ(n) are the
children of n in ST .

In (Dechter and Mateescu 2007), the AND/OR search
graph shown in Fig. 1c was introduced to reduce the size
of the search tree in Fig 1a by merging two nodes that root
identical subtrees. A Context-based merge operation is de-
fined as either i) merging two OR nodes that share the same
variable assignments on the ancestors of these nodes, which
have connections in G to these nodes or their descendants, or
ii) merging two AND nodes that share assignments on these
nodes and ancestors of nodes, which have connections in G
to these nodes’ descendants.

Example For the primal graph G in Fig. 1b and a search
tree in Fig. 1a for G, OR nodes for D that shares assignments
for B can be merged as B is connected to D in G. In contrast,
OR nodes for C cannot be merged as the assignments for A
and B should match. AND nodes at the lowest level can be
merged if these nodes share the assignments as these nodes
do not have any descendant.

D

1

1

0 0 110

B

0

C

1 0

C D

1

1

0 0 110

B

0

AND

OR

AND

OR

AND

OR

D D

0

A

1

C

1 0

C

(a)

B D

C

A

(b)
0 1

B

0

C C D C

10 0 1

AND

OR

AND

OR

OR D C

AND

0

A

1

1

B

(c)

BD
ABC

AB

(d)

Figure 1: an AND/OR search graph

Definition 4 (context minimal AND/OR graph) The
AND/OR search graph of G that is closed under context-
based merge operator is called a context minimal AND/OR
search graph.

Distributed Constraint Optimization
and Junction-Tree
A distributed constraint optimization problem (DCOP) in-
stance P = 〈A,X, D,F〉 is formally defined by the follow-
ing parameters:
• A set of variables X = {X1, . . . , Xr}, where each vari-

able has a finite domain D (maximum size N) of possi-
ble values that it can be assigned.

• A set of constraint functions F = (F1, . . . , Fk), where
each constraint function, Fj : Xj → <, takes as input
any setting of the variables Xj ⊆ X and provides a real
valued utility.

In DCOP, we assume that each variable xi is owned by
an agent ai ∈ A and that an agent only knows about the
constraint functions in which it is involved. The DCOP can
be represented using a constraint network, where there is a
node corresponding to each variable xi and where there is
an edge (hyper-edge) for each constraint Fj that connects
all variables that are involved in the function Fj .

The objective in the DCOP is to find the complete variable
configuration x that maximizes

∑
Fj∈F Fj(xj).

The dual constraint graph (Koller and Friedman 2009)
is a transformation of a non-binary network into a special
type of binary network. It contains cliques (or c-variables)
domains of which ranges over all possible value combina-
tions permitted by the corresponding constraint functions,
and shared variables in any two adjacent cliques have same
values.

A junction tree (or join tree) (Cowell et al. 2007) T is
a subgraph of the dual graph which is a tree and satisfies
the condition that cliques associated with a variable x form
a connected subset of T . A Junction tree is represented as a
tuple 〈X,C,S,F〉. where X is a set of variables, C is a set of
cliques, where each clique Ci is a subset of variables Ci ⊆
X; S is a set of separators, where each separator is an arc
between two adjacent cliques containing their intersection;
and F is a set of potentials, where each potential in F is
assigned to each clique in C.

A distributed junction tree (Paskin, Guestrin, and McFad-
den 2005) decomposes a DCOP into a series of subprob-
lems, some of which can be solved in parallel. A subproblem
represented as a clique ci ∈ C can be solved independently
given the local constraint functions fi ∈ F and the values
from neighbors on separator si ∈ S. Separators S specify
which values will be used in the neighboring cliques in or-
der to compute the solution for its local subproblem.

DJAO(k)
First Phase: Heuristics Generation
Preprocessing techniques to supply the search with heuris-
tic values has successfully been used to enhance both cen-
tralized and decentralized search methods. (Ali, Koenig, and
Tambe 2005; Wallace 1996). In this section we describe a
scheme for generating initial heuristic estimates hUB and
hLB used in DJAO(k), based on a new function filter-
ing technique, which we call Soft Filtering, described here.
(Pujol-Gonzalez et al. 2011; Brito and Meseguer 2010) used
the Function Filtering technique (Brito and Meseguer 2010)
on DCOPs to prune variable configurations of local nodes,
that do not yield the optimal solution. We use the soft func-
tion filtering technique to generate heuristics that main-
tains the tuples that potentially yield the optimal solution
while summarizing the rest with upper and lower bounds.
Unlike the heuristics in (Ali, Koenig, and Tambe 2005;
Wallace 1996) which are generated by solving lower com-
plexity problems than the original, DJAO solves the original

2681

problem and focuses on reducing communication by filter-
ing tuples that are unlikely to be part of the optimal solution.

