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Abstract 
Dictionary learning (DL) has now become an important fea-
ture learning technique that owns state-of-the-art recogni-
tion performance. Due to sparse characteristic of data in 
real-world applications, DL uses a set of learned dictionary 
bases to represent the linear decomposition of a data point. 
Fisher discrimination DL (FDDL) is a representative super-
vised DL method, which constructs a structured dictionary 
whose atoms correspond to the class labels. Recent years 
have witnessed a growing interest in multi-view (more than 
two views) feature learning techniques. Although some mul-
ti-view (or multi-modal) DL methods have been presented, 
there still exists much room for improvement. How to en-
hance the total discriminability of dictionaries and reduce 
their redundancy is a crucial research topic. To boost the 
performance of multi-view DL technique, we propose an 
uncorrelated multi-view discrimination DL (UMD2L) ap-
proach for recognition. By making dictionary atoms corres-
pond to the class labels such that the obtained reconstruction 
error is discriminative, UMD2L aims to jointly learn mul-
tiple dictionaries with totally favorable discriminative power. 
Furthermore, we design the uncorrelated constraint for mul-
ti-view DL, so as to reduce the redundancy among dictiona-
ries learned from different views. Experiments on several 
public datasets demonstrate the effectiveness of the pro-
posed approach.  

 Introduction   
Sparse representation based classification has led to inter-
esting object recognition results (Wright et al., 2009), 
while the dictionary used for sparse coding plays a key role 
in it (Yang et al., 2011). Due to sparse characteristic of da-
ta in real-world applications, dictionary learning (DL) uses 
a set of learned dictionary bases to represent the linear de-
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composition of a data point. Dictionary learning has now 
become an important feature learning technique that owns 
state-of-the-art recognition performance.  

Most DL methods have been addressed to solve single 
or two views based DL problem (Lin, Liu, and Zha 2012; 
Feng et al., 2013; Mailhe et al., 2012; Li, Li, and Fu 2013). 
Low-rank DL for sparse representation method (Ma et al., 
2012) stacks data from the same pattern as column vectors 
of a dictionary to learn class-specific sub-dictionaries for 
face recognition. Incoherent DL method (Barchiesi and 
Plumbley 2013) learns dictionaries that exhibit a low mu-
tual coherence while providing a sparse approximation 
with favorable signal-to-noise ratio. Semi-coupled dictio-
nary learning (SCDL) (Wang et al., 2012), which learns a 
pair of dictionaries and a mapping function simultaneously, 
was presented to solve cross-style image synthesis prob-
lems. Fisher discrimination DL (FDDL) is a representative 
supervised DL method (Yang et al., 2011), which is based 
on the commonly-used fisher discriminant criterion and 
constructs a structured dictionary whose atoms correspond 
to the class labels. From the perspective of multi-view 
(more than two views) feature learning, above DL methods 
are not designed for multi-view data. 

Multi-view feature learning (Han et al., 2012; Guo 2013) 
has attracted a lot of research interests, because there exists 
more useful information for recognition in multiple views 
than that in a single view. In this field, multi-view sub-
space learning is an important research direction. Under 
this direction, canonical correlation analysis (CCA) based 
and discriminant analysis based multi-view subspace learn-
ing are two representative techniques. Multi-view CCA 
(MCCA, Li et al., 2009) was presented to analyze linear re-
lationships between multiple sets of variables. Multiple 
discriminant CCA (MDCCA, Gao et al., 2012) investigates 
the supervised correlation across different views to make 
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full use of available class information. By iteratively learn-
ing multiple subspaces as well as a global discriminative 
subspace, multiple principal angle (MPA, Su et al., 2012) 
jointly computes both local and global canonical correla-
tions. A generalized multi-view linear discriminant analy-
sis (GMLDA) is addressed (Sharma et al., 2012). Multi-
view discriminant analysis (MvDA, Kan et al., 2012) can 
maximize the between-class variations and minimize the 
within-class variations of samples in the learning common 
space from both intra-view and inter-view. 

