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Abstract
Linear subspace is an important representation for many
kinds of real-world data in computer vision and pattern
recognition, e.g. faces, motion videos, speeches. In this
paper, first we define pairwise angular similarity and
angular distance for linear subspaces. The angular dis-
tance satisfies non-negativity, identity of indiscernibles,
symmetry and triangle inequality, and thus it is a met-
ric. Then we propose a method to compress linear sub-
spaces into compact similarity-preserving binary signa-
tures, between which the normalized Hamming distance
is an unbiased estimator of the angular distance. We
provide a lower bound on the length of the binary sig-
natures which suffices to guarantee uniform distance-
preservation within a set of subspaces. Experiments on
face recognition demonstrate the effectiveness of the bi-
nary signature in terms of recognition accuracy, speed
and storage requirement. The results show that, com-
pared with the exact method, the approximation with the
binary signatures achieves an order of magnitude speed-
up, while requiring significantly smaller amount of stor-
age space, yet it still accurately preserves the similarity,
and achieves high recognition accuracy comparable to
the exact method in face recognition.

Introduction
In computer vision and pattern recognition applications, lin-
ear subspace is an important representation for many kinds
of real-world data, e.g. faces (Basri and Jacobs 2003)(He
et al. 2005)(Cai et al. 2006)(Cai et al. 2007), motion
videos (Liu and Yan 2011)(Basri, Hassner, and Zelnik-
Manor 2011)(Liu et al. 2013), speeches (Basri, Hassner, and
Zelnik-Manor 2011) and so on. In the following, we use the
term subspace for short. Once subspace is used as a repre-
sentation, the first key problem is to define a proper pair-
wise similarity or distance between subspaces. Furthermore,
storing and processing large number of subspaces with high
ambient dimensions require expensive storage and computa-
tional cost. A possible solution would be representing sub-
spaces with short signatures that preserve the pairwise simi-
larity.

In this paper, first we define the concept of angle, pair-
wise angular similarity and angular distance between sub-
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spaces, and show that the angular distance is a metric that
satisfies non-negativity, identity of indiscernibles, symmetry
and triangle inequality. Then we develop a method to pro-
duce similarity-preserving binary signatures for subspaces,
the Hamming distance between which provides an unbi-
ased estimate of the pairwise angular distance. We provide a
lower bound on the length of the binary signatures that suf-
fices to guarantee uniform distance-preservation within a set
of subspaces, which is similar to the Johnson-Lindenstrauss
Lemma on random projection. We conduct face recognition
experiments on the union of two popular face datasets to
show that the angular distance as a distance measurement is
discriminative. The results also show that using the binary
signature would achieve more than 60 times faster recog-
nition with no accuracy loss, and the storage space for the
binary signatures is at most 1/190 that of storing the sub-
spaces.

To the best of our knowledge, this is the first work on
developing similarity-preserving binary signature for sub-
spaces. The advantages of similarity-preserving binary sig-
nature are two-fold: the storage space is significantly re-
duced due to the use of compact binary signatures; on the
other hand, pairwise angular similarity or distance can be
efficiently estimated by computing the Hamming distance
between the corresponding binary signatures, and Ham-
ming distance can be computed very fast in modern CPUs
(He, Wen, and Sun 2013). When the ambient dimension is
high and the number of subspaces is huge, the similarity-
preserving binary signature would serve as a fundamental
tool towards different kinds of large-scale applications, e.g.
clustering, approximate nearest neighbor search and so on.

Related Work
In recent years, intensive attention and research efforts
have been devoted to developing small codes for vectors
(Charikar 2002)(Andoni and Indyk 2006)(Torralba, Fergus,
and Weiss 2008)(Weiss, Torralba, and Fergus 2008)(Kulis
and Darrell 2009)(Gong and Lazebnik 2011)(Wang, Kumar,
and Chang 2012)(Ji et al. 2012)(He, Wen, and Sun 2013),
in purpose of database compression and fast approximate
nearest neighbor search. To the best of our knowledge, little
research has been done on developing small codes for sub-
spaces.