The Soft Filtering technique used in DJAO summarizes
constraint functions to reduce communication required for
transmitting such function. A simple difference from Func-
tion Filtering is that the Soft Filtering technique provides
summarized lower and upper bounds on filtered configu-
rations. Let the variable configuration S in message m be
divided into two sets filtered configurations SF , and non-
filtered configurations SNF . Let UB be the upper bounds of
values on variable configurations and LB the lower bounds.
The values UBm and LBm in the messages are filtered as
follows.

UBm(v) =

{
UB(v) if v ∈ SNF
maxSF

UB(v) if v ∈ SF
LBm is similarly defined with max replaced with min.
Filtered configurations are summarized as a filtered tuple

with a single upper and lower bounds, therefore reducing the
number of items in each message from ‖2S‖ to 2‖SNF ‖+2.
The optimal strategy is guaranteed to remain in the search
space as no solution is completely dropped. This summariza-
tion builds a basis for the next phase where an ADOPT-like
search finds a solution within a desired accuracy. Among
many ways to select which items to filter, we select items in
the bottom (100− d)% of the function range.

Second Phase: Search on AND/OR junction graph
On the pseudo-tree based search graph, functions are evalu-
ated only when their scope is fully assigned along the path.
The search backtracks to evaluate different variable assign-
ment which occurs among the domain of a single variable
at each level. This complete decentralization in value selec-
tion in the distributed setting results in the exponential num-
ber of messages in ADOPT. Instead, we introduce AND/OR
search graph on a junction tree where each level is associated
with each clique in the junction tree in a DCOP (See Fig. 2),
consequently yielding a more compact search graph with
a lower number of nodes. This search graph is a context-
minimal AND/OR search graph upon construction.

0

111000

00C 10C 11C1D

10

OR

OR

AND

AND

AB

01

0D 01C

1

Figure 2: an AND/OR search graph based on a junction tree

Definition 5 (AND/OR search junction graph)
Given a DCOP instance P and its junction tree T , the as-
sociated AND/OR search junction graph ST (P) has alter-
nating levels of OR nodes and AND nodes. The OR nodes
are labeled Ci : 〈Si,a,Ni〉 where a are variables assign-
ments in the domains of variables in separators Si whose
value are propagated from ancestors and newly appeared
variables Ni in clique Ci. These OR nodes correspond to

the cliques with partial assignment. The AND nodes are la-
beled 〈Sij ,b〉 and correspond to value assignments in the
domains of the separator between clique Ci and its child
Cj . The root of the AND/OR search graph is an OR node,
labeled with the root of T. The children of an AND node
〈Sij ,b〉 are OR nodes who are labeled with Cj:〈Sj ,b,Nj〉
with the same assignment on variables in separators Sij and
Sj .

Example Consider the graphical model in Fig. 1b de-
scribing a graph coloring problem over domains {0,1}. An
AND/OR search graph based on a possible pseudo-tree is
given in Fig 1c and an AND/OR search junction graph in
Fig 1d is given in Fig. 2. Observe that the function evaluation
on l({A,B}, a) occurs at the expansion of nodes at level 3 in
Fig. 1c instead of at level 1 in Fig. 2. On Fig. ??fig:aograph],
the search is unguided until the third expansion and it also
elongates the backtrack path leading to an increase in the
number of visited nodes to evaluate a single function.
Theorem 1 Given a DCOP instance P and a junction tree
T , its AND/OR search junction graph is sound and complete.
It contains all and only solutions.

The solution space in AND/OR search junction graph is
identical to the junction tree, thus it contains all and only
solutions. Consequently, any search algorithm that traverses
the AND/OR search junction graph in a depth-first manner is
guaranteed to have a time complexity equal to the time com-
plexity of Action-GDL (Vinyals, Rodriguez-Aguilar, and
Cerquides 2011) on the same junction tree which is expo-
nential in the tree width.

Theorem 2 The size of search junction graph has exactly
same size as the total complexity of junction tree as no sub-
tree is redundant. The depth of the graph does not exceed the
number of agents.