Recently, some multi-view or multi-modal dictionary 
learning  methods have been presented, such as multi-view 
DL methods (Zheng et al., 2011; Memisevic 2012) and 
multimodal DL methods (Monaci et al., 2007; Irie et al., 
2013; Cao et al., 2013; Wu et al., 2014). Sparse multimod-
al biometrics recognition (SMBR) method (Shekhar et al., 
2014) uses original training sample as dictionary and ex-
ploits the joint sparsity of coding coefficients from differ-
ent biometric modalities to make a joint decision. Litera-
ture (Tosic and Frossard 2011) provides a multi-view DL 
method to learn overcomplete dictionaries for representing 
stereo images. SliM2 (supervised coupled dictionary learn-
ing with group structures for multi-modal retrieval) method 
(Zhuang et al., 2013) introduces coupled dictionary learn-
ing into supervised sparse coding and learns a set of map-
ping functions across different modalities for multi-modal 
retrieval. For classifying lung needle biopsy images, mul-
timodal sparse representation-based classification (MSRC) 
method (Shi et al., 2013) aims to select the topmost discri-
minative samples for each individual modality as well as to 
guarantee the large diversity among different modalities.  

Motivation and Contribution 
Most multi-view (or multi-modal) DL methods mainly fo-
cus on the reconstructive accuracy, whereas enhancing the 
total discriminability of dictionaries and reducing the re-
dundancy between multiple dictionaries have not been in-
vestigated comprehensively and thoroughly. The key of 
multi-view DL technique is how to utilize the complemen-
tary information among different dictionaries, learn more 
useful features for recognition and reduce the redundancy 
between dictionaries.  

Information redundancy in original multi-view data will 
lead to redundancy in the learned dictionaries, which will 
bring trouble to subsequent classification. On the one hand, 
several single-view based works (Chen et al., 2013; Lin et 
al., 2012) have taken dictionary atom de-correlation into 
consideration. On the other side, discrimination dictionary 
learning has demonstrated to be effective in classification 
(Yang et al., 2011). Inspired by these two aspects, we pro-
pose an uncorrelated multi-view discrimination DL 
(UMD2L) approach for recognition. We summarize the 
contributions of our work as following points: 

(1) By making dictionary atoms correspond to the class 
labels such that the obtained reconstruction error is discri-
minative, we aim to jointly learn multiple dictionaries with 
totally favorable discriminative power.  

(2) We design the uncorrelated constraint for multi-view 
DL, so as to reduce the redundancy among dictionaries 
learned from different views. 

The proposed UMD2L approach is verified on the Multi-
PIE (Cai et al., 2006), AR (Martinez and Benavente 1998), 
COIL-20 (Murase and Nayar 1995) and MNIST (LeCun et 
al., 1998) datasets. Experimental results demonstrate its ef-
fectiveness as compared with several related methods. 

Organization 
The rest of the paper is organized as follows. We first 
briefly review the related multi-view supervised DL mod-
els. Then we describe our approach. We then discuss the 
differences between the proposed UMD2L approach and 
related multi-view feature learning works, followed by ex-
periments and conclusion. 

Related Supervised Multi-view DL Models 

SliM2 
SliM2 (Zhuang et al., 2013) learns a set of dictionaries for 
M  modality data respectively, i.e., 

� � � � � �^ `1 2, , , MD D D D "  and their corresponding recon-

struction coefficients � � � � � �^ `1 2, , , MA A A A " .  To do mul-

ti-modal retrieval, SliM2 assumes that there exists a set of 
linear mappings � � � � � �^ `1 2, , , MW W W W " . The objective 

function of SliM2 is formulated as: 
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where J  is the number of classes, l:  represents the in-
dices of the samples that belong to the thl class, :, l

A :  is the 
coefficient matrix associated to those intra-modality data 
belonging to the thl  class. E , J  and � �1, ,m m MO  "  are 
tuning parameters denoting the weights of each term in 
Formula (1). 