Various definitions of distance and similarity have been
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proposed for subspaces (Basri, Hassner, and Zelnik-Manor
2011)(Wang, Wang, and Feng 2006)(Edelman, Arias, and
Smith 1999). The distance definition in (Wang, Wang, and
Feng 2006) is not shown to be metric, and all of these previ-
ous similarities or distances are not shown to admit a possi-
ble way to generate similarity-preserving binary signatures.

The works most related to ours are the approximate near-
est subspace search methods (Basri, Hassner, and Zelnik-
Manor 2011)(Wang et al. 2013). These methods provide
ways of conducting approximate nearest neighbor search in
terms of specific distances in a database of subspaces. How-
ever, their methods are designed specifically for approximate
nearest neighbor search, and they do not provide a compact
representation, or more specificly, binary representation for
subspaces.

The proposed binary signature for subspaces in this work
can be used in not only approximate nearest neighbor search,
but also applications where only the pairwise similarity or
distance is exploited, e.g. clustering, kernel methods. In
other words, generating binary signatures for subspaces may
be regarded as a general preprocessing step.

Pairwise Similarity Measurement for Linear
Subspaces

Principal Angles between two Linear Subspaces
Principal angles between subspaces serve as fundamental
tools in mathematics, statistics and related applications, e.g.
data mining. The concept was first introduced by Jordan
(Jordan 1875) in 1875. Principal angles provide information
about the relative position of two subspaces. In this work,
they are the building blocks of our definition of the angle,
angular similarity and angular distance between subspaces.

Formally, for two subspaces P and Q of Rd, denote the
dimension dim(P) of P by dP and the dimension dim(Q)
of Q by dQ. Assume that dmax = dP ≥ dQ = dmin.
Then the principal angles between them, θ1, θ2, ..., θdmin

∈
[0, π/2], are defined recursively as (Golub and Van Loan
1996; Knyazev, Merico, and Argentati 2002):

cos(θi) = maxui∈P maxvi∈Q
uT
i vi

‖ui‖‖vi‖

subject to

uTi uj = 0 and vTi vj = 0, for j = 1, 2, ..., i− 1

Principal angles between two subspaces can be computed
via singular value decomposition (Golub and Van Loan
1996; Knyazev, Merico, and Argentati 2002). Assume that
P is a d× dP matrix with orthonormal columns which form
an orthonormal basis of the subspace P , and Q is a d × dQ
matrix with orthonormal columns which form an orthonor-
mal basis of the subspace Q. Then the cosine of each of
the principal angles equals a singular value of PTQ. For-
mally, assume that the reduced singular value decomposition
(SVD) of PTQ is

Y TPTQZ = diag(σ1, σ2, ..., σdmin
), (1)

where 1 ≥ σ1 ≥ σ2 ≥ ... ≥ σdmin
≥ 0 are the singu-

lar values of PTQ and Y ∈ RdP×dQ , Z ∈ RdQ×dQ have
orthonormal columns.

Then

θi = arccos(σi), i = 1, 2, ..., dmin (2)

Angle, Angular Similarity and Angular Distance
between Subspaces
As mentioned before, principal angles depict the relative po-
sition of two subspaces. In this section we formally define
the angle, pairwise similarity measurement and distance for
linear subspaces, based on principal angles.
Definition 1. For two subspaces P andQ ofRd, denote the
dimension dim(P) of P by dP and the dimension dim(Q)
of Q by dQ. Assume that dmax = dP ≥ dQ = dmin, and
θ1, θ2, ..., θdmin

are the principal angles between P and Q.
Then the angle between P and Q is defined as

θP,Q = arccos

∑dmin

i=1 cos2 θi√
dmax

√
dmin

. (3)

