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Abstract
We investigate weakly-supervised image parsing, i.e.,
assigning class labels to image regions by using image-
level labels only. Existing studies pay main attention to
the formulation of the weakly-supervised learning prob-
lem, i.e., how to propagate class labels from images
to regions given an affinity graph of regions. Notably,
however, the affinity graph of regions, which is gener-
ally constructed in relatively simpler settings in existing
methods, is of crucial importance to the parsing perfor-
mance due to the fact that the weakly-supervised pars-
ing problem cannot be solved within a single image, and
that the affinity graph enables label propagation among
multiple images. In order to embed more semantics into
the affinity graph, we propose novel criteria by exploit-
ing the weak supervision information carefully, and de-
velop two graphs: L1 semantic graph and k-NN seman-
tic graph. Experimental results demonstrate that the pro-
posed semantic graphs not only capture more seman-
tic relevance, but also perform significantly better than
conventional graphs in image parsing.

Introduction
Image parsing (Liu et al. 2009a; 2012a; Yang et al. 2011;
Han et al. 2012) is a fundamentally challenging problem
aiming at assigning semantic labels to image pixels (Tighe
and Lazebnik 2013). Being a sort of fine-grained image
analysis, an effective image parsing is beneficial for many
higher-level image understanding tasks, e.g., image edit-
ing (Shotton et al. 2009) and region-based image retrieval
(Zhang et al. 2012). However, although the goal of image
parsing is to label pixels, directly modeling pixels may re-
sult in unreliable predictions since a single pixel contains
little information. In order to yield semantically consistent
results, existing image parsing methods are generally based
on image regions (aka, superpixels).

In the literature, most image parsing approaches suppose
that a training dataset with superpixel-level labels is given
and then either establish an appearance-based model which
propagates labels from training superpixels to test super-
pixels (Yang et al. 2013) or resort to non-parametric meth-
ods to transfer labels from training images to query image
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(Liu, Yuen, and Torralba 2009). However, it is generally
too laborious and time-consuming to annotate superpixel-
level labels. Fortunately, due to the rapid spread of online
photo sharing websites (e.g., Flickr), a large amount of im-
ages with user-provided image-level labels become avail-
able. These labels can be further refined by modeling spar-
sity and visual consistency (Zhu, Yan, and Ma 2010). In
contrast to superpixel-level labels, it is more challenging to
develop an image parsing algorithm based on image-level
labels only. In this paper, such a problem is called weakly-
supervised image parsing.

In traditional image parsing, labels are propagated from
training superpixels to test superpixels; however, in weakly-
supervised image parsing, the propagation is from images
to superpixels. To handle such a weakly-supervised prob-
lem, several approaches have been proposed in the litera-
ture. As an example, (Liu et al. 2009a) has first proposed
a bi-layer sparse coding model for uncovering how an im-
age or superpixel could be reconstructed from superpixels
of the entire image repository, and then used the learned rel-
evance to facilitate label inference. What is more, (Liu et al.
2012a) has developed a weakly-supervised graph propaga-
tion model, where the final results can be directly inferred
by simultaneously considering superpixel consistency, su-
perpixel incongruity and the weak supervision information.
It can be observed that, superpixel graphs are necessary and
important to the aforementioned image parsing methods.

However, despite the effectiveness of the aforementioned
approaches, the superpixel graphs are built up in relatively
simpler settings. These approaches are generally based on
the assumption that a given superpixel from an image can be
sparsely reconstructed via the superpixels belonging to the
images with common labels, and that the sparsely selected
superpixels are relevant to the given superpixel. In order to
state conveniently, we define candidate superpixels to be the
set of superpixels which are possibly adjacent to a given su-
perpixel, where the adjacency denotes a non-zero similarity
in a superpixel graph. Under this definition, the candidate su-
perpixels of the above approaches are those belonging to the
images which have common labels with the image contain-
ing the given superpixel. Due to the large number of candi-
date superpixels in these approaches, the graph construction
process tends to incur more semantically irrelevant super-
pixels and thus the parsing performance is degraded.
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Original superpixel

Superpixels from images containing label ‘cow’ or ‘grass’ which are most similar to the original superpixel:

Superpixels from images containing label ‘cow’ which are most similar to the original superpixel:

Superpixels from images containing label ‘bird’ or ‘grass’ which are most similar to the original superpixel:

Superpixels from images containing label ‘bird’ which are most similar to the original superpixel:

Original superpixel

Figure 1: Illustrations of our motivation in constructing semantic graphs by reducing the number of candidate superpixels. An
image is in a green box if its corresponding superpixel (which is bounded by a magenta closed curve) is semantically relevant
to (i.e., has the same ground-truth label with) the original superpixel, otherwise it is in a red box.