MSRC   
MSRC (Shi et al., 2013) uses the binary sample selectors 
^ `, ,S C TE E E  to select samples from original sample sets 
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^ `, ,S C TD D D  for constructing dictionaries 

� � � � � �^ `, ,S S C C T TD D DE E E . Here, S , C and T  

separately denote shape, color, and texture modalities. The 
thk  cell nuclei can be denoted as a tuple � �

1
, , ,

NS C T
k k k k k

x x x y
 

, 

where N  denotes the number of training cell nuclei and 

ky  is the label of the thk  cell nuclei. For the thk  labeled 
training cell nuclei, MSRC denotes 
� � ^ `, , , ,m m

kf x m S C TE �  as the mapping function, which 

is the label of m
kx  predicted by sub-classifier trained on the 

learned sub-dictionary � �m mDE . The selection criteria are 
that 1) each sub-dictionary after dictionary learning can 
train a good classifier independently and 2) the diversity 
among different sub-dictionaries after dictionary learning 
is encouraged to be large. Then, the objective function of 
MSRC is formulated as: 
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where ,a b¢ ²  is the Kronecker delta function and O
 
is the 

parameter to control influence caused by the second term. 

The Model of UMD2L 
In this section, we first briefly review the model of FDDL 
(Yang et al., 2011). Then we provide the formulation of 
UMD2L, followed by the optimization and classification 
scheme of UMD2L. 

FDDL 
Let ^ `1 2, , CA A A A "  be the training sample set, where 

iA  is the sub-set of training samples from class i  and C  
is the number of classes. Instead of learning a shared dic-
tionary to all classes, FDDL aims to learn a structured dic-
tionary > @1 2, , , CD D D D " , where iD  is the class-
specified sub-dictionary associated with class i . Suppose 
that X  is the coding coefficient matrix of A  over D , X  
can be written as > @1 2, , , CX X X X " , where iX  is the 
sub-matrix containing the coding coefficients of iA  over 
D . i

iX  and j
iX  are coding coefficients of iA  over the 

sub-dictionaries iD  and jD , respectively. The objective 
function of FDDL is defined as: 

� �

� �� �( , )

1 11

2( , )
2

, ,
arg min

( ) ( )D X

C
i ii

D X
W B F

r A D X X
J

tr S X S X X

O

O K

 
 ½�° ° ® ¾
� � �° °¯ ¿

¦
,   (3) 

where � �WS X   and � �BS X  are separately the within-class 
scatter and between-class scatter of X , 

� �
222

1, , Ci j
ji i i i i i i j iF F j i F

r A D X A DX A D X D X 
z

 � � � �¦  

is called discriminative fidelity term, and 1O , 2O  and K  are 
scalar parameters. With the learned dictionary D , FDDL 
uses the reconstruction error for classification. 

The Formulation of UMD2L 
In this subsection, we describe the model of the proposed 
UMD2L approach. For the given M  views (datasets) 

� �1, ,kA k M " , we jointly learn discriminant dictiona-

ries � �1, ,kD k M "  with each corresponding to one view, 
and we design uncorrelated constraint for the multi-
dictionary learning procedure to reduce the redundancy of 
dictionaries. 

For DL task from the thk  view, let i
kA  denote the train-

ing sample subset from the thi  class of kA , i
kD  and j

kD  
separately denote the class-specified sub-dictionaries asso-
ciated with class i  and class j . Suppose that i

kX  (the cod-
ing coefficients of i

kA  over kD ) can be written as 
1 2, , ,i i i iC

k k k kX X X Xª º �� �¬ ¼ , where ij
kX  is the coding coeffi-

cient of i
kA  over the sub-dictionary j

kD . We require that 

kD  should have powerful reconstruction capability of kA , 
and we also require that kD  should have powerful discri-
minative capability of samples in kA . In other words, dic-
tionary kD  should be able to represent i

kA . In addition, 
since i

kD  is associated with the thi  class, it is expected that 
i
kA  should be represented by i

kD  but not by � �j
kD i jz . 