Their angular similarity is

sim(P,Q) = 1− θP,Q
π

= 1− 1

π
arccos

∑dmin

i=1 cos2 θi√
dmax

√
dmin

. (4)

And their angular distance is

d(P,Q) = 1− sim(P,Q)

=
1

π
arccos

∑dmin

i=1 cos2 θi√
dmax

√
dmin

. (5)

Since principal angles are invariant to the choice of or-
thonormal basis, this definition of angle, angular similarity
and angular distance is also invariant to the choice of or-
thonormal basis. We may regard this angle definition as
a generalization of the angle between two vectors. Indeed,
when dP = dQ = 1, this definition degenerates to the an-
gle between two vectors. It is easy to see that the angular
distance function d(·, ·) satisfies the following three proper-
ties: non-negativity, identity of indiscernibles and symmetry.
Formally, for any subspaces O, P ,Q ofRd:

Non-negativity: d(P,Q) ≥ 0
Identity of Indiscernibles: d(P,Q) = 0 if and only if

P = Q
Symmetry: d(P,Q) = d(Q,P)
Besides, later we will show that d(·, ·) also satisfies tri-

angle inequality as described below, and thus it is a valid
metric.

Triangle Inequality: d(O,Q) ≤ d(O,P) + d(P,Q)
Note that to compute the angle θP,Q between two sub-

spaces P and Q, it is not necessary to perform the SVD of
PTQ. Since ‖PTQ‖2F =

∑dmin

i=1 cos2 θi, we may first com-
pute ‖PTQ‖2F , then scale it by 1√

dmax

√
dmin

, and take the
arccos of the value.

Besides these nice properties, in the subsequent section
we will show that it is possible to generate binary signa-
tures for subspaces, and the normalized Hamming distance
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between the binary signatures is an unbiased estimator of the
angular distance. The experiment results on face recognition
show that the angular distance as a distance measurement is
very discriminative.

Similarity-Preserving Binary Signature for
Linear Subspaces

In this section we develop a way of producing binary signa-
tures for linear subspaces, of which the Hamming distance
preserves the similarity. We will show that the normalized
Hamming distance between the binary signatures is an un-
biased estimator of the pairwise angular distance (Defini-
tion 1) between the corresponding subspaces. We also pro-
vide a lower bound for the length of the binary signatures to
guarantee uniform distance-preservation within a set of sub-
spaces. In addition, we also show that the angular distance
as defined satisfies triangle inequality.

Assume that P is a d × dP matrix with orthonormal
columns which form an orthonormal basis of the subspace
P , and Q is a d × dQ matrix with orthonormal columns
which form an orthonormal basis of the subspace Q. Then
we may represent subspaces P and Q by their orthographic
projection matrices PPT and QQT respectively. To gener-
ate binary signatures for P , we use an operator g(·) to trans-
form PPT into a vector, as introduced in (Basri, Hassner,
and Zelnik-Manor 2011). For a d × d symmetric matrix Z,
the operator rearranges the elements of the upper triangular
part of Z together with the diagonal elements scaled by 1√

2
,

into a vector. Formally, it is defined as:

Definition 2. (Basri, Hassner, and Zelnik-Manor 2011)
g(Z) = [

z1,1√
2
, z1,2, ..., z1,d,

z2,2√
2
, z2,3, ...,

zd,d√
2
]T ∈ Rd′

where d′ = d(d + 1)/2, for any d × d symmetric matrix
Z.

We will show that the angle between the two vectors
g(PPT ) and g(QQT ) equals the angle θP,Q between P and
Q. Formally, we have

Lemma 1. Assume that P is a d×dP matrix with orthonor-
mal columns which form an orthonormal basis of the sub-
space P ⊆ Rd, and Q is a d× dQ matrix with orthonormal
columns which form an orthonormal basis of the subspace
Q ⊆ Rd. Then θg(PPT ),g(QQT ) = θP,Q.