The search result for its subtree is stored at each node,
therefore no identical subtree is explored twice and a value
assignment on a cost function is never repeated. The arcs in
ST are annotated by appropriate labels of the cost functions.
The nodes in ST are associated with a value, accumulating
the result of the computation resulted from the subtree be-
low. labels on the arcs are determined by values from neigh-
boring nodes unlike the one defined in Def. ??def:value].

Definition 6 label: The label l(Ci:〈Si,a,Ni〉, 〈Sij ,b〉) of
the arc from the OR node to the AND node 〈Sij ,b〉 is defined
as the cost function values contained in the clique Ci whose
scope is fully assigned with values from the parent OR node
and and child AND node.

The value of v(n) of a node n ∈ ST (P) is computed
in the same way as in Def. 3. Likewise, the value of each
node can be recursively computed from leaves to root. We
can show that:

Proposition 1 Given an AND/OR search graph ST (P) of
a DCOP instance, the value function v(n) is the maximum
cost solution to the subproblem rooted at n, subject to the
current variable instantiation along the path from root to n.
If n is the root of ST , then v(n) is the maximum cost solution
to P.

2682

We prove optimality by verifying the value of nodes are
identical to the values produced during the execution of
Action-GDL. The value of an AND node is identical to the
value of corresponding assignments in the messages from
the corresponding clique of Action-GDL given the context
along the search path to these nodes. Valuation of OR nodes
is the combination of local utility functions and values of
its child nodes and corresponds to the maximum achievable
value of variable assignments given the variable assignments
along the search path.

Proposition 2 AND/OR search junction graph ST (P) is
context-minimal upon construction

The separators Si and Sij contain all and only variables
that build a context for each node and a single node is created
for each value assignment in the separator, thus it is context-
minimal.

Search in distributed settings Each agent in the system
distributedly conducts its share of search for the nodes on
ST (P) it owns. Agents are responsible for valuation of
owned nodes and path determination.

Definition 7 Agent ownership: Each node in ST (P) is
owned by an agent. AgentAi owns all nodes associated with
its own clique Ci: OR nodes Ci : 〈Si,a,Ni〉 and child AND
nodes of these are assigned to Ai.

For example, suppose cliqueAB,ABC andBD in Fig 1d
are owned by agent A1, A2, and A3 respectively. OR nodes
of clique BD are C3 : 〈B, 0, D〉, C3 : 〈B, 1, D〉. These OR
nodes and child AND nodes of these are assigned to A3.

Search procedure between nodes belonging to different
agents incurs communication. When an agent Aj chooses
to expand a child OR node Ci : 〈Si,a,Ni〉, Aj transmits
partial assignments a to an agent Ai who owns the child
nodes. Updated function values are sent back to Aj when
the search backs up. Search paths that incur communication
are displayed as dotted lines in Fig. 2.

DJAO on AND/OR search junction graph
If each node n ∈ ST (P) is assigned a heuristic lower-bound
estimate LB(n) and heuristic upper-bound estimate UP(n),
then we can calculate the lower and upper bound estimates
of assignments and dominated search space can be pruned.

Bounds on Partial Solution Similarly to (Marinescu and
Dechter 2005), a partially expanded search graph, denoted
as PSG, contains the root node, will have a frontier contain-
ing all the nodes that were generated but not expanded. Each
expansion of a leaf node on the search tree updates the lower
and upper bound estimates on AND/OR search graph. An
active partial subtree APT (n) rooted at a node n ending at
a tip node t contains the path between n and t, and all OR
children of AND nodes on the path. A dynamic heuristic
function of a node n relative to the current PSG given the
initial heuristic functions hUB and hLB can be computed.
Definition 8 (Dynamic Lower and Upper Bound) Given
an active partial tree APT (n), the dynamic heuristic
estimate of upper and lower bound function, UB(n)
and LB(n), is defined recursively as follows: (i) if there

is a single node n in APT (n) and is evaluated, then
UB(n) = v(n) = LB(n) else if n is a single node
in APT UB(n) = hUB(n) and LB(n) = hLB(n);
(ii) n = 〈Sij ,b〉 is an AND node, having OR children
m1, . . . ,mk, and
label = l(Ci : 〈Si,a,Ni〉, 〈Sij ,b〉), then

UB(n) = min(hUB(n), label +
∑k
i=1 UB(mi))

LB(n) = max(hLB(n), label +
∑k
i=1 LB(m)) ;

(iii) if n = Ci : 〈Pi,a, Ni〉 where n is an OR node, having
an AND child m, then UB(n) = min(h(n), UB(m)) and
LB(n) = max(h(n), LB(mi)).

