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Abstract

In this paper we propose a novel method for image se-
mantic segmentation using multiple graphs. The multi-
view affinity graph is constructed by leveraging the
consistency between semantic space and multiple vi-
sual spaces. With block-diagonal constraints, we en-
force the affinity matrix to be sparse such that the
pairwise potential for dissimilar superpixels is close to
zero. By a divide-and-conquer strategy, the optimiza-
tion for learning affinity matrix is decomposed into sev-
eral subproblems that can be solved in parallel. Using
the neighborhood relationship between superpixels
and the consistency between affinity matrix and label-
confidence matrix, we infer the semantic label for each
superpixel of unlabeled images by minimizing an objec-
tive whose closed form solution can be easily obtained.
Experimental results on two real-world image datasets
demonstrate the effectiveness of our method.

Introduction
Image semantic segmentation is a challenging and interest-
ing task which aims to predict a label for every pixel in the
image. Semantic segmentation is usually a supervised learn-
ing problem, in contrast to low-level unsupervised segmen-
tation which groups pixels into homogeneous regions based
on features such as color or texture (Lu et al. 2011).

In the past years, semantic segmentation has attracted a
lot of attention (Kohli, Ladickỳ, and Torr 2009; Ladicky et
al. 2009; 2010; Shotton et al. 2006; Shotton, Johnson, and
Cipolla 2008; Yang, Meer, and Foran 2007; Jain et al. 2012;
Lucchi et al. 2012; Ladicky et al. 2010). Most of these
methods modeled the problem with a conditional random
field(CRF) with different potentials. The basic approach was
formulated in (Shotton et al. 2006), where a conditional
random field (CRF) was defined over image pixels with
unary potentials learned by a boosted decision tree clas-
sifier over texture-layout filters. The main research direc-
tion for successive publications focused on improving the
CRF structure (Verbeek and Triggs 2007b; Yang, Meer, and
Foran 2007; Jain et al. 2012; Lucchi et al. 2012). (Gould
and Zhang 2012) performed semantic segmentation by con-
structing a graph of dense overlapping patch correspon-
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Figure 1: Illustration of visual diversity and semantic confu-
sion: car in (a) and car in (b) look quite dissimilar to each
other; car in (b) and ’boat’ in (c) look similar visually. (Best
viewed in color.)

dences across large image sets. However, the above al-
gorithms are far from perfectness and the imprecision of
segmentation has an influence on labeling accuracy, which
motivated approaches using multiple and hierarchical seg-
mentations (Kumar and Koller 2010; Carreira and Smin-
chisescu 2010; Gonfaus et al. 2010; Ladicky et al. 2009;
Munoz, Bagnell, and Hebert 2010; Wang et al. 2013). Fur-
thermore, (Kohli, Ladickỳ, and Torr 2009) introduced hi-
erarchy with higher order potentials, (Ladicky et al. 2010)
integrated label co-occurrence statistics, and (Jain et al.
2012) learned a discriminative dictionary with supervised
information using latent CRFs with connected hidden vari-
ables. (Lucchi et al. 2012) proposed a kernelized method
via structured learning approaches which make it possible
to jointly learn these CRF model parameters. Recently, a
few works have been proposed to address the weakly su-
pervised semantic segmentation problem, for which only
the image-level annotations are available(Zhang et al. 2013;
Verbeek and Triggs 2007a; Vezhnevets and Buhmann 2010;
Vezhnevets, Ferrari, and Buhmann 2011).