Therefore, it is important to construct a superpixel graph
with more semantic relevance. In order to handle this prob-
lem, we start from the following two empirical observations.
• An ideal graph yields nearly perfect results. Suppose there

is an ideal graph, in which all pairs of semantically rel-
evant superpixels are adjacent, and all pairs of semanti-
cally irrelevant superpixels are non-adjacent. The parsing
accuracy with such an ideal graph is nearly 100%. Al-
though the ideal graph is unavailable due to the fact that
the ground-truth labels of superpixels are unknown in ad-
vance, it is worthwhile to construct a superpixel graph
with more semantic relevance.

• It is beneficial to reduce the number of candidate super-
pixels. As shown by the illustrative examples in Fig. 1,
through reducing the number of candidate superpixels, the
graph can be made more descriptive.
Based on the above two observations, superpixel graph is

a key factor to the parsing performance, and we can con-
struct a descriptive graph by reducing the number of can-
didate superpixels. Concretely, we impose novel criteria on
conventional graphs by exploiting the weak supervision in-
formation carefully, and develop two graphs: L1 seman-
tic graph and k-NN semantic graph. These two graphs are
shown to be effective in weakly-supervised image parsing.

The rest of this paper is organized as follows. Section 2
presents a brief overview of related studies. The graph prop-
agation approach to image parsing is introduced in Section
3 as a preliminary. Then, we introduce the proposed seman-
tic graph construction approach in Section 4. In Section 5,
the proposed method is evaluated on two standard datasets
in image parsing. Finally, Section 6 concludes our paper.

Related Work
Image Parsing
The image parsing problem has received wide interests in
the vision community, and numerous approaches have been

proposed. Earlier studies mainly focus on modeling shapes
(Winn and Jojic 2005; Chen et al. 2009). These methods,
however, can only handle images either with a singe ob-
ject or without occlusions between objects. Some other ap-
proaches are mostly based on discriminative learning tech-
niques, e.g., conditional random field (Yuan, Li, and Zhang
2008), dense scene alignment (Liu, Yuen, and Torralba
2009) and deep learning (Farabet et al. 2013). All of these
algorithms require pixel-level labels for training, however,
which are very expensive to obtain in practice.

Besides the aforementioned approaches, there have been
a few studies on weakly-supervised image parsing, where
superpixel labels are propagated along a predefined graph.
As a first attempt, (Liu et al. 2009a) has proposed a bi-
layer sparse coding model for mining the relation between
images and superpixels. The model has also been extended
to a continuity-biased bi-layer sparsity formulation (Liu et
al. 2012b). In (Liu et al. 2012a), a weakly-supervised graph
propagation model is developed to directly infer the super-
pixel labels. Moreover, in (Liu et al. 2010), a multi-edge
graph is established to simultaneously consider both images
and superpixels, and is then used to obtain superpixel labels
through a majority voting strategy. Different from the above
approaches which pay main attention to the formulation of
the weakly-supervised learning problem, our focus is con-
structing a superpixel graph with more semantic relevance
by using the weak supervision information carefully.

Weakly-Supervised Image Segmentation
The weakly-supervised image segmentation task is similar
to weakly-supervised image parsing. The only difference is
that, images are split into a training set and a test set, and
the aim is to infer the labels of test image pixels by ex-
ploiting only the image-level labels in the training set. In
the literature, (Verbeek and Triggs 2007) has proposed to
handle this task by using the Markov field aspect model. In
(Vezhnevets and Buhmann 2010), multiple instance learning
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and multi-task learning strategies are adopted. Multi-image
model (Vezhnevets, Ferrari, and Buhmann 2011) and crite-
ria on multiple feature fusion (Vezhnevets, Ferrari, and Buh-
mann 2012) have also been studied.

What is more, recent approaches include criteria on classi-
fication evaluation (Zhang et al. 2013a), weakly-supervised
dual clustering (Liu et al. 2013) and probabilistic graphlet
cut (Zhang et al. 2013b). However, in practice, due to the
easy access of image-level labels on photo sharing websites
such as Flickr, we assume all image-level labels are available
in this paper, which is different from the aforementioned
weakly-supervised image segmentation task.