Therefore, we can define the discriminative fidelity term 
for the thk  view as: 

� � 2 2

2
1

, ,i i i i i i ii
k k k k k k k k kF F

C j ij
j k k Fj i

q A D X A D X A D X

D X 
z
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�¦
.      (4) 

To reduce redundancy of learned dictionaries, we design 
uncorrelated constraint for multi-view DL. The correlation 
coefficient between kD  and lD  (the dictionary correspond-
ing to thl  view and l kz ) can be defined as:  

  � �
� �1 1

,
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k lN N i j
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where i
kd  and j

ld  separately denote the thi  dictionary 
atom in kD  and the thj  dictionary atom in lD , kN  and 

lN  separately denote the numbers of dictionary atoms in 

kD  and lD . Here,    

� � � � � �
,

T
i i j j
k k l li j

k l i i j j
k k l l

d d I d d I
Corr d d

d d I d d I

� � � �
 

� � � �<
 

indicates the correlation coefficient between i
kd  and j

ld , 

where i
kd  and j

ld  are mean values of these two atoms, I  
is a vector with all elements being equal to one. Thus, the 
objective function of UMD2L can be formulated as: 
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Note that the discriminative coefficient term in FDDL, 
namely � � 2( ) ( )W B F

tr S X S X XK� � , is not used in the 
model of UMD2L because we found this term has small in-
fluence on classification result in experiment. Although the 
objective function in Eq. (6) is not jointly convex to 
� � 1

, M
k k kD X

 
, it is convex with respect to each of kD  and 

kX  when the other variables are fixed.  

The Optimization of UMD2L 
The variables in Eq. (6) can be optimized by using a two-
level optimization strategy: 1) updating variables of the thk  
view by fixing variables of other views; 2) for the thk  view, 
updating kX  by fixing kD  and then updating kD  by fixing 

kX . 
When variables corresponding to the thk  view are opti-

mized, � �lD l kz , � �lX l kz  and kD  are supposed to be 
fixed. Then the objective function in Eq. (6) is reduced to a 
sparse coding problem to compute 1 2, , , C

k k k kX X X Xª º �� �¬ ¼ . 

Here we compute i
kX  class by class. When computing i

kX , 
all � �j

kX j iz  are fixed. Thus the objective function in Eq. 
(6) is reduced to: 
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The sparse coding problem of Eq. (7) can be solved by us-
ing the Iterative Projection Method (IPM, Rosasco et al., 
2009). Please refer to FDDL for the detailed derivation. 

When kX  is fixed, we update i
kD  class by class. When 

updating i
kD , all � �j

kD j iz  are fixed. Then the objective 
function in Eq. (6) is reduced to:  
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Here, i
kN  denotes the number of sub-dictionary atoms in 

i
kD , in

kd  is the thn  sample of i
kD and in

kd  denotes mean 
value of in

kd . The uncorrelated constraint in Eq. (8) is 
simplified by using 

  � � � �1 1
. . 0

i
k l

TN N in in j j
k k l ln j

s t d d I d d I
  

� � � �  ¦ ¦ .        (9) 

In general, we require that in
kd  is a unit vector. Then we 

can solve the quadratic programming problem in Eq. (8) 
according to the literature (Yang et al., 2010), which up-
dates i

kD  atom by atom. 
Algorithm 1 realizes the proposed UMD2L approach. 

UMD2L converges since the two alternative optimizations 
for each view in it are both convex. 

 
Algorithm 1. UMD2L 
1. Initialization ^ `1 2, , , MD D D" . 

We initialize all the atoms of each iD  as random vec-
tors with unit 2l -norm. 

2. For 1k   to M  do  
    2.1 Update the sparse coding coefficients kX . 
     Fix kD  and solve i

kX  class by class by solving Eq. 
(7) with the IPM algorithm. 

    2.2 Update the dictionary kD . 
     Fix kX  and solve i

kD  class by class by solving Eqs. 
(8-9) with the optimization algorithm in the literature 
(Yang et al., 2010). 

End 
3. Iterative learning.  

Repeat 2 until the values of objective function in ad-
jacent iterations are close enough, or the maximum 
number of iterations is reached. 