In semantic segmentation, each image is divided in to
several regions called superpixels. Each superpixel can be
described by multiple visual features. Each kind of feature
has its fair share of pros and cons; and there is not a sin-
gle kind of feature suitable for all semantic categories. Since
images and superpixels can be described in multiple visual
feature spaces, semantic segmentation may intuitively ben-
efit from the integration of multiple representations. Among
recent works on semantic segmentation, (Shotton, Johnson,
and Cipolla 2008) showed quite fast and powerful feature via
random decision forests that convert heterogeneous features
to similar semantic texton histograms. (Tighe and Lazebnik
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Figure 2: The overview of our framework. (I) Oversegment each image into superpixels, extract multiple features for each
superpixel, and use the reconstruction weight from the neighboring superpixels as the affinity; (II) Learn the multi-view graph
using the block-diagonal constraints and the consistency between semantic and visual spaces; (III) Infer superpixel labels by
encouraging superpixels with similar appearance and position from images to share labels.

2010) leveraged a diverse and large set of visual features in-
tegrated in a weighted sum, where weights correspond to the
usefulness of features. (Vezhnevets, Ferrari, and Buhmann
2012) introduced pairwise potentials among multi-feature
images as components of CRF appearance model. However,
to the best of our knowledge, there is no previous work that
intensively explores relationships of multiple features in se-
mantic segmentation.

The similarities between the same pair of superpixel may
not be consistent when using different visual features; so we
shall seek for an method to explore the consistency among
multiple visual feature spaces. As in (Zhou and Burges
2007), one could construct an undirected (or directed) graph
by inferring an affinity matrix from each type of image fea-
tures, and then obtain multiple graphs of different views
(there are multiple affinities between each pair of nodes).
(Vedaldi et al. 2009) used multiple kernel learning to inte-
grate diverse feature sets into one model. However, calcula-
tion of similarities solely based on visual features might lead
to unsatisfying performance due to visual diversity and se-
mantic confusion, i.e., superpixels similar in semantic space
are not necessarily similar in visual feature space; on the
other hand, superpixels similar in visual feature space are
not always similar in semantic space, as seen in Fig.1. Like
most tasks in computer vision, semantic segmentation also
suffer from ’semantic gap’. The way to find a bridge over
the ’semantic gap’ is of significance to semantic segmenta-
tion based on visual features.

In this paper, we propose a novel method for seman-
tic segmentation using multiple graphs with block-diagonal
constraints. We perform dataset-wise segmentation using a
affinity matrix which captures the similarity between every
pair of superpixels. The affinity matrix is learned for dif-
ferent feature channels by leveraging various consistencies:
(i) between semantic and visual spaces, (ii) between vari-
ous features, and (iii) between weights and features. To in-
fer semantic label for each superpixel of unlabeled images,
we minimize an objective that (i) encourages the superpixels
of the training images to be assigned their ground-truth la-
bels; (ii) encourages adjacent superpixels in the same image

to share a label; and (iii) encourages similar superpixels to
be assigned a similar label (specifically, the distribution over
the labels to be similar).

Fig.2 gives the overview of our framework. We firstly
oversegment each image into superpixels, and extract mul-
tiple features for each superpixel. Secondly, we construct
multi-view affinity graph whose weight measures similarity
between superpixels. With block-diagonal constraints, the
affinity matrix is sparse and of low rank. Finally, based on
the affinity matrix and the position cue, the label for each
superpixel can be inferred more precisely.

The rest of this paper is organized as follows: In the next
section we firstly construct multi-view graph and learn the
affinity matrix by decomposing the optimization problem
into several subproblems which can be solved in parallel;
secondly, we formulate the inference of superpixel label in
a semi-supervised framework and obtain the closed-form
solution of the optimal label-confidence matrix. We con-
duct experiments on MSRC and VOC2007 image datasets
to demonstrate the effectiveness of our method. Finally, we
give conclusions and suggestions for future work.