Proof. Assume that dmax = dP ≥ dQ = dmin and
θ1, θ2, ..., θdmin are the principal angles between P , Q.
It is shown (Basri, Hassner, and Zelnik-Manor 2011) that
‖PPT − QQT ‖2F = dP + dQ − 2

∑dmin

i=1 cos2 θi =
2‖g(PPT )− g(QQT )‖22.

Since 2‖g(PPT )‖22 = dP , 2‖g(QQT )‖22 = dQ,

2‖g(PPT )− g(QQT )‖22
= dP + dQ − 2

√
dP
√
dQ cos θg(PPT ),g(QQT ) (6)

Then θg(PPT ),g(QQT ) = arccos
∑dmin

i=1 cos2 θi√
dmax

√
dmin

=

θP,Q

Therefore the problem of generating similarity-preserving
binary signatures for subspaces reduces to that of generating
angle-preserving binary signatures for vectors.

Sign-random-projection (Charikar 2002) is a probabilis-
tic method for generating binary signatures for vectors.
The function is a combination of sign function sgn(·) to-
gether with a random projection. Formally, a sign-random-
projection function hv(·) : Rd → {0, 1} is defined as
Definition 3. (Charikar 2002)

hv(a) = sgn(vTa)

for any vector a ∈ Rd, where v is a d × 1 random vec-
tor, each entry of which is an independent standard normal
random variable, and sgn(·) is defined as:

sgn(x) =

{
1, x ≥ 0
0, x < 0

It is proven that (Goemans and Williamson 1995), for any
two given vectors a and b:

Pr[hv(a) = hv(b)] = 1− θa,b
π

(7)

where θa,b = arccos( aT b
‖a‖2‖b‖2 ), and ‖ · ‖2 denotes the

`2-norm of a vector.
Then the function for generating binary signatures of only

1 bit for subspaces is a combination of the sign-random-
projection function hv(·) together with the operator g(·) as
defined in Definition 2, i.e. hv(g(·)) (note that here v is a
d′ × 1 vector). To be concise, we define
Definition 4. hv(P) = hv(g(PP

T )).
Formally, by Lemma 1 and Equation (7), we have

Pr[hv(P) = hv(Q)]
= Pr[hv(g(PP

T )) = hv(g(QQ
T ))]

= 1−
θg(PPT ),g(QQT )

π

= 1− θP,Q
π

= sim(P,Q) (8)

Thus the function family hv(g(·)) is a locality-sensitive
hash family for subspaces, and by the following lemma
proven in (Charikar 2002), we have that the angular distance
d(·, ·) defined in Definition 1 satisfies triangle inequality.
Lemma 2. (Charikar 2002) For any similarity function
sim(·, ·) that admits a locality-sensitive hash family h ∈ F
operating on domain D that satisfies:

Pr[h(a) = h(b)] = sim(a, b), (9)

for any a, b ∈ D. Then 1 − sim(·, ·) satisfies triangle
inequality.

To produce binary signatures of length K for subspaces,
we need to generate K standard normal random vectors
v1, v2, ...vK and form a K × d′ random projection matrix
A with each vTi as one row, and thus each entry of A is an
independently sampled standard normal variable. Therefore
the final function is
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Definition 5.

hA(P) = sgn(A g(PPT ))

= [hv1(P), hv2(P), ..., hvK (P)]T (10)

where A = [v1, v2, ...vK ]T , and the sign function sgn(·)
is applied element-wisely to its input.

It can be shown that the normalized Hamming distance
between two binary signatures hA(P) and hA(Q) is an unbi-
ased estimator of the angular distance between the two sub-
spaces P andQ. Formally, by Equation (8) and the linearity
of expectation, it can be shown that

E[dH(hA(P), hA(Q))/K] =
θP,Q
π

= d(P,Q) (11)

where dH(·, ·) outputs the Hamming distance between
two binary vectors. Therefore the binary signature for sub-
spaces is similarity-preserving.