Graph Construction
A number of methods have been proposed for graph con-
struction, among which the most popular ones include sparse
linear reconstruction (L1) graph (Yan and Wang 2009), ε-
ball graph and k-nearest neighbor (k-NN) graph. Recent
studies are mostly based on the combinations and extensions
of these graphs. For example, (Lu and Peng 2013) deals with
latent semantic learning in action recognition through L1

graph and hypergraph. In (He et al. 2013), a two-stage non-
negative sparse representation has been proposed for face
recognition. Furthermore, a k-NN sparse graph is applied to
handle image annotation in (Tang et al. 2011).

However, different from conventional graph construction
in either supervised or unsupervised setting, constructing a
descriptive graph under weak supervision in this paper is a
novel and interesting problem to handle.

Image Parsing by Graph Propagation
The proposed semantic graph construction approach is based
on the weakly-supervised graph propagation model in (Liu
et al. 2012a). As a preliminary, we introduce the graph prop-
agation model by first defining some notations, and then
present the formulation and solution. Due to the space limit,
we only show the key steps here. Detailed derivations can be
found in (Liu et al. 2012a).

Notation
Given an image collection {X1, . . . , Xm, . . . , XM}, where
Xm denotes the m-th image, and its label information is de-
noted by an indicator vector ym = [y1m, . . . , y

c
m, . . . , y

C
m]>,

where ycm = 1 if Xm has the c-th label, and ycm = 0
otherwise. C denotes the number of classes, and Y =
[y1, . . . , ym, . . . , yM ]> denotes the image-level label col-
lection. After image over-segmentation with a certain ap-
proach, e.g., SLIC (Achanta et al. 2012), Xm is represented
by a set of superpixels Xm = {xm1, . . . , xmi, . . . , xmnm},
where nm is the number of superpixels in Xm. xmi stands
for the i-th superpixel of Xm, and its corresponding label
information is also denoted by an indicator vector fmi =
[f1mi, . . . , f

c
mi, . . . , f

C
mi]
>, where f cmi = 1 if superpixel

xmi has the c-th label, and f cmi = 0 otherwise. Moreover,
N =

∑M
m=1 nm denotes the number of superpixels in the

image collection, and F ∈ RN×C denotes all the superpixel
labels. In the weakly-supervised setting, all the image labels
Y are given, and the superpixel labels F are to be inferred.

Formulation
First of all, given an N ×N matrix W denoting the affinity
graph of superpixels, the smoothness regularizer is shown as
follows, which also resembles the idea of spectral clustering
(Ng, Jordan, and Weiss 2001)

tr(F>LF ) (1)

where L is a Laplacian matrix L = D −W , and D is the
degree matrix of W . The smoothness regularizer enforces
similar superpixels in feature space to share similar labels.
Furthermore, the image-level supervision information can
be formulated in the following form∑

m

∑
c

| max
xmi∈Xm

f cmi − ycm| (2)

According to Eq. 2, if ycm = 1, at least one superpixel should
interpret the label. Moreover, if ycm = 0, no superpixels
will be assigned to that label, which is equivalent to require
max f cmi = 0. According to such equivalence, and due to
the fact that the image-level label ycm can only be either 1 or
0, Eq. 2 can be rewritten in the following form∑

m

∑
c

(1− ycm)hcF
>qm

+
∑
m

∑
c

ycm(1− max
xmi∈Xm

gmiFh
>
c )

(3)

where hc is a 1×C indicator vector whose all elements, ex-
cept for the c-th element, are zeros, and qm is an N × 1 in-
dicator vector whose all elements, except for those elements
corresponding to the m-th image, are zeros. Moreover, gmi
is a 1 × N vector whose elements corresponding to the i-
th superpixel in Xm are ones and others are zeros. Through
simultaneously considering Eq. 1 and Eq. 3, the final formu-
lation is shown as follows

min
F

λ tr(F>LF ) +
∑
m

∑
c

(1− ycm)hcF
>qm

+
∑
m

∑
c

ycm(1− max
xmi∈Xm

gmiFh
>
c )

s.t. F ≥ 0, Fe1 = e2

(4)

where λ is a positive parameter. It should be noted that, the
equality

∑C
c=1 f

c
mi = 1 always holds due to Fe1 = e2,

where e1 = 1C×1, and e2 = 1N×1.