The Proposed Approach
Each image is represented as a set of superpixels, obtained
by the existing oversegmentation algorithm (Comaniciu and
Meer 2002). Suppose that the i−th image consists of Ni su-
perpixels Ii = {xi,j , yi,j}Ni

j=1, where xi,j denotes the j−th
superpixel of i−th image, and yi,j denotes the correspond-
ing labels yi,j = [y1i,j , . . . , y

M
i,j ]
> ∈ {0, 1}M . K kinds of

features are extracted for each superpixel as {xki,j}Kk=1. Let
C = {c1, . . . , cM} be the semantic lexicon of M categories,
and if the category cm is associated with xi,j , then ymi,j =

1(m = 1, . . . ,M); otherwise, ymi,j = 0. Let hi,j ∈ [0, 1]M

denote the label confidence vector for the superpixel xi,j ,
and the m−th element of hi,j measures the probability that
the superpixel xi,j belongs to the category cm.

For the purpose of clarity, we further denote N as the
total number of superpixels from all images, Nl and Nu

as the number of labeled and unlabeled superpixels respec-
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tively, i.e.,N = Nl +Nu, and Xk = [xk1 , . . . , x
k
Nl
, . . . , xkN ],

Y = [y1, . . . , yNl
, . . . , yN ], H = [h1, . . . , hNl

, . . . , hN ],
where xkj ∈ RPk

is the k−th visual feature for superpixel
xj , yj is the semantic label vector for xj , and hj is the label
confidence vector for xj .

Multi-View Affinity Graph Construction
In the task of semantic segmentation, each superpixel can
be represented by multiple features (e.g., color, texture, and
shape) which are heterogeneous although they are all visual
descriptors. Each kind of visual feature describes the super-
pixel from a certain view, and heterogeneous features play
different roles in describing various patterns, e.g., color and
texture features for the concept ’water’ while the shape fea-
ture for ’book’. We should consider learning from data with
multiple views to effectively explore and exploit multiple
representations simultaneously. For the same pair of super-
pixels, similarities measured by different visual features may
not be consistent. Our goal is to learn an appropriate multi-
view similarity which is as consistent with all similarities
measured in different visual spaces as possible.

Inspired by (Roweis and Saul 2000), we assume that all
superpixels lie on a locally linear embedding such that each
superpixel can be approximately reconstructed by a linear
combination of its neighbors. Intuitively, for a certain su-
perpixel, those more similar samples will contribute more in
reconstructing it; therefore, it is reasonable to look on recon-
structing weights as the affinities between superpixels. Thus,
we learn the multi-view affinity graph via an optimization
problem formulated as follows:

min
W 1,...WK

f(W 1, . . . ,WK) =

K∑
k=1

‖XkW k −Xk‖2 + α
K∑

k=1

Nl∑
i,j=1

(W k
i,j − Li,j)

2

+ β

 N∑
i,j=1

√√√√ K∑
k=1

(W k
i,j)

2

2

+ γ

K∑
k=1

‖W k>W k‖1

s.t. W k
i,j ≥ 0,

N∑
i=1

W k
i,j = 1, (k = 1 . . . ,K)

(1)

where W k ∈ [0, 1]N×N (k = 1, . . . ,K) denotes the adja-
cency matrix of affinity graph whose entry W k

i,j measures
pairwise similarity between superpixels represented by the
k−th visual feature.

In the first term of Eq.(1), Xk = [xk1 , . . . , x
k
N ] whose

j−th column corresponds to the j−th superpixel repre-
sented by the k−th visual feature, and ‖XkW k −Xk‖2 =∑N

j=1 ‖
∑N

i=1W
k
ijcol(X

k, i)−col(Xk, j)‖ which is the re-
construction error expressed in the Frobenius matrix norm.
By constraining that W k

j,j = 0(j = 1, . . . , N), each su-
perpixel can be estimated as a linear combination of other
superpixels, which also avoids the case that the optimal W k

collapses to the identity matrix. As mentioned before, we

learn the affinities between superpixels by using the recon-
structing weights.

In the second term, Li,j ∈ {1, 0} measures the similari-
ties between superpixels in the semantic space. More specif-
ically, for those labeled superpixels, if superpixel i has the
same category as superpixel j then Li,j = 1 otherwise
Li,j = 0. Therefore, it is of significance to learn the ap-
propriate W k such that the gap

∑Nl

i,j=1(W k
i,j − Li,j)

2 be-
comes narrow. Minimizing the second term of Eq.(1) helps
to reduce the semantic gap by achieving the consistency of
similarities between semantic space and visual space.