The variance of this estimator is

V ar[dH(hA(P), hA(Q))/K] =
θP,Q
Kπ

(1− θP,Q
π

) (12)

This shows that the longer the length of the binary signa-
tures, the smaller the variance of the estimator.

The following lemma gives a lower bound of K to ensure
that with constant probability, the binary signatures preserve
the angular distance between every pair of the subspaces in
a fixed set of n subspaces within a constant small error ε.
Lemma 3. For any 0 < ε < 1, 0 < δ < 1

2 and any set S of
n subspaces of Rd, let K ≥ K0 = 1

2ε2 ln
n(n−1)

δ and hA(·)
as defined in Definition 5, and each entry of A is an inde-
pendent standard normal variable. Then with probability at
least 1− δ, for all P , Q ∈ S:

|dH(hA(P), hA(Q))/K − d(P,Q)| ≤ ε (13)

Proof. Denote A = [v1, v2, ...vK ]T . For a fixed pair of sub-
spaces P0, Q0 ∈ S. Define random variables

Xi =

{
1, hvi(P0) 6= hvi(Q0)
0, hvi(P0) = hvi(Q0)

for i = 1, 2, ...,K. Then dH(hA(P0), hA(Q0)) =∑K
i=1Xi. By Hoeffding’s inequality,

Pr[|dH(hA(P0), hA(Q0))/K − d(P0,Q0)| ≥ ε]

= Pr[| 1
K

K∑
i=1

Xi − E(
1

K

K∑
i=1

Xi)| ≥ ε]

≤ 2 exp(−2ε2K) (14)

Denote event E = {|dH(hA(P), hA(Q))/K −
d(P,Q)| ≤ ε, for all P,Q ∈ S}. Then by union bound,

Pr[E] ≥ 1− (n2 )2 exp(−2ε2K) ≥ 1− δ (15)
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Figure 1: Face recognition accuracy achieved by using the
binary signatures of various lengths K (number of bits) on
Extended Yale database B + PIE database, with query sub-
spaces of dimensions dq = 4, 9, 13. The exact nearest sub-
space search in terms of angular distance achieves 100% ac-
curacy for dq = 4, 9, 13.
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Figure 2: Speed-up-factor achieved by using the binary sig-
natures of various lengths K (number of bits) on Extended
Yale database B + PIE database, with query subspaces of
dimensions dq = 4, 9, 13.

Remarks: Lemma 3 can generalize to any locality-
sensitive hashing method that satisfies Equation (9). It shows
that to guarantee the uniform distance-preservation within a
set, the signature length K has nothing to do with the orig-
inal ambient dimension of the input space, and it increases
very slowly as the size of the set grows. This is similar to the
Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss
1984; Dasgupta and Gupta 2003), a well-known theoretical
result on random projection.

Experiment
In this section we demonstrate the effectiveness of the binary
signature by applying it to face recognition.

Datasets: we use the union of two face datasets, the
Extended Yale Face Database B (Georghiades, Belhumeur,
and Kriegman 2001)(Lee, Ho, and Kriegman 2005) and
the PIE database (Sim, Baker, and Bsat 2002). Note that
both of these datasets are the processed versions1 (He et al.

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Figure 3: Storage-reduction-factor achieved by using the bi-
nary signatures of various lengths K (number of bits) on
Extended Yale database B + PIE database.

2005)(Cai et al. 2006)(Cai et al. 2007)(Cai, He, and Han
2007). Each image in both datasets has been cropped and
resized to 32×32. Extended Yale Face Database B contains
38 individuals each with about 64 near-frontal images under
different illuminations. PIE database contains 68 individuals
each with 170 images under 5 near frontal poses (C05, C07,
C09, C27, C29), 43 different illumination conditions and 4
different expressions. We only use the frontal face images
(C27) from PIE database. Therefore the union of these two
datasets contains 106 individuals in total. The two datasets
have been split into training sets and testing sets respectively.
The training set of the Extended Yale Face Database B con-
tains around 50 images per individual, and the rest (around
14) images are in the testing set. The training set of the PIE
database has about 20 images per individual, and the rest
(around 14) images are in the testing set.