Theorem 3 LB(n) is a lower bound on the optimal solu-
tion to the subproblem rooted at n, namely LB(n) ≤ v(n),
and also by definition LB(n) ≥ hLB(n). Also, UB(n) ≥
v(n) and UB(n) ≤ hLB(n).

Proof: We will prove by induction assuming the correctness of
heuristics that v(n) ≤ hUB(n), v(n) ≥ hLB(n). Basis: At leaf
nodes of AND/OR junction search graph, it is trivial that v(n) =
UB(n)=LB(n) as v(n) is computed using local constraints and
does not involve any heuristics.
Induction step: At any AND node having OR children
m1, . . . ,mk,

v(n) = label +
∑

i v(mi) ≤ label +
∑

i UB(mi),

where v(mi) ≤ UB(mi).

v(n) ≤ min(hUB(n), label +
∑

i UB(mi)) = UB(n),

where v(n) ≤ hUB(n).
At any OR node having AND child m = argmaxi v(mi),

v(n) = v(m) ≤ UB(m)

v(n) ≤ min(hUB(n), UB(m)) = UB(n).

LB(n) ≤ v(n) can be proved similarly. Therefore,

LB(n) ≤ v(n) ≤ UB(n). �

Also,UB(n) and LB(n) provides tighter bounds than the
initial heuristic functions.

Proposition 3 (Pruning rule) For any AND node n and its
sibling m, if UB(n) < LB(m) or UB(n) = LB(n) then
subtree below n can be pruned.

DJAO(k) We now set up a DJAO search on ST (P) whose
nodes are assigned to agents. Starting from the root agent
given the initial heuristic upper and lower bound functions
hUB and hLB , the objective is to search one of the solution
that satisfies the termination condition while pruning domi-
nated candidate solutions.

DJAO agents use three types of messages: VALUE,
COST, and TERMINATE. At the start, the root agent ex-
pands the OR nodes from its AND node and selects the best
branch in the subtree and sends VALUE messages contain-
ing variable values on the chosen branch to its child nodes.

Upon receipt of a VALUE message, an agent evaluates
whether the back-up condition is satisfied for the given value
assignments b in the message. If the back-up condition is
satisfied, the agent backs up with updated values by send-
ing a COST message to its parent. Otherwise, it expands the
OR nodes compatible with b and selects the best branch and
sends VALUE message to its children.

2683

Algorithm 1: DJAO(k)(1)
procedure Init()
wait← 0 ; // number of waited messages
ki ← 0, kc ← 0 ; // own and child’s k value
mb ← nil ; // OR node in par(ai) to backtrack
to
m∗,m∗∗; // OR node with max, second max UB
nc; // AND node context-compatible with mb

procedure RootRun()
Init();
UpdateM();
if (CheckTermination()) then

Send(TERMINATE) to ∀c ∈ succ(ai);
terminate;

end
ki ← UB(m∗)−max(UB(m∗∗)− k, LB(m∗));
wait← ‖succ(ai)‖;
Send(VALUE, m∗, ki);
loop forever
while (message queue is not empty) do

pop msg off message queue;
When Received(msg);
if (CheckTermination()) then

Send(TERMINATE) to ∀c ∈ succ(ai);
terminate;

else if (wait==0) then
UpdateM();
ki = UB(m∗)−max(UB(m∗∗)− k, LB(m∗));
Send(VALUE, m∗, ki) to ∀c ∈ succ(ai);

end
procedure Run()
Init();
loop forever
while (message queue is not empty) do

pop msg off message queue;
When Received(msg);
if (Decide BackUp() && wait==0) then

Send(COST, mb, UB(mb), LB(mb)) to par(ai)
else if (wait==0) then

UpdateM();
Send(VALUE, m∗, kc), to ∀c ∈ succ(ai)

end

Upon receipt of COST message containing the updated
lower and upper bounds on the chosen expanded OR nodes
from all child nodes, it recalculates the lower and upper
bounds of its AND node. It then re-evaluates the back-up
condition for the received VALUE message. Unless it sat-
isfies the back-up condition, then the question of which
branch to select is re-examined and the agents sends an-
other VALUE message to its children. These steps are re-
peated until a termination condition in Prop 4 holds for the
root agent. It then sends a TERMINATE message to each of
its children and terminate. Upon receipt of a TERMINATE
message, each agent does the same.