Minimizing the third term of Eq.(1) is equivalent
to encouraging that affinities across different graphs
should be consistent to the largest extent. Actually, if
W 1,W 2, . . . ,WK are concatenated together in the follow-
ing form:

W̃ =


W 1

11 W 1
12 . . . W 1

NN
W 2

11 W 2
12 . . . W 2

NN
...

...
. . .

...
WK

11 WK
12 . . . WK

NN



then the third term of Eq.(1) is just the L2,1 − norm of W̃ ,
denoted by ‖W̃‖2,1, i.e., L2 − norm for column firstly, and
L1 − norm for row secondly. Minimizing the L2 − norm
for each column makes the elements in the same column as
equal as possible, while minimizing L1 − norm results in
sparsity of W̃ , and then, all W k(k = 1, . . . ,K) are sparse
consequently.

In the last term of Eq.(1), ‖W k>W k‖1 =∑N
i,j=1 col(W

k, i)>col(W k, j), herein col(W k, j) denotes
the j−th column of W k. Since W k

i,j ∈ [0, 1], minimizing
‖W k>W k‖1 encourages col(W k, i) and col(W k, j) to be
both sparse such that their inner product tends to be zero;
what’s more, minimizing ‖W k>W k‖1 also enforces W k

i,j
to be zero if the similarity between superpixels is too small
such that W k is block-diagonal when the superpixels are
re-ordered(Wang et al. 2011).

Optimization

In the cost function Eq.(1), W k(k = 1, 2, . . . ,K) are all
N × N matrices, thus the computational complexity in op-
timization is O(K × N2). Fortunately, it can be converted
intoK×N sub-problems each of which operates on a single
column of W k with the complexity of O(N). Since these
sub-problems are independent of each other after conver-
sion, parallel computation is carried out to accelerate the op-
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timization process. Eq.(1) can also be expressed as follow:

f(W 1, . . . ,WK) =

K∑
k=1

{
α

N∑
i,j=1

τij((W
k
ij)

2 − 2W k
ijLij + (Lij)

2)+

(
N∑
j=1

xk>j xkj −
N∑
j=1

2xk>j

N∑
i=1

xkiW
k
ij +

N∑
j=1

Pk∑
p=1

(
N∑
i=1

xki (p)W k
ij)

2

)
+ γ

N∑
i=1

(
N∑
j=1

W k
ij)

2

}
+

β

 N∑
i,j=1

√√√√ K∑
k=1

(W k
ij)

2

2

(2)

where τij = 1, for i, j = 1, . . . , Nl, and τij = 0, for the rest.
xki (p) denotes the p−th element of xki . Like (Zhang et al.
2013), we use Cauchy-Schwarz Inequality (

∑n
i=1 aibi)

2 ≤
(
∑n

i=1 a
2
i )(
∑n

i=1 b
2
i ) to obtain the upper bound of the cost

function:

f(W 1, . . . ,WK) ≤
K∑

k=1

N∑
j=1

{
xk>j xkj + α

N∑
i=1

(Lij)
2τij +

N∑
i=1

{
− 2(xk>i xkj + αLijτij)W

k
ij +(

β
1

Qij
+
∑
p=1

(xki (p))
2

T k
ijp

+ γ
1

P k
ij

+ ατij

)
(W k

ij)
2

}}
(3)

Eq.(3) holds for any T k
ijp, P

k
ij , Qij ∈ (0, 1) satisfying∑N

i=1 T
k
ijp = 1,

∑N
j=1 P

k
ij = 1,

∑N
i,j=1Qij = 1.