Experiment Setup: each face image is vectorized to a
1024×1 vector. Several vectors of the same individual con-
stitute a subspace. For each of these subspaces, we fit a sub-
space of dimension 9 by taking the first 9 principal compo-
nents, and use this subspace to represent each individual in
the training set. The same goes for the testing set, except that
we test query subspaces with dimensions dq = 4, 9, 13 re-
spectively. Thus there are 106 subspaces in the training set
and testing set respectively.

The baseline is the exact nearest subspace search method
in terms of angular distance. For each individual in the test-
ing set (querying set), we search for the nearest subspace
in the training set (database) in terms of angular distance as
defined in Definition 1, and use its label as the prediction to
that of the query. This is done by linear scanning the train-
ing set and returning the candidate subspace with the nearest
angular distance to the query.

To test the effectiveness of the proposed binary signature,
we generate a binary signature for each subspace in the train-
ing and the testing set, and thus each subspace is now rep-
resented by a binary signature. For each query we search
for the nearest binary signature in the training set in terms
of Hamming distance. This is also done by linear scanning
the database. Since the length of the binary signatures is rel-
atively small and Hamming distance can be computed very
efficiently, linear scan in Hamming space is very fast in prac-

tice (He, Wen, and Sun 2013). We test different lengths K
of the binary signatures ranging from 500 to 3000.

Results: The accuracy of face recognition using the bi-
nary signatures with different lengths (number of bits) are
shown in Figure 1. Note that the exact nearest subspace
search in terms of angular distance achieves 100% accuracy
for dq = 4, 9, 13. Under different query subspace dimen-
sions, as the length K of the binary signatures grows, the
recognition accuracy gradually increases and converges to
1. This is due to the asymptotic convergence guarantee of
the estimators produced by the binary signatures. The accu-
racy of dq = 9 is the highest for various lengths K, which
is slight higher than that of dq = 13 for some values of
K. Figure 2 shows the factor of speed-up over the exact
method achieved by using the binary signatures, against dif-
ferent lengths K, for dq = 4, 9, 13. As the query subspace
dimension grows, the speed-up-factor increases accordingly.
This is because when fixing the dimension of the subspaces
in the database, the computational cost of computing the an-
gular distance grows approximately linearly with the query
subspace dimension: the computational cost of computing
the angular distance between two subspaces P and Q is
O(d× dP × dQ).

When dq = 9 and K = 1500, the approximate method
using the binary signatures achieves more than 60 times
faster recognition speed than exact method, with 100%
recognition accuracy. If each entry of a vector is stored with
32 bits, then a subspace P of Rd with dimension dP re-
quires 32× d× dP to store (the d× dP matrix P of which
the columns form an orthonormal basis of P). In the exper-
iment, d = 1024, dP = 9, then the storage requirement
for each subspace in the database is 294912 bits. Therefore
using the binary signatures of 1500 bits for each subspace
reduces the storage by a factor of 196. Figure 3 shows the
storage-reduction-factor achieved by using the binary signa-
tures of various lengths K.

Conclusion
In this paper we formally define the angular similarity and
angular distance between subspaces, and we show that the
angular distance is a metric which satisfies non-negativity,
identity of indiscernibles, symmetry and triangle inequality.
Then we propose a method to produce compact binary sig-
natures for subspaces. The normalized Hamming distance
between the binary signatures is an unbiased estimator of the
pairwise angular distance. We provide a lower bound on the
length of the signatures which guarantees uniform angular-
distance-preservation within a set of subspaces. The exper-
iments on face recognition show that using the binary sig-
nature as representation achieves more than 60 times speed-
up, and a reduction of storage space by a factor of more than
190, with no loss in recognition accuracy.
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