Proposition 4 Given an OR node n and AND nodes

Algorithm 2: DJAO(k)(2)
procedure UpdateM()
m∗ = argmaxUB(m), for m ∈ succ(nr);
m∗∗ = argmaxUB(m), for m ∈ succ(nr) \m∗;
procedure When Received(COST, m, vUB , vLB)
wait← wait− 1, UB(m)← vUB , LB(m)← vLB;
UB′(n)← UB(n), where n = par(m) ;
UB(n)← max(UB(n), UB(m)) ;
LB(n)← max(LB(n), LB(m));
procedure When Received(VALUE, m, k)
ki ← k,mb ← m,wait← ‖succ(ai)‖;
nc ← context− compatible(m),;
procedure Decide BackUp()
if (UB(nc)− UB′(nc) ≥ ki) then

return true;
else

kc ← (ki − (UB(n)− UB′(n)))/‖succ(ai)‖;
return false;

end
procedure When Received(TERMINATE)
Send(TERMINATE) to ∀c ∈ succ(ai);
terminate;
procedure Check Termination()
if (UB(nr) == LB(nr)) then

return true;
else if for ∀m∈ succ(nr)\m∗, UB(m) ≤ LB(m∗) then

return true;
return false;

m1, . . . ,mk at the root agent, DJAO(k) is terminated if UB
and LB satisfies the condition UB(n) = LB(n) or
∃i, UB(mj) ≤ LB(mi) for ∀j, i 6= j.

Each agent stores the lower and upper bounds of ex-
panded nodes and updates these values upon each COST
message arrival. The memory requirement for each agent
does not exceed O(nd) where n is the size of variable do-
main and d is the induced width of the junction tree.

Among many different search strategies which determines
the back-up condition for solving COP and DCOP, best-
first search and depth-first branch-and-bound search have
been primarily studied (Marinescu and Dechter 2005; 2007;
Modi et al. 2005; Yeoh, Felner, and Koenig 2008). Best-first
search always follows the best item found and in the dis-
tributed setting whenever there is an update, agents propa-
gate it to all ancestors whose best items may change. On
the other hand, depth-first search retains the current path
until it is certainly dominated or the true value of node
v(n) is found. In (Gutierrez, Meseguer, and Yeoh 2011),
ADOPT (k) provides a trade-off between these two ex-
tremes, where the search keeps the current path until the
distance between the best solution on the current path and
the best solution found so far becomes greater than a given
constant k.

Similarly, we developed DJAO(k), which subsumes both
depth-first and best-first search strategy on AND/OR search
junction graph. It performs depth-first when k = ∞, best-
first when k = ε, and a hybrid when ε < k < ∞, where

2684

k is the distance between the best found solution UB(m∗)
and the next best solution UB(m∗∗) found so far. Unlike
ADOPT(k) in which each agent determines k using the best
solutions based on its subproblems provided by the node’s
subtree, each agent in DJAO instead uses a measurement
that considers a global perspective of the entire problem
on the current best solution. The search backtracks when
UB(m∗) ≤ max(UB(m∗∗) − k, LB(m∗)), which occurs
as soon as the best solution is dominated by the second best
with the best-first strategy with k = ε, and when the true
value for m∗ is found (Thus, UB(m∗) = LB(m∗)) with
the depth-first strategy with k =∞.

Algorithm 1 and 2 shows the pseudocode of DJAO(k),
where ai is a generic agent, par(ai) its parent agent,
succ(ai) its set of child agents, par(n) the parent node of
the node n in the search graph, succ(n) the set of node
n’s child nodes, and nr the AND node of the root agent.
The root agent runs RootRun() which contains search ini-
tiation whereas all other agents runs Run(). The pseudo-
code uses a predicate context−compatible(m) to select
a node whose variable value assignment matches that of the
node m.

