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Abstract
Non-rigid shape comparison based on manifold em-
bedding using Generalized Multidimensional Scal-
ing (GMDS) has attracted much attention for its high
accuracy. However, this method requires that shape sur-
face is not elastic. In other words, it is sensitive to
topological transformations such as stretching and com-
pressing. To tackle this problem, we propose a new ap-
proach that constructs a high-dimensional space to em-
bed the manifolds of shapes based on sparse representa-
tion, which is able to completely withstand rigid trans-
formations and considerably tolerate topological trans-
formations. Experiments on TOSCA shapes validate the
proposed approach.

Introduction
Shape comparison is one of fundamental tasks of com-
puter vision. It has been extensively studied in a variety
of computer vision related subareas such as face recogni-
tion (Zhao et al. 2003; Bronstein, Bronstein, and Kimmel
2007), and some interdisciplinary areas such as computer
games (Müller et al. 2005), artificial intelligence (Wolter and
Latecki 2004), and biomedical image analysis (Hawkins,
Skillman, and Nicholls 2007; Syeda-Mahmood, Beymer,
and Wang 2007). In these contexts, shape comparison faces
two challenges: less human interference and shape deforma-
tion. The first challenge requires the comparison process to
be automatic and accurate. The second challenge requires
the comparison method to be robust to different transforma-
tions, which is the focus of this study.

Automatically comparing 3-dimensional (3D) shapes
while considering shape transformations has been studied
in the literature. Transformations increase the difficulty of
comparing or matching shapes. Most existing works deal-
ing with rigid transformations match shapes by searching
for a rigid transformation that maximizes the similarity be-
tween the shapes (Potmesil 1979). As non-rigid deforma-
tions are not easy to be formulated as rigid transformations,
methods proposed for rigid transformations cannot work
well with non-rigid deformations. One milestone of non-
rigid shape comparison is to consider shapes as manifolds
and embed them onto a plane or a sphere, and then compare
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the embedded shapes (Schwartz, Shaw, and Wolfson 1989;
Mémoli and Sapiro 2005; Bronstein, Bronstein, and Kimmel
2007). Different from embedding methods, shape match-
ing methods via minimum distortion correspondence find-
ing search for a point correspondence that minimizes the
distortion of the two shapes (Gold and Rangarajan 1996;
Rodolà et al. 2013). Those methods above assume that the
geodesic distance between any two points is unchanged.
When comparing 3D shapes satisfying this assumption,
e.g. the TOSCA dataset (Bronstein, Bronstein, and Kimmel
2006a; 2008), they can achieve a rather high accuracy (Elad
and Kimmel 2003; Bronstein, Bronstein, and Kimmel 2007;
Raviv et al. 2010). Despite the high accuracy, their short-
comings are obvious, since the assumption on geodesic dis-
tance can be easily broken by topological transformations
such as stretching and compressing. Geodesic distance dis-
tortion will accumulate during computation and thus sub-
stantially affects the comparison result. When dealing with
shapes made of elastic materials in real world, it is desir-
able that the method can tolerate or even resist topological
transformations.

In this paper, we combine manifold embedding and sparse
representation (SR) to construct a high-dimensional space
for embedding shapes, instead of roughly embedding them
into a 2-dimensional (2D) plane (Schwartz, Shaw, and Wolf-
son 1989) or a 3D sphere (Bronstein, Bronstein, and Kimmel
2007) and so on. The model of sparse representation (Yuan
et al. 2006; Sprechmann, Bronstein, and Sapiro 2012) is
naturally related to manifold structures, because it tends to
select points in linear subspaces that construct the mani-
folds (Elhamifar and Vidal 2011). Furthermore, we ensure
that the model selects only the neighbors and thus obtains
the actual local structures. We show that the selection pro-
cess of our model is an embedding, and by detecting and
preserving only neighborhood information, our model can
withstand any rigid transformation, and considerably toler-
ate topological transformations such as stretching and com-
pressing. Contributions of this paper are as follows:

1. An improved selection model of sparse representation
(SR) is proposed to effectively support shape comparison.

2. A high dimensional space for manifold embedding
is constructed based on the improved SR model, which is
proven to be robust against topological transformations.

3. An effective approximation of shape similarity is de-
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veloped to efficiently support shape comparison.
4. Experiments on TOSCA shapes are conducted, which

show that our approach outperforms both GMDS and the
latest elastic net constraints based method.