4. Output ^ `1 2, , , MX X X"  and ^ `1 2, , , MD D D" . 
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The Classification Scheme 
When ^ `1 2, , , MD D D"  is available, a testing sample can 
be classified via coding it over these dictionaries. For the 
given testing sample ^ `1 2, , , My y y y " , we code ky  over 

kD  for 1:k M . The sparse coding coefficients are ob-
tained by solving: 

� � � �^ `
1

2
1 2 11

,
ˆˆ, arg min

M

M
M k k k kk

y D
D D

D D D J D
 

 � �¦
"

" , (10) 

where J  is a constant.  
The variables in Eq. (10) can be optimized by using al-

ternate optimization strategy, which is updating kD  for the 

� �1, ,thk k M "  view by fixing coding coefficients cor-

responding to the other views. For the � �1, ,thk k M "  
view, ˆkD  can be obtained by using the sparse representa-
tion based classification (SRC) method (Wright et al. 
2009). � �ˆ 1, ,k k MD  "  can be written as 

1 2ˆˆˆˆ ; ; ; C
k k k kD D D Dª º ¬ ¼" , where ˆ i

kD  is the coefficient vector 

associated with sub-dictionary i
kD . We define the metric 

for final classification as: 
2

1 2
ˆM i i

i k k kk
e y D D

 
 �¦ ,                    (11) 

where 
2

2
ˆi i

k k ky D D�  denotes the reconstruction error of 

class i  from the thk  view. Then we do classification via 
� � ^ `arg min ii

identity y e . 

Discussion 

Comparison with Multi-view Subspace Learning 
Methods 
Multi-view subspace learning is an important research di-
rection of multi-view feature learning. CCA based and dis-
criminant analysis based multi-view subspace learning 
(such as MCCA and MvDA, respectively) are two repre-
sentative techniques. CCA based multi-view subspace 
learning methods are dedicated to learn features depicting 
intrinsic correlation among multiple views. Discriminant 
analysis based multi-view subspace learning methods 
usually aim to achieve multiple linear transformations, 
with which the between-class variations of low-
dimensional embeddings are maximized and the within-
class variations of low-dimensional embeddings are mini-
mized. The proposed UMD2L approach differs from these 
multi-view subspace learning methods, because we aim to 
fully extract complementary discriminant information from 
multiple views by learning multiple uncorrelated discrimi-
nation dictionaries for helping recognition.  

Comparison with Existing Multi-view Dictionary 
Learning Methods 
SMBR (Shekhar et al., 2014), SliM2 (Zhuang et al., 2013) 
and MSRC (Shi et al., 2013) are three representative multi-
view dictionary learning methods. Specifically, SMBR 
uses original training samples as dictionary. In order to 
conduct multi-model retrieval, besides multiple dictiona-
ries, SliM2 learns a set of linear mappings which character-
ize connections of sparse codes corresponding to different 
views. MSRC employs a simple comparison strategy to 
encourage large diversity among the learning dictionaries 
of different views. Our approach makes dictionary atoms 
correspond to the class labels, which can acquire totally fa-
vorable discriminative power. Furthermore, to effectively 
combine multiple views for recognition task, we design the 
uncorrelated constraint to reduce the redundancy among 
dictionaries learned from different views. 

Experiments 
In this section, we compare the proposed UMD2L approach 
with multi-view subspace learning methods including 
MCCA and MvDA, and multi-view DL methods including 
SMBR, SliM2 and MSRC on the Multi-PIE, AR, COIL-20 
and MNIST datasets.  

In all experiments, the tuning parameters in UMD2L ( O  
in dictionary learning phase, and J  in classification phase) 
and the parameters of all compared methods are evaluated 
by 5-fold cross validation to avoid over-fitting. Concretely, 
the parameters of UMD2L are set as 0.005O   and 

0.001J   for three datasets. In addition, the default dictio-
nary atoms number for each view in UMD2L is set as the 
number of training samples.  

Experiments on the Multi-PIE Dataset 
Multi-PIE dataset contains more than 750,000 images of 
337 people under various views, illumination and expres-
sions. More introductions about this dataset can be referred 
to the literature (Cai et al., 2006). Here, a subset about 
1632 images from 68 peoples (24 images for each people) 
with 5 different poses (C05, C07, C09, C27, C29) is se-
lected for experiment. The image size is 64×64 pixels. Fig-
ure 1 shows demo images (with 5 different poses) of one 
subject. PCA transformation (Turk and Pentland 1991) is 
used to reduce the dimension of samples to 100. And we 
randomly select 8 samples per class for training, use the 
remainder for testing, and run all compared methods 20 
times.  
 