Solution
Eq. 4 can be efficiently solved via concave-convex program-
ming (Yuille and Rangarajan 2003) iteratively. Let η be the
subgradient of l = [f cm1, . . . , f

c
mi, . . . , f

c
mnm ]

>, which is an
nm × 1 vector and its i-th element is shown as follows

ηi =

{
1
nα
, f cmi = maxj f

c
mj where xmj ∈ Xm

0, otherwise
(5)

where nα is the number of superpixels with the largest la-
bel value. According to (Yuille and Rangarajan 2003), Eq. 4
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can be derived and further relaxed as the following quadratic
programming problem

min
F

λ tr(F>LF ) +
∑
m

∑
c

(1− ycm)hcF
>qm

+
∑
m

∑
c

ycm(1− hcβUmFh>c ) + δ‖Fe1 − e2‖2

s.t. F ≥ 0
(6)

where Um is an N ×N diagonal block matrix , whose diag-
onal elements are equal to qm. β is a C × nm matrix corre-
sponding to Xm and βmc = η>. Moreover, δ is a weighting
parameter. To efficiently solve Eq. 6, the non-negative multi-
plicative updating procedure in (Liu et al. 2009b) is adopted,
which facilitates the following element-wise updating rule

Fij = Fij ×
[2λWF + 2δe2e

>
1 +

∑
m

∑
c y

c
mU
>
mβ
>h>c hc]ij

[2λDF + 2δe1e>1 +
∑

m

∑
c(1− ycm)qmhc]ij

(7)
Therefore, Eq. 4 can be solved via the above iterative steps,
and the superpixel labels F are obtained as final results.

Semantic Graph Construction
Although the graph propagation method shown in the previ-
ous section is capable of inferring superpixel labels, the su-
perpixel graph W is constructed by adopting relatively sim-
pler settings. For example, the L1 graph used in (Liu et al.
2012a) is built up by reconstructing each given superpixel
via the superpixels belonging to the images with common
labels. However, as a key factor to the final performance of
image parsing, the superpixel graph W can be made more
descriptive by exploiting the weak supervision information
carefully. In this section, we present the construction process
of two novel superpixel graphs, i.e., L1 semantic graph and
k-NN semantic graph.

L1 Semantic Graph
Based on the two observations in Section 1, we propose to
construct graphs with more semantic relevance by reducing
the number of candidate superpixels. To begin with, we de-
note all the feature vectors of the superpixels as Z ∈ Rd×N ,
where d is the dimensionality of a feature vector. Further-
more, based on the image-level labels, all the superpix-
els belonging to images with the c-th label is denoted as
Zc ∈ Rd×Nc . According to the illustrative examples in Fig.
1, given a superpixel xmi (belonging to image Xm) whose
ground-truth label is c and whose corresponding feature vec-
tor is denoted as pmi, using Zc as candidate superpixels can
provide better results than using Z or other Zj , where j 6= c.
This fact can be easily verified due to the following reasons:
1) Since all the superpixels which belong to Z but not Zc are
semantically irrelevant to pmi, it is beneficial to reconstruct
pmi by excluding these superpixels, and thus using Zc may
yield better results than Z; 2) Zc contains more semantically
relevant superpixels and fewer irrelevant superpixels to pmi
than other Zj , where j 6= c. Therefore, our aim is to find the
most appropriate candidate superpixels for each superpixel.

Notably, this is a paradox, since we can precisely obtain
Zc according to the ground-truth label of xmi (i.e., c) and

thus provide better reconstruction results. However, the su-
perpixel label c is to be inferred and unknown in advance. In
order to handle this problem, we propose criteria in select-
ing Zc according to the sparse reconstruction formulation,
whose objective function is shown as follows.

min
ϕj
‖ϕj‖1

s.t. Zjϕj = pmi, y
j
m = 1, zmi = 0

(8)

where ϕj denotes the coefficients of superpixels belonging
to Zj in reconstructing pmi, and zmi denotes the coefficient
of pmi (i.e., pmi cannot be used to reconstruct itself). Given
that the imageXm may contain multiple labels (i.e., its label
yjm = 1 may hold true for different j), and that the label c of
pmi is unknown, we aim to select the candidate superpixels
according to the criterion shown as follows.

min
j,ϕ
‖ϕ‖1

s.t. ϕ = argmin
ϕj
‖ϕj‖1, Zjϕj = pmi,

yjm = 1, zmi = 0, j ∈ {1, . . . , C}

(9)

Eq. 9 is optimized in two steps: 1) Compute ϕj for all pos-
sible values of j which satisfy yjm = 1 (i.e., all labels of the
image containing the given superpixel pmi); 2) Select the
specific ϕj which minimizes Eq. 9 as the final result.