Topological Transformation Robust Manifold
Embedding

In this section we specify a neighborhood space for mani-
fold embedding, whose dimensionality is the number of ver-
tices of the original manifold. The embedding process here
is called manifold neighborhood representation (MNR) (El-
hamifar and Vidal 2011). For each vertex in the origi-
nal manifold, this process selects its neighbors in a low-
dimensional affine subspace and assigns each of them a real
value. In what follows, we first detail the manifold neighbor-
hood representation process, and then present some propo-
sitions that reveal its properties such as topological transfor-
mation robustness.

Manifold neighborhood representation
As in (Elhamifar and Vidal 2011), given a set S of N 3D
points sampled from a manifold, we try to select a few
neighbors for each of them. For a point i ∈ S whose co-
ordinate vector is Xi, we assign a real number Ci

j to each
other point j (j 6= i), so that the bigger the absolute value
is, the better it fits in the local affine subspace of point i.
We specify Ci

i = 0. Then we can get a coefficient vector
Ci = [Ci

1, · · · ,Ci
i−1, 0,C

i
i+1, · · · ,Ci

N ]> ∈ RN×1. Here,
we use subscripts and superscripts to denote row and column
indices of a matrix, respectively.

The neighborhood selection process is an optimization
problem that minimizes the following objective function
with respect to the coefficient vector Ci:

min
Ci

λ
∥∥Q(i)Ci

∥∥
1

+
1

2

∥∥Y (i)Ci
∥∥2
2

s.t. 1>Ci = 1,

(1)

where Y (i) is a column-normalized matrix, whose column
vectors are evaluated as follows:

Y (i)j =
Xj −Xi

‖Xj −Xi‖2
, j 6= i,

Y (i)i = 0.

(2)

Q(i) is a positive-definite diagonal matrix whose diagonal
elements are the distances from point i to the other points.
Here, we use geodesic distance for simplicity. So Q(i)kk
means the geodesic distance from point k to point i.

In Eq. (1), the first part is a regularization term to ensure
that bigger absolute coefficients are assigned to neighbors
closer to a given point, and the second part measures the
regression error to ensure that the selected neighbors fit in
as much as possible the low-dimensional affine subspace of
the given point. An assumption behind Eq. (1) is that the
sampling density is high enough to ensure exactly one single
subspace of any point of a manifold.

Note that the work (Elhamifar and Vidal 2011) is doing
clustering, its model should be able to distinguish manifolds
lying closely in the same space. So it requires a rather high
sampling density, and does not concern outliers. However,
in shape comparison, manifolds are embedded one by one,
and noise points such as outliers should be taken into con-
sideration. Thus, we do not require that each point must
be inside the convex hull of its neighbors. The reasons are:
first, we need not worry about the interference of some close
points in another manifold, and second, representation with-
out the sum constraint is more general and can handle out-
liers. Therefore, we propose a new model by throwing away
the sum constraint as follows:

min
Ci

λ
∥∥Q(i)Ci

∥∥
1

+
1

2

∥∥XCi −Xi
∥∥2
2
. (3)

Here, we also omit the multipliers for all dimensions of Ci

in the regression error term.
Considering the large number of variables in Eq. (3), we

use the Limited-memory BFGS (LBFGS) algorithm (Liu
and Nocedal 1989) to solve the optimization problem. Let
f be the objective function in the form of Eq. (3), we de-
fine sk−1 = [Ci]k − [Ci]k−1, yk−1 = ∇f([Ci]k) −
∇f([Ci]k−1), ρk = 1/y>k sk and Vk = I − ρkyks

T
k . The

solving process follows the recursive formula in the inverse
BFGS (Dennis and Schnabel 1983):

[Ci]k+1 = [Ci]k + αkdk, (4)

where αk satisfies the Wolfe conditions (Wolfe 1969), and
the search direction dk is defined as

dk = −Hk∇f(βk). (5)

We start with the symmetric and positive definite matrix
H0 as an approximation of the inverse Hessian of f , and
iteratively compute Hk+1 by applying m updates to H0 in
LBFGS as follows:

Hk+1 = (V >k · · ·V >k−m̂)H0(Vk−m̂ · · ·Vk)

+ ρk−m̂(V >k · · ·V >k−m̂+1)sk−m̂s>k−m̂(Vk−m̂+1 · · ·Vk)

+ ρk−m̂+1(V
>
k · · ·V >k−m̂+2)sk−m̂+1s

>
k−m̂+1(Vk−m̂+2 · · ·Vk)

+ · · ·

+ ρksks
>
k .