     
 
 

Figure 1: Demo images of one subject in the Multi-PIE dataset. 
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Figure 2 shows average inter-view correlation coeffi-
cients of the dictionaries learned by SMBR, SliM2, MSRC 
and UMD2L, where the absolute values of coefficients are 
given. Compared with SMBR that uses original training 
samples to construct dictionary, UMD2L effectively reduce 
correlation of dictionaries learned from different views. In 
addition, as compared with MSRC which encourages di-
versity of dictionaries corresponding to different views, 
UMD2L obtains better de-correlation effect. All these 
demonstrate effectiveness of the proposed uncorrelated 
constraint. 

 
Figure 2: Average inter-view correlation coefficients of the 
learned dictionaries by all the compared DL methods on Multi-
PIE dataset. 

Experiments on the AR Dataset 
The AR face dataset (Martinez and Benavente 1998) con-
tains images of 119 individuals (26 images for each 
people), including frontal view of faces under different 
lighting conditions and with various occlusions. Each im-
age is scaled to 60×60. All image samples of one subject 
are shown in Figure 3. We extract Gabor transformation 
features (Grigorescu, Petkov, and Kruizinga 2002), Karhu-
nen-Loeve (KL) transformation features (Fukunaga and 
Koontz 1970) and Local Binary Patterns (LBP) (Ahonen, 
Hadid, and Pietikainen 2006) to construct three feature sets 
for experiment. The process of multiple feature sets con-
struction is illustrated in Figure 4. Similar to experimental 
setting for the Multi-PIE dataset, we employ PCA trans-
formation to reduce the dimension of these feature samples 
to 100. We randomly select 8 samples per class for training, 
use the remainder for testing, and run all compared me-
thods 20 times. 
 

  
Figure 3: Demo images of one subject in the AR dataset.  

 
 
 
 
 
 
 
 
 
 

Figure 4: Construction of multiple views. 
 

 
Figure 5: Average inter-view correlation coefficients of the 
learned dictionaries by all the compared DL methods on AR data-
set. 
 

Figure 5 shows average inter-view correlation coeffi-
cients of the dictionaries learned by SMBR, SliM2, MSRC 
and UMD2L. Due to Figure 5, the correlation coefficient 
corresponding to UMD2L is smaller than those of multi-
view DL methods including SMBR, SliM2 and MSRC, 
which demonstrates effectiveness of the proposed uncorre-
lated constraint. 

Experiments on the COIL-20 Dataset 
The COIL-20 object dataset (Murase and Nayar 1995) con-
tains 1440 grayscale images of 20 objects (72 images per 
object) under various poses. The objects are rotated 
through 360 degrees and taken at the interval of 5 degrees. 
The size of each image is 64×64 pixels. Image samples of 
one subject are shown in Figure 6. We also extract Gabor 
transformation features, Karhunen-Loeve transformation 
features and Local Binary Patterns to build three feature 
sets for experiment. PCA transformation is employed to 
reduce the dimension of these feature samples to 100. 36 
samples per class are randomly chosen to form the training 
set, while the remaining samples are regarded as the testing 
set. The random selection process is performed 20 times, 
and we record the average experimental results for all 
compared methods. 
 

 

Dataset 

KL transformation 

Gabor transformation 

LBP descriptor 

Three feature sets 
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Figure 6: Demo images of one object in the COIL-20 dataset. 

 
Figure 7 shows average inter-view correlation coefficients 
of the dictionaries learned by SMBR, SliM2, MSRC and 
UMD2L. Due to Figure 7, our approach achieves the smal-
lest multi-view dictionary correlation, which demonstrates 
effectiveness of the proposed uncorrelated constraint. 

 
 
Figure 7: Average inter-view correlation coefficients of the 
learned dictionaries by all the compared DL methods on COIL-20 
dataset. 