Example of DJAO On the junction tree in Fig. 1d,
let there be three agents, A1, A2 and A3 for the cliques
AB, ABC and BD respectively. The constraint function
f(A,B) are assigned to clique AB, f(A,C) and f(B,C)
to clique ABC, f(B,D) to BD.

f(A,B) :

A B
0 0 0
0 1 4
1 0 5
1 1 1

f(B,D) :

B D
0 0 0
0 1 1
1 0 4
1 1 2

f(A,C) :

A C
0 0 0
0 1 2
1 0 3
1 1 0

f(B,C) :

B C
0 0 1
0 1 4
1 0 5
1 1 2

Phase 1: The first phase starts by the agent A2 computing
the local potential b by merging f(A,C) and f(B,C) in the
clique ABC as well as A3.

b(A,B,C) :

A B C
0 0 0 1
0 0 1 6
0 1 0 5
0 1 1 4
1 0 0 4
1 0 1 4
1 1 0 8
1 1 1 2

Each agent who does not own the root node generates a
filtered message once they have received from all the child
agents (agents who own the child OR nodes). The message
from A2 and A3 to A1 in Action-GDL would be as follows.

MA3→A1 :
B
0 1
1 4

MA2→A1 :

A B
0 0 6
0 1 5
1 0 4
1 1 8

Filtered messages are created and sent with the filtering
rate l = 80. FS denotes the filtered set of variable config-
urations. For the message MA2→A1

, the function range is
(8 − 4), thus items with upper bound equal or less than (4+

4*0.8) are filtered except (A=1, B=1). Messages in DJAO
are:

MA3→A1 :
B hLB hUB

1 4 4
FS 1 1

MA2→A1 :
A B hLB hUB

1 1 8 8
FS 4 6

Once messages received, A1 calculates potential b as the
total sum of received messages and local functions.

b(AB) :

A B LB UB
0 0 5 7
0 1 12 14
1 0 10 12
1 1 13 13

Phase 2: A1 checks the termination condition on the pos-
sible solution with the highest upper bound (A=0, B=1).
Since LB(A=0, B=1) does not dominate UB(A=1, B=1),
the search starts.A1 computes the distance k1 between max-
imum and the second maximum upper bounds. The distance
k1 = 14−13 = 1. The search backtracks when the upper
bound decreases by equal or more than min(k, k1). The up-
per and lower bound gap originates only from MA2→A1

.
Therefore, A1 sends a VALUE message with a variables
configuration (A=0, B=1) and min(k, k1) to A2. A2 re-
ceives this VALUE message. It then sends a COST message
LB(0, 1)=5, UB(0, 1)=5 as it is a leaf node. Upon receipt
of the COST message, the root node updates its potential.

b(A,B) :

A B LB UB
0 0 6 7
0 1 12 12
1 0 11 12
1 1 13 13

Since the lower bound of (A=1, B=1) dominates upper
bounds of all other configurations, the termination condition
is satisfied and the search terminates.

Approximate DJAO(k) An approximate version of the al-
gorithm can be obtained by relaxing the constraint on upper
and lower bound gap similar to search-based DCOP algo-
rithms (Modi et al. 2005; Yeoh, Sun, and Koenig 2009). Ap-
proximate DJAO with an error bound e terminates when the
solution contains no more than error e such that that value of
the found solution n is no worse than v(n∗)−e, where n∗ is
the optimal solution. The corresponding termination condi-
tion is LB(n) ≥ UB(n)−e or ∃i, UB(mj) ≤ LB(mi)+e
for ∀j, i 6= j. Also, the search backtracks when UB(m∗) ≤
max(UB(m∗∗)− k, LB(m∗) + e).

Empirical Evaluation
In this section we evaluate the performance of DJAO
search. For each experiment, we report the communication
costs, NCCCs(non-concurrent constraint check), and solu-
tion quality for approximate solutions with respect to opti-
mal solutions. We used a DJAO that sends VALUE messages
to at most 25 nodes when there are ties. We evaluate and
compare our approach with Action-GDL and ADOPT(k)
with k which was reasonable among 400, 4000 and 40000.
Communication costs are measured as the number of bytes
sent during execution1 and the message count of both UTIL

1A single variable value is 4byte, and cost 8byte.

2685

c Algorithm Total Bytes NCCCs Msgs

20

DJAO(k = ε) 227744 25627367 667
DJAO(k = 10) 260708 25991283 615

DJAO(k = 100) 229503 20898049 664
DJAO(k = 500) 271962 34144648 1485

Action-GDL 394690 2741859 18
ADOPT(K=4000) 1217757 4341532 206082

25

DJAO(k = ε) 1540523 794393531 2888
DJAO(k = 10) 1509601 835729595 2804

DJAO(k = 100) 1508705 570976502 2478
DJAO(k = 500) 2516606 1792901180 9263

Action-GDL 3679104 25942425 18
ADOPT(K=4000) 54556373 417172726 8992463

30

DJAO(k = ε) 1513317 734471121 3203
DJAO(k = 10) 2204580 1117448830 3505

DJAO(k = 100) 1513698 553233251 2910
DJAO(k = 500) 4084228 2759254975 17741

Action-GDL 4568592 33038068 18
ADOPT(K=4000) 37285466 219714985 6334245

Table 1: Performance of Optimal DJAO(k)
on Random Binary DCOP Instances

0 1 2 4 80

5

10

15

20

25

Accuracy Loss(%)