(6)

Above, m̂ = min{k,m− 1}, and m is the maximum num-
ber of stored pairwise updates {yj , sj}kj=k−m̂, which is set
to 100 by default in our experiments.

Properties
Although some existing works use sparse representation to
detect neighborhood, this work is the first to use sparse rep-
resentation for manifold embedding. For example, in (El-
hamifar and Vidal 2011) the authors used sparse representa-
tion only for neighborhood detection, then a normal embed-
ding method was applied to the graph constructed with the
neighborhood information. However, in this work, the model
in Eq. (3) can be seen as an embedding, namely a structure-
preservation and injective mapping from Euclidean space
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X (where the original manifold lies) to coefficient space
C (where the image manifold lies). In what follows, we
present some properties of the model in Eq. (3), under the
assumption that sampling density is high enough to maintain
the local affine subspace of each point of a given manifold.
Proposition 1. Given points Xi and Xj in X , and their
corresponding coefficient vectors Ci and Cj in C, if Xj is
in the neighborhood of Xi, then Cj is in the corresponding
neighborhood of Ci and Cj 6= Ci. And if there exists a
point set S and another point j /∈ S, such that Xj can
be linearly represented by points {Xi}i∈S , then Cj can be
linearly represented by the corresponding coefficient vectors
{Ci}i∈S .

Proof. Since manifolds are metric spaces, the neighborhood
of Xi can be seen as a metric ball Bε. Thus

∥∥Xi −Xj
∥∥ 6

ε. Now we try to prove that
∥∥Ci −Cj

∥∥ is non-zero and
bounded so that Cj is in a metric ball of Ci.

According to the sampling density assumption, we can
rewrite the model (3) into a constrained formula:

min
Ci

∑
k 6=i

Q(i)kk
∣∣Ci

k

∣∣
s.t.XCi = Xi.

(7)

Obviously, different right-hand vector Xi results in differ-
ent optimal solutions, otherwise the constraint will not be
satisfied.

This constrained optimization problem (7) can be further
formulated into a linear optimization by introducing new
variables z+ − z− = Ci (Bertsimas and Tsitsiklis 1997):

min
z+,z−

∑
k 6=i

Q(i)kk(z+
k + z−k )

s.t.Xz+ −Xz− = Xi

z+, z− > 0.

(8)

Assume that we reach an optimal solution Ci = z+−z− of
the problem (8) for point i. To deal with point j, we need to
change the right-hand vector Xi to Xj and the cost vector
diag{Q(i)} to diag{Q(j)}. By the triangle inequality of
geodesic distance we get:

Q(i)kk −
∥∥Xi −Xj

∥∥ 6 Q(j)kk 6 Q(i)kk +
∥∥Xi −Xj

∥∥ .
(9)

Since
∥∥Xi −Xj

∥∥ 6 ε, we have:∣∣Q(i)kk −Q(j)kk
∣∣ 6 ∥∥Xi −Xj

∥∥ 6 ε. (10)

That is, the right-hand vector and the cost vector do not
change much. By sensitivity analysis (Bertsimas and Tsit-
siklis 1997), if ε is small enough, the basis matrix of this
linear optimization problem (8) will not change, and there-
fore the difference between optimal solutions Ci and Cj is
small.

The proof of the second part of this proposition is straight-
forward. Assume

Xj =
∑
i∈S

αiX
i, (11)

for each point i ∈ S, we multiply its constrained equation in
convex optimization (7) by αi and sum them up, we have∑

i∈S
αiXCi =

∑
i∈S

αiX
i = Xj . (12)

By extracting the common factor X from the left part and
replacing the right part with XCj , we have

X(
∑
i∈S

αiC
i) = XCj . (13)

Thus the proposition is proved.

The proposition above indicates that the representa-
tion process in Eq. (3) is an injective and structure-
preservation (i.e. preserving the structure of manifold) map-
ping, in other words, an embedding that embeds a manifold
into a high dimensional coefficient space by sparse represen-
tation. One advantage of such embedding is that it keeps the
relative spatial location information. So we have the follow-
ing Proposition 2.

Proposition 2. The embedded image of the original mani-
fold is invariant with respect to (w.r.t.) rigid transformations
such as rotation and translation, i.e., the model output C is
invariant w.r.t. any rigid transformation T ∈ R3×3 on X .