According to Eq. 9, we select the candidate superpixels
whose corresponding reconstruction coefficient vector ϕ has
the smallest L1 norm. Eq. 9 makes sense due to the fact that,
the L1 norm of ϕ indicates the correlation between Zj and
pmi. If the correlation coefficient between Zj and pmi is ad-
equately large, all the elements in ϕ are non-negative and
thus ‖ϕ‖1 remains to be small; however, if the correlation
coefficient is small, there may be both positive and negative
elements in ϕ and thus ‖ϕ‖1 is large. Hence, we select Zj
with the smallest ‖ϕ‖1, which is most correlated with pmi
and is assumed to be the desired Zc.

As a consequence, |ϕ| (i.e., the absolute value of ϕ) is
used as the similarity between superpixels (Yan and Wang
2009), and thus the affinity graph W is constructed. To en-
sure the symmetry, we assignW = 1

2 (W+W>), and further
use it as the L1 semantic graph in this paper.

k-NN Semantic Graph
Besides L1 semantic graph, we can similarly construct k-
NN semantic graph through reducing the number of candi-
date superpixels. Since using Z as candidate superpixels is
always a suboptimal choice, we focus on selecting candidate
superpixels from Zj where j ∈ {1, . . . , C}. Given a super-
pixel xmi (belonging to image Xm) whose feature vector
is pmi, we begin by denoting Sj as the set of k-NN super-
pixels of pmi in Zj , and Scpj as the set of k-NN superpix-
els in Zcpj , where Zcpj is the complementary set of Zj , i.e.,
Zcpj = Z\Zj . Based on these notations, we select the k-NN
superpixels of pmi according to the following criterion.

min
j,Sj

k∑
a=1

k∑
b=1

sim(Sja, S
cp
jb )

s.t. Sja ∈ Sj , Scpjb ∈ S
cp
j , y

j
m = 1, j ∈ {1, . . . , C}

(10)
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where Sja and Scpjb are superpixels belonging to sets Sj
and Scpj , respectively. Moreover, sim(·, ·) denotes a similar-
ity measure of two feature vectors of superpixels. Similarly
with Eq. 9, Eq. 10 is optimized by first enumerating all pos-
sible j and then select the specific Sj which minimizes Eq.
10. According to Eq. 10, we select Sj as the k-NN super-
pixels of pmi, where the sum of pairwise similarity between
superpixels in Sj and Scpj is minimized. Eq. 10 makes sense
due to the following reasons. Generally, superpixels with the
same labels tend to be visually similar, whereas the similar-
ity between superpixels belonging to different classes tends
to be small. Through minimizing the pairwise similarity be-
tween superpixels in Sj and Scpj , the superpixels in the se-
lected Sj are likely to have the same label with pmi.

For example, given an image Xm with labels ‘grass’ and
‘bird’, we denote a ‘grass’ superpixel and a ‘bird’ superpixel
in Xm as pgrs and pbrd respectively. Moreover, candidate
superpixels Zgrs, Zcpgrs, Zbrd and Zcpbrd are defined accord-
ingly. Given pgrs, since ‘grass’ superpixels may appear as
neighbors in both Zbrd (superpixels in ‘bird’ images) and
Zcpbrd (superpixels in ‘non-bird’ images), the pairwise sim-
ilarity between superpixels in Sbrd and Scpbrd is relatively
large. In contrast, the pairwise similarity between superpix-
els in Sgrs and Scpgrs is small since ‘grass’ superpixels are
absent in Scpgrs. Therefore, the selected set of neighbors for
pgrs is Sgrs but not Sbrd. Moreover, the same applies to pbrd,
where Sbrd is chosen as its k-NN superpixels.

As a result, after selecting neighbors for each superpixel
by reducing the number of candidate superpixels according
to Eq. 10, the affinity graph W is constructed. To ensure its
symmetry, we assign W = 1

2 (W +W>), and further use it
as the k-NN semantic graph in this paper.