Sa
vi

ng
s

W
R

T
G

D
L

Overall Communication Cost

l=0.8
l=0.7
l=0.6

(a) Communication Savings

0 1 2 4 80
5

10
15
20
25
30
35
40

Accuracy LossC
on

st
ra

in
t C

he
ck

s
W

R
T

G
D

L Overall Computation Cost

l=0.8
l=0.7
l=0.6

(b) Computation time

0 1 2 40.85
0.88
0.91
0.94
0.97

1

Accuracy Loss(%)
So

lu
tio

n
Q

ua
lit

y

Solution Quality

l=0.8
l=0.7
l=0.6
Solution Bound

(c) Solution Quality

0 1 2 4 81
21
41
61
81

101
121
141
161
181

Accuracy Loss

M
es

sa
ge

 C
ou

nt
 W

R
T

G
D

L Message Count

l=0.8
l=0.7
l=0.6

(d) Message Count

Figure 3: Performance of Approximate DJAO(k=10)

Algorithm Total Bytes NCCCs Msgs

A
DJAO(k = ε) 163,360 22,217,301 315

DJAO(k = 100, 000, 000) 155,021 25,413,935 326
Action-GDL 3,624,186 19,905,921 126

ADOPT(K=30,000,000) 11,121,364 24,068,428 2,005,732

B
DJAO(DJAOk = ε) 278,168 30,441,957 325

DJAO(k = 100, 000, 000) 238,696 21,998,565 342
Action-GDL 4,274,606 24553995 126

ADOPT(K=30,000,000) 54,735,040 166,542,715 9,869,280

C
DJAO(k = ε) 207,801 9,379,233 194

DJAO(k = 100, 000, 000) 120,516 7,509,783 191
Action-GDL 1,294,382 6,419,231 78

ADOPT(K=30,000,000) 1,009,124 2,625,136 178,301

D
DJAO(k = ε) 718,528 31,980,359 405

DJAO(k = 100, 000, 000) 482,654 43,316,277 474
Action-GDL 10,321,229 58,754,948 126

ADOPT(K=30,000,000) 21,573,856 66,347,439 3,812,541

Table 2: Sensor Network Instances

and VALUE messages. For approximate results, we show
the true utility of found solution which is often much higher
than the estimated lower bound.

We experimented on random binary DCOP instances with
10 variables of domain size 10. The function cost are ran-
domly generated over the range 〈0, . . . , 200〉. We varied the
number of constraint functions c over 20, 25 and 30 and av-
eraged our results over 20 instances for each value of c. The
total communication amount is largely determined by the
structure of junction tree. Thus, five junction trees were con-
structed for each problem instance. Initial heuristics were
generated using soft filtering where the bottom 70% is fil-
tered. The DJAO with k = ε(i.e., conducts best-first search)
consistently performed well in these experiments.

Tab. 2 shows the results on sensor network instances from
a public repository (Yin 2008) with a heuristic which fil-

ters 90% (l = 0.9). Tab. 1 and 2 show DJAO requires less
communication than both ADOPT2 and Action-GDL. Com-
pared to the random DCOP instances, function ranges are
wider and many clearly dominated variable configurations
results in significant communication savings with DJAO.
DJAO with high k values performed better in terms of com-
munication on these lower connectivity graphs compared to
the random DCOP instances.

Lastly, in an experiment on the random binary DCOP in-
stances, we measured the methods’ trend as the solution
quality guarantee changes. We evaluated 20 instances for
each quality loss ranging from loss = 0% to loss = 8%
using a heuristic which filters 80%(l=0.8) and 70%(l=0.7).
Results in Fig. 3 show that DJAO gains significant savings
in communication as the error bound increases. With 80%
heuristics, it transmits about 18 times less information than
that of Action-GDL when loss = 8% while it uses 13 times
more computation (NCCCs) and about 130 messages per
agent.