Specifically, the equality in Eq.(3) holds if and only if

T k
ijp =

(xki (p)W k
ij)

2∑N
j (xki (p)W k

ij)
2

; P k
ij =

(W k
ij)

2∑N
i (W k

ij)
2

;

Qij =

∑K
k=1(W k

ij)
2∑N

i

∑N
j

∑K
k (W k

ij)
2

;

(4)

Therefore, under the condition of Eq.(4), the original opti-
mization problem is equivalent to minimizing the right side
of Eq.(3), which can be furthermore divided into K × N
independent quadratic programming sub-problems:

min
Wk

.j

1

2
W k>
·j Λk

jW
k
·j +Bk>

j W k
·j

s.t. W k
·j � 0, 1>W k

·j = 1;

(5)

whereW k
.j denotes the i−th column ofW k whose element is

non-negative, and 1 denotes an all-one vector. Λk
j ∈ RN×N

is a diagonal matrix whose i−th element on the diagonal
λii = 2

(
β 1

Qij
+
∑

p
(xk

i (p))
2

Tk
ijp

+ γ 1
Pk

ij

+ατij
)
. Bk

j ∈ RN×1,

with the i−th element bi = −2
(
xk>i xkj + α Lijτij

)
, i, j =

1, . . . , N . Such quadratic programming problem can be eas-
ily solved via the existing software solver MOSEK1. By
iteratively solving the optimization problem in a flip-flop
manner, i.e., updating T k

ijp, P
k
ij , Qij with Eq.(4) and updat-

ing W k
ij with Eq.(5) alternatively until converge, we obtain

the optimal affinity matrices: Wk, k = 1, 2, . . . ,K, then
compute multi-view affinity graph as the average: W ∗ =
1
K

∑K
k=1(W k).

Label Inference

Based on the learned multi-view affinity graph, we can in-
fer label for each superpixel of unlabeled images by esti-
mating a label confidence matrix H , whose column hj cor-
responds to the label confidence vector for superpixel xj .
The label confidence matrix H should be consistent with
the learned multi-view affinity graphW ∗, which encourages
similar patches to take the same label over the entire dataset.
At the same time, spatial relationship between superpixels
should be leveraged as well. If two superpixels xi and xj
are spatially adjacent in the same image, we define Sij = 1;
otherwise Sij = 0. By using W ∗ and S ∈ {0, 1}N×N to-
gether, both appearance similarity and spatial neighborhood
are taken into account in superpixel label inference, which
is formulated as a semi-supervised framework:

min
H
Q(H) =

Nl∑
i=1

‖hi − yi‖2 + θ1

N∑
i,j=1

Sij‖hi − hj‖2

+ θ2

N∑
i,j=1

W ∗ij‖
hi√
Dii

− hj√
Djj

‖2

(6)

where D is a diagonal matrix with Dii =
∑N

j=1W
∗
ij , and

θ1, θ2 > 0 are the trade-off parameters. The first term of
Eq.(6) is the fitting constraint, which means a good label
confidence matrix should be compatible with the ground-
truth of the labeled samples. The second term is to encourage
spatially smooth labelings. The third term is also smoothness
constraint, which contains labeled as well as unlabeled su-
perpixels. The second and the third terms indicate that super-
pixels with neighborhood relationship or similar appearance
tend to share a label. The closed-form of optimal solution
can be obtained as follows:

H∗ =
1

1 + θ1 + θ2
(I− θ1

1 + θ1 + θ2
S

− θ2
1 + θ1 + θ2

D−1/2W ∗D−1/2)−1Y

(7)

Once the optimal label confidence matrix H∗ is estimated,
the label for each superpixel can be easily inferred via a
threshold.