Proof. Checking model (7), we are to prove that both the
cost vector diag{Q(i)} and the constraint do not change un-
der any rigid transformation.

First, by definition, the distance between any two points
stays the same under any rigid transformation, so we can
conclude that the cost vector Q(i)kk stays the same for any i
and k based on our definition of Q(i).

Second, upon a rigid transformation, the optimization
constraint in Equation (7) becomes

TXCi = TXi. (14)

This constraint equation always holds, given any non-zero
rigid deformation T and any feasible solution of the original
model (7).

Thus, the model output C will not change upon any rigid
transformation.

The next proposition reveals the model’s another advan-
tage: robust against topological transformations. Here, topo-
logical transformations mean any spatial transformation of
points such that their neighborhoods keep unchanged. As we
address points on a manifold, we specify that the “neigh-
borhood” of a point spans its local affine subspace. As-
sume that space T consists of manifolds topologically trans-
formed from an original manifold X , and space A consists
of the corresponding output matrices (coefficient matrices)
of model (3). Since identical transformation is a trivial topo-
logical transformation, we have X ∈ T and its correspond-
ing model output matrix C ∈ A.

Proposition 3. If a topologically transformed manifold Y
∈ T is in the neighborhood of X , its model output matrix
D is in the corresponding neighborhood of C ∈ A.
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Proof. Consider the neighborhood of X to be a metric ball
Bε. Thus we have ‖X − Y ‖ 6 ε. Now we try to prove that
‖C −D‖ is bounded, i.e., D is in a metric ball of C.

For simplicity, we assume that after the transformation,
only one point’s spatial location changes (say point l). Thus,

‖Y −X‖ =
∥∥Y l −X l

∥∥ . (15)

Based on the sampling density assumption, the optimization
problem could be rewritten into the following linear opti-
mization:

min
z+,z−

∑
k 6=i

Q(i)kk(z+
k + z−k )

s.t.
∑
j 6=i,l

Xj(z+
j − z−j ) + Y l(z+

l − z−l ) = Xi,

z+, z− > 0.

(16)

Above, the right-hand vector does not change, but one col-
umn of the left-hand matrix changes. According to the no-
tations of linear optimization, we define the associated basis
matrix as B, and let c be a cost vector and cB be the cost
vector of the basic variables. For each variable, the reduced
cost c̄ can be written as

c̄k = ck − c>Bb
−1Xk. (17)

If the variable corresponding to point l is nonbasic, as long
as the condition c̄l ≥ 0 holds, this variable can not be
brought into the basis (Bertsimas and Tsitsiklis 1997). Re-
placing X l with Y l, we have

0 6 cl − c>Bb
−1Y l

= cl − c>Bb
−1(X l + Y l −X l)

= c̄l − c>Bb
−1(Y l −X l).

(18)

That is,
c>Bb

−1(Y l −X l) 6 c̄l. (19)
Thus, if we impose a bound on ε such that

∥∥Y l −X l
∥∥ is

very small, the above inequality can be satisfied, and there-
fore the basis is still optimal.

Similarly, for the case that the variable corresponding to
point l is basic, there exists an interval that guarantees an
invariant basis (Bertsimas and Tsitsiklis 1997). According
to the triangle inequality of geodesic distance and Eq. (15),
we have∥∥∥[Q(i)ll]new − [Q(i)ll]old

∥∥∥ 6
∥∥∥Y l −Xl

∥∥∥ = ‖Y −X‖ 6 ε.

(20)
So this proposition is proved by sensitivity analysis (Bertsi-
mas and Tsitsiklis 1997).

Distance between Embedded Manifolds
The model above — using sparse representation to model
the local affine subspace, can be used in the framework of
manifold embedding based shape comparison as an embed-
ding that selects a topological transformation robust man-
ifold space, or used directly as a local shape descriptor in
similarity calculation. Considering the high time cost of the
manifold embedding framework, here we propose an ef-
ficient method to accurately approximate the distance be-
tween two manifolds.