Experiments
In this section, we evaluate the performance of the proposed
semantic graphs in weakly-supervised image parsing.

Experimental Setup
We conduct experiments on two standard datasets: PAS-
CAL VOC’07 (PASCAL for short) (Everingham et al. 2010)
and MSRC-21 (Shotton et al. 2009). Both datasets contain
21 different classes and are provided with pixel-level la-
bels, which are used to evaluate the performance measured
by classification accuracy. In the weakly-supervised image
parsing task, we assume all the image-level labels are known
for both training and test set, i.e., 632 images in PASCAL
dataset and 532 images in MSRC-21 dataset (Shotton, John-
son, and Cipolla 2008). Moreover, we adopt SLIC algorithm
(Achanta et al. 2012) to obtain superpixels for each image,
and represent each superpixel by the bag-of-words model
while using SIFT (Lowe 2004) as the local descriptor. To
present fair comparisons, we adopt the same parameters for
the graph propagation model shown in Eq. 4. In the experi-
ments, we discover that the parameter k in all k-NN-based
graphs are relatively insensitive to the performance, and we
set k = 20 empirically.

Besides comparing with the state-of-the-arts (Liu et al.
2009a; 2012a), we mainly focus on the comparisons among

the following three types of graphs: 1) Original graph (OG),
where all superpixels are candidates for a given superpixel;
2) Label intersection graph (LIG), where all the candidate
superpixels belong to images which have at least one com-
mon label with the image containing the given superpixel; 3)
Semantic graph (SG), where the candidate superpixels are
derived by criteria shown in Eq. 9 or Eq. 10. Based on L1

graph and k-NN graph, there are six graphs in total, i.e., L1

OG, L1 LIG, L1 SG, k-NN OG, k-NN LIG and k-NN SG.
Notably, besides the parsing accuracy, we also measure the
semantic relevance captured by a graph with a percentage
value calculated as follows

percentage =
#(adjacent superpixels with the same label)

#(adjacent superpixels)
(11)

where the term adjacent superpixels denotes a pair of super-
pixels whose similarity in a graph is non-zero.

Empirical Results
The per-class accuracies on PASCAL dataset and MSRC-
21 dataset are listed in Table 1 and Table 2, respectively.
It can be observed that trends on both datasets are similar,
where L1 SG and k-NN SG achieve the best performances
among all L1-based graphs and all k-NN-based graphs, re-
spectively. Since all the settings are the same except for the
superpixel graphs, the results indicate the effectiveness of
the proposed semantic graphs in weakly-supervised image
parsing. Please note that, the reason why the performances
of (Liu et al. 2012a) and L1 LIG slightly differ is that, (Liu
et al. 2012a) utilizes an additional superpixel distance graph.

Furthermore, we report the semantic relevance captured
by different graphs along with the corresponding mean pars-
ing accuracy on PASCAL dataset and MSRC-21 dataset in
Table 3 and Table 4, respectively. We observe from these two
tables that, generally, the more semantic relevance captured
by the graph, the better the parsing accuracy is. However,
although the semantic relevance captured by L1 LIG (k-NN
LIG) is much more than L1 OG (k-NN OG), there is nearly
no improvement in parsing accuracy on MSRC-21 dataset. It
may be due to the fact that the label intersection graphs only
discard the adjacencies of superpixels whose corresponding
images have no common labels. These adjacencies do not
affect the parsing accuracy much, since the inferred label
of a superpixel is constrained to be one of the labels of its
corresponding image. In contrast, L1 SG (k-NN SG) further
improves the percentage of semantically adjacent superpix-
els, which is beneficial for the final performance.