1MOSEK: http://www.mosek.com
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(Shotton et al. 2006) 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 7 58
(Yang, Meer, and Foran 2007) 63 98 90 66 54 86 63 71 83 71 80 71 38 23 88 23 88 33 34 43 32 62
(Verbeek and Triggs 2007a) 52 87 68 73 84 94 88 73 70 68 74 89 33 19 78 34 89 46 49 54 31 64
(Shotton, Johnson, and Cipolla 2008) 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 67
(Ladicky et al. 2009) 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 9 75
(Csurka and Perronnin 2011) 75 93 78 70 79 88 66 63 75 76 81 74 44 25 75 24 79 54 55 43 18 64
(Lucchi et al. 2012) 59 90 92 82 83 94 91 80 85 88 96 89 73 48 96 62 81 87 33 44 30 76
Ours 68 98 92 86 82 96 95 84 85 86 89 94 73 32 99 58 90 82 72 75 26 79

Table 1: The accuracy of our method in comparison with other related competitive algorithms for individual labels on the
MSRC-21 dataset. The last column is the average accuracy over all labels.

Original Image Our ResultsGround Truth Original Image Our ResultsGround Truth Original Image Our ResultsGround Truth

aeroplane

grass

tree building

grass

grass

grass
cow

road

building

car

buildingroad

dog

face

road

road

tree

building

sky

sky tree

Figure 3: Semantic segmentation results of our method in comparison with the ground truth for some exemplary images from
MSRC.

Experiments
We conduct the experiments on two real-world image
datasets MSRC (Shotton et al. 2006) and VOC2007 (Ever-
ingham et al. 2007). On both datasets, we employ the Edge
Detection and Image Segmentation (EDISON) system(Co-
maniciu and Meer 2002) to obtain the low-level segmenta-
tions. To get results from different quantization of images, 9
sets of parameters of the mean-shift kernels were randomly
chosen as (5;5); (5;7); (5;9); (8;7); (8;9.5); (8;11); (12;10);
(12; 15); (12;18). Then the final label prediction for each
pixel can be computed as the harmonic mean of label con-
fidences for multiple superpixels. Parameters α, β, γ are set
by 10-fold cross-validation on the training set of each dataset
for different segmentations. We extract the same visual fea-
tures as in (Ladicky et al. 2009), i.e., Semantic Texton For-
est(STF), color with 128 clusters, location with 144 clusters,
and HOG descriptor(Dalal and Triggs 2005) with 150 clus-
ters.

On MSRC-21 Dataset
The MSRC image dataset contains 591 samples of reso-
lution 320×213 pixels, accompanied with a labeled object
segmentation of 21 object classes. The training, validation
and test subsets are 45%, 10%, and 45% of the whole image
dataset, respectively.

Some examples of the segmentation results of our method
in comparison with the ground-truth are given in Fig.3. Note
that pixels on the boundaries of objects are usually labeled as
background in the ground-truth. Table 1 shows the average
accuracy of our method in compared with the state-of-the-

art methods in (Shotton et al. 2006), (Yang, Meer, and Foran
2007), (Verbeek and Triggs 2007a), (Shotton, Johnson, and
Cipolla 2008), (Ladicky et al. 2009), (Csurka and Perronnin
2011), and (Lucchi et al. 2012). For each category, the best
result is highlighted in boldface. Our method performs bet-
ter than other methods in most cases. Besides the best aver-
age performance, our method achieves the best performance
for some categories, and keeps the second best for many of
the rest. The results in Fig.3 and Table 1 both demonstrate
the effectiveness of our method. In particular, due that our
method learns an appropriate multi-view similarity consis-
tent with various similarities computed by multiple visual
features, it can adaptively select discriminant features, espe-
cially for those categories whose instances are similar in cer-
tain features. For example, the instances of water are more
similar in color and texture, the instances of book are more
similar in shape and texture, and the instances of glass are
more similar in color and texture. It can be seen that our
method achieves more promising results especially on some
categories such as water, sky, book, and glass.