Distance Definition
In last section, we consider only one manifold that is sam-
pled into N points. In addition, now we consider another
manifold that is also sampled into N points. Both are sub-
ject to transformations. We are to measure the distance be-
tween the two manifolds. The idea is that if there exists a
perfect matching between the two sets of sampled points of
the two manifolds, the distance between the two manifolds
is defined as the L2,1-norm of the two corresponding model
output matrices:

dist(C,D) =
∥∥PCP> −D∥∥

2,1
, (21)

where C and D are the model output matrices, the columns
of which correspond to the points of the manifolds. PCP>
is a transformation of C to make the points in C be arranged
in the order similar to that of the corresponding points in D.
Here, the row transformation operator P can be represented
as the product of some elementary row operations (Meyer
2000), each of which swaps two rows of matrix C, that is,

P = P (i1, j1)P (i2, j2) · · ·P (in, jn). (22)

The following proposition reveals that the distance in
Eq. (21) is well defined.
Proposition 4. dist defined in Eq. (21) is a distance.

Proof. Here we prove only the triangle inequality since the
other two properties of distance are obvious.

Given three output matrices C, D and E, we have the
operator P1 from C to D and the operator P2 from D to E.
Thus the operator from C to E is

P3 = P2P1. (23)

By the definition in Eq. (21), we have

dist(C,E) =
∥∥P2P1C(P2P1)> − E

∥∥
2,1

=
∥∥P2P1CP

>
1 P>2 − P2DP>2 + P2DP>2 − E

∥∥
2,1

6
∥∥P2(P1CP

>
1 −D)P>2

∥∥
2,1

+
∥∥P2DP>2 − E

∥∥
2,1

(24)

Since elementary row operations do not change the L2,1-
norm of a matrix, we have,∥∥P2(P1CP

>
1 −D)P>2

∥∥
2,1

=
∥∥P1CP

>
1 −D

∥∥
2,1
. (25)

Applying the equality above to Eq (24), we have

dist(C,E) 6
∥∥P1CP

>
1 −D

∥∥
2,1

+
∥∥P2DP>2 − E

∥∥
2,1

= dist(C,D) + dist(D,E).
(26)

Thus the triangle inequality is proved.

Above, we assume that the point matching between the
two manifolds is known. But finding a dense correspondence
is technically difficult and time-consuming, which usually
involves human labors for constructing an initial matching.
For simplicity, we relax the distance definition to an approx-
imate version as follows:

distapprox(C,D) = min
P

∥∥PCP> −D∥∥
2,1
. (27)
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Note that the relaxed definition is no longer a strict dis-
tance. And to compute the approximate distance, we have
to find the row operator P by solving Eq. (27), which may
not indicate a perfect correspondence between the two sets
of sampled points of the two manifolds.

Optimization problem solving
Solving the optimization problem in Eq. (27) is actually
to find a pairwise point matching of two manifolds. How-
ever in this equation, the operator P acts on both rows and
columns (corresponding to P and P> respectively), which
differs from the common bipartite graph matching problem.
So we first transform the optimization problem in Eq. (27)
to a bipartite graph matching problem.

We decompose the two matrices C and D using QR de-
composition (Golub and Van Loan 2012), so we have

C = Q1R1,D = Q2R2. (28)

By the property of QR decomposition (Stewart 2000), row
operator P on C acts on rows of Q1, and column opera-
tor P> acts on columns of R1. Considering the uniqueness
of the QR decomposition result, the optimal P satisfies the
following two conditions,

P = arg min
P
‖PQ1 −Q2‖2,1,

P = arg min
P

∥∥R1P
> −R2

∥∥
2,1
.

(29)

Minimizing either of them can lead to the optimal P . But
for a better numerical result, we combine the two conditions
together by defining the edge weight between point i in the
first manifold and point j in the second manifold as follows:

wij =
∥∥Q1i −Q2j

∥∥2
2,1

+
∥∥∥Ri

1 −Rj
2

∥∥∥2
2,1
. (30)

Thus we construct a bipartite graph with N points on each
side and N ×N edges.

Now we are to find a best matching of the bipartite graph
above. Since N can be thousands, it is too expensive to use
the Hungarian algorithm (Kuhn 1955). Here we simply use a
greedy algorithm that adjusts the initial matching iteratively
to reduce the cost function as much as possible.

Performance Evaluation
The 3D shapes used in experiments are extracted from the
TOSCA dataset (Bronstein, Bronstein, and Kimmel 2006a;
2008), including images of various gestures of human, cat,
dog, centaur and so on. We use the simplest human body
named David as the reference (also called the standard
shape), and match it with other shapes of different gestures
from a cat, a centaur, David, a dog, a male body named
Michael (almost the same with David) and a female body
named Victoria. All are shown in Fig. 1.