Notably, the criteria shown in Eq. 9 and Eq. 10 are to se-
lect candidate superpixels belonging to images containing a
specific label, which can be viewed as initial predictions for
all superpixel labels, although these predictions are not used
to evaluate the parsing accuracy directly. However, we can
still calculate an accuracy for these predictions. We empiri-
cally discover that these predictions achieve relatively lower
results. For example, on MSRC-21 dataset, the accuracy
achieved by initial predictions in constructing L1 SG (k-NN
SG) is 60% (64%), whereas the accuracy of label propaga-
tion with L1 SG (k-NN SG) is 62% (73%). These results
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Table 1: Accuracies (%) of the proposed semantic graphs for individual classes on PASCAL dataset, in comparison with other
methods. The last column shows the mean accuracy over all classes.
Methods plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv bkgd mean
(Liu et al. 2009a) 24 25 40 25 32 35 27 45 16 49 24 32 13 25 56 28 17 16 33 18 82 32
(Liu et al. 2012a) 28 20 52 28 46 41 39 60 25 68 25 35 17 35 56 36 46 17 31 20 65 38
L1 OG 10 8 8 10 17 13 12 12 6 8 7 15 5 15 38 15 10 3 20 7 85 15
L1 LIG 6 12 63 30 47 22 16 58 8 53 7 39 10 18 30 27 58 4 46 26 66 31
L1 SG 16 14 75 43 42 34 29 64 7 57 15 46 38 43 29 39 83 6 58 21 59 39
k-NN OG 20 16 16 16 12 16 14 15 15 22 11 13 14 13 25 17 24 16 11 20 76 19
k-NN LIG 41 20 58 41 48 30 38 44 31 42 31 36 28 26 37 30 50 25 42 40 47 37
k-NN SG 85 55 87 45 42 31 34 57 21 81 23 16 6 11 42 31 72 24 49 40 41 42

Table 2: Accuracies (%) of the proposed semantic graphs for individual classes on MSRC-21 dataset, in comparison with other
methods. The last column shows the mean accuracy over all classes.
Methods bldg grass tree cow sheep sky plane water face car bike flower sign bird book chair road cat dog body boat mean
(Liu et al. 2012a) 70 92 49 10 10 83 36 82 62 20 52 98 88 48 98 70 75 95 76 43 23 61
L1 OG 68 93 55 19 11 94 27 74 55 21 59 96 84 52 98 70 76 88 67 42 17 60
L1 LIG 64 91 48 7 8 92 30 78 59 16 48 98 92 53 99 73 76 97 78 35 21 60
L1 SG 84 95 42 11 13 91 26 77 54 19 59 97 87 56 98 91 53 99 86 39 16 62
k-NN OG 74 94 64 29 12 94 36 75 65 40 81 96 83 56 99 77 78 93 73 34 17 65
k-NN LIG 71 92 61 25 9 92 33 75 67 39 82 98 90 54 98 85 73 99 87 32 10 65
k-NN SG 49 82 45 59 51 90 78 68 66 68 98 99 94 84 99 99 48 99 98 30 20 73

Our Result Our Result Our ResultOriginal Image Original Image Original ImageGround Truth Ground Truth Ground Truth

cowcow

grass grass

car car

road road

road road

tree tree

sky sky

road

grass grass

sheep sheep

sky sky

sign sign

bike

road road

bike

Figure 2: Some example results for image parsing by graph propagation using k-NN semantic graph (i.e., our result) in com-
parison with the ground-truth on MSRC-21 dataset.

Table 3: Percentages (%) of semantically relevant superpix-
els in different graphs along with the corresponding mean
parsing accuracies (%) on PASCAL dataset.

Graphs Percentage Accuracy
L1 OG 7 15
L1 LIG 23 31
L1 SG 25 39
k-NN OG 11 19
k-NN LIG 34 37
k-NN SG 38 42

show the effectiveness of the whole framework. Moreover,
some example results for image parsing by graph propaga-
tion using k-NN SG in comparison with the ground-truth on
MSRC-21 dataset are shown in Fig. 2.

Conclusion
In this paper, we focus on the graph construction in weakly-
supervised image parsing. Due to the weak supervision in-
formation, the semantic relevance captured by the superpixel

Table 4: Percentages (%) of semantically relevant superpix-
els in different graphs along with the corresponding mean
parsing accuracies (%) on MSRC-21 dataset.

Graphs Percentage Accuracy
L1 OG 18 60
L1 LIG 34 60
L1 SG 35 62
k-NN OG 33 65
k-NN LIG 52 65
k-NN SG 59 73

graph is crucial to the final performance. In order to build
up graphs which can capture more semantic relevance in
the weakly-supervised setting, we propose criteria in reduc-
ing the number of candidate superpixels, and develop two
novel graphs: L1 semantic graph and k-NN semantic graph.
As shown in the experiments, the criteria used in super-
pixel graph construction yield significant performance im-
provement in image parsing. Moreover, as a general frame-
work, the proposed approach is suitable for other weakly-
supervised learning tasks besides image parsing.
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