On VOC-2007 Dataset
PASCAL VOC 2007 data set was used for the PASCAL
Visual Object Category segmentation contest 2007. It con-
tains 5011 training and 4952 testing images where only
the bounding boxes of the objects present in the image are
marked, and 20 object classes are given for the task of clas-
sification, detection, and segmentation. Rather on the 5011
annotated training images with bounding box indicating ob-
ject location and rough boundary, we conduct experiments

2871



ae
ro

pl
an

e

bi
cy

cl
e

bi
rd

bo
at

bo
ttl

e

bu
s

ca
r

ca
t

ch
ai

r
co

w

di
ni

ng
ta

bl
e

do
g

ho
rs

e

m
ot

or
bi

ke
pe

rs
on

po
tte

d
pl

an
t

sh
ee

p

so
fa

tr
ai

n

tv
m

on
ito

r
av

er
ag

e

Brookes 6 0 0 0 0 9 5 10 1 2 11 0 6 6 29 2 2 0 11 1 6
(Shotton, Johnson, and Cipolla 2008) 66 6 15 6 15 32 19 7 7 13 44 31 44 27 39 35 12 7 39 23 24
(Ladicky et al. 2009) 27 33 44 11 14 36 30 31 27 6 50 28 24 38 52 29 28 12 45 46 30
(Csurka and Perronnin 2011) 73 12 26 21 20 0 17 31 34 6 26 41 7 31 34 30 11 28 5 50 25
TKK 19 21 5 16 3 1 78 1 3 1 23 69 44 42 0 65 30 35 89 71 31
Ours 65 25 39 8 17 38 17 26 25 17 47 41 44 32 59 34 36 23 35 31 33

Table 2: The accuracy of our method in comparison with other related competitive algorithms for individual labels on the
VOC2007 dataset. The last column is the average accuracy over all labels.

0

0.2

0.4

0.6

0.8

1

building grass tree cow sheep sky aeroplane water face car bicycle flower sign bird book chair road cat dog body boat average

STF Ours- Ours

Figure 4: Comparison of our method ′Ours′ with its degenerated variations of our method denoted by STF and ′Ours−′ on
MSRC-21 dataset. STF uses STF feature only; ′Ours−′ uses the concatenation of all low level-features.

on the segmentation set with the ’train-val’ split including
422 training-validation images and 210 test images, which
are well segmented and thus are suitable for evaluation of
the segmentation task.

The experimental results of our method compared with
other related works are given in Table 2. The last column of
2 shows that the average accuracy of our method is better
than all the others. For individual concepts, the performance
of our method is better than or comparable to the state-of-
art methods in most cases. Our method performs far better
than the only segmentation entry (Brookes)(Everingham et
al. 2007). Although our method uses much fewer training
images than TKK(Everingham et al. 2007) which is trained
by 422 training-validation images as well as a large num-
ber of annotated images with semantic bounding boxes from
5011 training sample, our method outperforms TKK in av-
erage. Evaluations on both MSRC and VOC2007 datasets
sufficiently demonstrate the effectiveness of our method.

Multi-Graph Consistency Evaluation
To illustrate the significance of our method in capturing con-
sistency among multiple visual feature spaces, we also eval-
uate two degenerated variations of our method denoted by
STF and ′Ours−′:
• STF: our method using Semantic Texton Forest(STF) fea-

ture only;

• ′Ours−′: our method using a simple concatenation of all
low level-features without capturing inter-feature consis-
tency.

The comparison of performance is shown in Fig.4. In most
cases, ′Ours−′ outperforms STF by combining multiple
features; ′Ours′ outperforms both STF and ′Ours−′ by
effectively leveraging consistency of similarities across mul-
tiple visual feature spaces. In 16 out of 21 categories, ’Ours’
achieves the best accuracy.

Conclusion
We address the problem of image semantic segmentation by
encouraging superpixels with similar appearance or neigh-
boring position to share a label. For each superpixel, differ-
ent kinds of features are extracted. The sparse affinity matrix
measuring similarity between superpixels for multiple fea-
ture channels can be learned by capturing the consistency
between semantic space and multiple visual spaces. As for
the future work, we plan to extend the proposed method to
hierarchical segmentation, which might be another interest-
ing direction of research.
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