We compare our approach with the manifold embedding
method using GMDS (Bronstein, Bronstein, and Kimmel
2006b) and the latest shape matching method using elas-
tic net constraints (Rodolà et al. 2013). For simplicity, we
denote the two compared methods as GMDS and ENC (the
abbreviation of elastic net constraints) in the sequel. In our

(a) Standard

(b)
Cat

(c)
Cat

(d) Cat (e)
Centaur

(f)
Centaur

(g)
Centaur

(h)
David

(i) David (j) David (k)
Dog

(l)
Dog

(m)
Dog

(n)
Michael

(o)
Michael

(p)
Michael

(q)
Victo-
ria

(r) Vic-
toria

(s) Vic-
toria

Figure 1: Standard human body (a) and the other 6 shapes
with different gestures (b)∼(s).

approach, we use the distance defined in Eq. (27) to measure
performance. For GMDS, we embed one manifold into an-
other and then compare the two manifolds. We use the max-
imum distortion of geodesic distance as an indicator of the
distance between the two manifolds (Raviv et al. 2010). The
smaller the indicator value is, the more similar the two man-
ifolds are. For ENC, we set the tradeoff parameter α=0.65
and use the adopted Gromov-Wasserstein metric as the dis-
tortion (Rodolà et al. 2013). Our goal is to check how distor-
tion (for GMDS and ENC) and distance (for our approach)
change in response to different shape transformations.

First, we test some common and regular transformations,
including scaling and stretching. Even for such transforma-
tions, GMDS and ENC can not tolerate because the geodesic
distance between any two points is stretched under such de-
formations. However, stretching and scaling invariance is
desirable in shape recognition as human eye is quite robust
against such transformations. For scaling transformation, we
set the scale value from 1.00 (no scaling) to 1.30 (30% scal-
ing) and the results are presented in the 1st column of Fig. 2.
For stretching transformation, we assume that stretching is
formed by two forces acting on these shapes along the z-axis
in two opposite directions. We also set the scale value from
1.00 (no stretching) to 1.30 (30% stretching), the results are
presented in the 2nd column of Fig. 2. As the scale of trans-
formation increases, distortions of GMDS and ENC change
substantially, which means that GMDS and ENC is highly
sensitive to scaling and stretching. For different shapes, dis-
tortion change of GMDS seems randomly, while distortion
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Figure 2: Robustness comparison over shapes under scaling, stretching and random topological transformations. The 1st, 2nd
and 3rd rows correspond to the experimental results of GMDS, ENC and our approach, respectively; The 1st, 2nd and 3rd
columns correspond to the experimental results of scaling, stretching and random topological transformations, respectively. In
the figures of GMDS, we show only distortion values between 10 and 50, and in the figures of ENC, we show only distortion
values between 170 and 210. Distortion values beyond these ranges are not displayed.

change of ENC shows some trends: except dog shapes that
decrease monotonically, the other shapes increase monoton-
ically or first go down and then go up. On the contrary, the
distance of our approach is robust against the two kinds
of transformations. Furthermore, except that the curve of
one Centaur shape mixes with those of the dog shapes and
Michael’s curves mix with David’s curves, the five clusters
of curves clearly correspond to the five types of shapes: cat,
Centaur, dog, David and Victoria.

Then, we test topological transformation robustness by
imposing the shapes with topological transformation noise.
For each shape to be matched, we repeat the following
steps 3400 times to manually construct disturbed shapes:
1) randomly select a point on the manifold, 2) move the
point along a randomly-selected direction up to a randomly-
generated distance between 0 and 1.5. Experimental results
are shown in the 3rd column of of Fig. 2. As we can see,
the distance of our approach is stable while the distortion of
GMDS is sensitive to the disturbance. However, in this case,
ENC works better than GMDS, this is because that ENC

extends the absolute criterion of distortion in GMDS to a re-
laxed proximity between shapes (Rodolà et al. 2013). Nev-
ertheless, distortions defined by geodesic distance in GMDS
and ENC are not robust to topological transformations. In
summary, our approach outperforms both GMDS and ENC
in resistance to the interference of different transformations.

Conclusion
In this paper, we propose a novel embedding via sparse rep-
resentation that preserves local affine subspace and is robust
against topological transformations. In addition to theoret-
ical proofs, we also conduct experiments to examine the
robustness of our approach under different transformations
including scaling, stretching and random topological trans-
formations. Experimental results have shown that our ap-
proach is effective and significantly outperforms the embed-
ding method using GMDS and the lastest shape matching
method using elastic net constraints in resistance to regular
and topological transformations.
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