Experiments on the MNIST Dataset 
The MNIST dataset (LeCun et al. 1998) used in our expe-
riment contains 1000 handwritten digit images (100 images 
for each digit). The image size is 28×28 pixels. Figure 8 
shows demo images of ten digits. Gabor transformation 
features, Karhunen-Loeve transformation features and Lo-
cal Binary Patterns are extracted to build three feature sets 
for experiment. And the dimension of feature samples is 
reduced to 100 by using the PCA transformation. We ran-
domly select 40 samples per class for training, use the re-
mainder for testing, and run all compared methods 20 
times. 
 

 
 

Figure 8: Demo images in the MNIST database. 
 

 
 
Figure 9: Average inter-view correlation coefficients of the 
learned dictionaries by all the compared DL methods on MNIST 
dataset. 
 

Figure 9 shows average inter-view correlation coeffi-
cients of the dictionaries learned by SMBR, SliM2, MSRC 
and UMD2L. Due to Figure 9, the correlation coefficient 
corresponding to UMD2L is much smaller than those of 
multi-view DL methods including SMBR, SliM2 and 
MSRC, which demonstrates effectiveness of the proposed 
uncorrelated constraint. 

Table 1 shows the average recognition rates of all com-
pared methods across 20 random running on the Multi-PIE, 
AR, COIL-20 and MNIST datasets. The mean value of 
each method’s average recognition rates corresponding to 
four different datasets is also listed in Table 1. As com-
pared with related multi-view feature learning methods in-
cluding MCCA, MvDA, SMBR, SliM2 and MSRC, 
UMD2L improves the average recognition rates at least by 
1.67% (=95.10-93.43).  

 
Table 1:  Average recognition rates on three datasets. 

 

Method 
Average recognition rates (%) 

Multi-
PIE 

AR 
COIL-

20 
MNIST Mean 

MCCA 94.06 93.61 95.64 86.76 92.51 
MvDA 94.28 94.19 95.33 87.42 92.80 
SMBR 91.57 91.83 92.85 82.30 89.63 
SliM2 94.47 94.22 95.67 88.51 93.21 
MSRC 93.02 94.64 96.56 89.52 93.43 

UMD2L 95.85 96.37 97.74 90.44 95.10 
 
To statistically analyze the recognition rates given in 

Table 1, we conduct a statistical test, i.e., Mcnemar’s test 
(Draper, Yambor, and Beveridge 2002). This test can pro-
vide statistical significance between UMD2L and other me-
thods. Here, the Mcnemar’s test uses a significance level of 
0.05, that is, if the p-value is below 0.05, the performance 
difference between two compared methods is considered to 
be statistically significant. Table 2 shows the p-values be-
tween UMD2L and other compared methods on 4 datasets. 
According to Table 2, the proposed approach indeed makes 
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a statistically significant difference in comparison with the 
related methods. 

 
Table 2: P-values between UMD2L and other compared methods 
on four datasets. 
 

Datasets 
UMD2L 

MCCA MvDA SMBR SliM2 MSRC 
Multi-

PIE 
1.29×10-16 3.15×10-23 2.50×10-18 1.41×10-21 1.57×10-23 

AR 1.76×10-25 5.31×10-13 1.17×10-17 2.73×10-11 1.66×10-14 

COIL-
20 

3.66×10-17 2.30×10-19 4.52×10-12 1.34×10-16 2.29×10-13 

MNIST 2.23×10-16 3.39×10-12 2.83×10-16 2.34×10-28 5.39×10-14 

Conclusion 
Due to state-of-the-art recognition performance of dictio-
nary learning (DL), multi-view DL has now become an in-
teresting multi-view feature learning technique. For this 
technique, how to enhance the total discriminability of dic-
tionaries and reduce their redundancy is a crucial research 
topic. In this paper, we propose a novel approach called 
uncorrelated multi-view discrimination dictionary learning 
(UMD2L). By making dictionary atoms correspond to the 
class labels, it jointly learns multiple dictionaries and ac-
quires totally favorable discriminative power. Moreover, 
UMD2L designs the uncorrelated constraint to reduce the 
redundancy among dictionaries learned from different 
views.  

By employing four multi-view datasets, experiments 
demonstrate that the proposed approach achieves better 
recognition results than two representative multi-view sub-
space learning methods and several representative multi-
view DL methods. In addition, experimental results show 
effectiveness of the designed uncorrelated constraints for 
multi-view DL. 
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