Conclusions
We addressed the problem of solving DCOP exactly and
with precise approximation bounds by developing a new dis-
tributed algorithm called DJAO. There are three novel ideas
in DJAO. Firstly, it uses an AND/OR junction graph repre-
sentation, which builds a basis for efficient search in the dis-
tributed settings. The second is a two phase search strategy
that combines characteristics of ADOPT and Action-GDL.
The third is a soft filtering technique to significantly reduce
communication without losing any accuracy.

2Results from (Gutierrez, Meseguer, and Yeoh 2011)

2686

References
Aji, S., and McEliece, R. 2000. The generalized distributive
law. Information Theory, IEEE Transactions on 46(2):325–
343.
Ali, S.; Koenig, S.; and Tambe, M. 2005. Preprocessing
techniques for accelerating the DCOP algorithm ADOPT. In
Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’05,
1041–1048. New York, NY, USA: ACM.
Brito, I., and Meseguer, P. 2010. Improving DPOP with
function filtering. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems:
volume 1 - Volume 1, AAMAS ’10, 141–148. Richland, SC:
International Foundation for Autonomous Agents and Mul-
tiagent Systems.
Cowell, R. G.; Dawid, A. P.; Lauritzen, S. L.; and Spiegel-
halter, D. J. 2007. Probabilistic Networks and Expert Sys-
tems: Exact Computational Methods for Bayesian Networks.
Springer Publishing Company, Incorporated, 1st edition.
Dechter, R., and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artif. Intell. 171(2-3):73–106.
Farinelli, A.; Rogers, A.; Petcu, A.; and Jennings, N. R.
2008. Decentralised coordination of low-power embedded
devices using the max-sum algorithm. In AAMAS ’08: Pro-
ceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems, 639–646. Rich-
land, SC: International Foundation for Autonomous Agents
and Multiagent Systems.
Gutierrez, P.; Meseguer, P.; and Yeoh, W. 2011. Gen-
eralizing ADOPT and BnB-ADOPT. In Proceedings of
the Twenty-Second International Joint Conference on Artifi-
cial Intelligence - Volume Volume One, IJCAI’11, 554–559.
AAAI Press.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques - Adaptive Computation
and Machine Learning. The MIT Press.
Marinescu, R., and Dechter, R. 2005. AND/OR branch-
and-bound for graphical models. In Proceedings of the 19th
international joint conference on Artificial intelligence, IJ-
CAI’05, 224–229. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc.
Marinescu, R., and Dechter, R. 2007. Best-first AND/OR
search for graphical models. In Proceedings of the 22Nd
National Conference on Artificial Intelligence - Volume 2,
AAAI’07, 1171–1176. AAAI Press.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2005.
ADOPT: asynchronous distributed constraint optimization
with quality guarantees. Artif. Intell. 161(1-2):149–180.
Paskin, M.; Guestrin, C.; and McFadden, J. 2005. A robust
architecture for distributed inference in sensor networks. In
Proceedings of the 4th International Symposium on Infor-
mation Processing in Sensor Networks, IPSN ’05. Piscat-
away, NJ, USA: IEEE Press.
Pujol-Gonzalez, M.; Cerquides, J.; Meseguer, P.; and
Rodriguez-Aguilar, J. A. 2011. Communication-constrained

DCOPs: message approximation in GDL with function fil-
tering. In The 10th International Conference on Autonomous
Agents and Multiagent Systems - Volume 1, AAMAS ’11,
379–386. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems.
Vinyals, M.; Rodriguez-Aguilar, J. A.; and Cerquides, J.
2011. Constructing a unifying theory of dynamic program-
ming DCOP algorithms via the generalized distributive law.
Autonomous Agents and Multi-Agent Systems 22(3):439–
464.
Wallace, R. J. 1996. Enhancements of branch and bound
methods for the maximal constraint satisfaction problem. In
Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence - Volume 1, AAAI’96, 188–195. AAAI
Press.
Yeoh, W.; Felner, A.; and Koenig, S. 2008. BnB-ADOPT:
an asynchronous branch-and-bound DCOP algorithm. In
Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems - Volume 2, AA-
MAS ’08, 591–598. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems.
Yeoh, W.; Sun, X.; and Koenig, S. 2009. Trading off solution
quality for faster computation in dcop search algorithms. In
Proceedings of the 21st International Jont Conference on
Artifical Intelligence, IJCAI’09, 354–360. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.
Yin, Z. 2008. USC DCOP repository.

2687

