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Abstract 

Visual salience is an intriguing phenomenon observed in 
biological neural systems. Numerous attempts have been 
made to model visual salience mathematically using various 
feature contrasts, either locally or globally. However, these 
algorithmic models tend to ignore the   problem’s  biological 
solutions, in which visual salience appears to arise during 
the propagation of visual stimuli along the visual cortex. In 
this paper, inspired by the conjecture that salience arises 
from deep propagation along the visual cortex, we present a 
Deep Salience model where a multi-layer model based on 
successive Markov random fields (sMRF) is proposed to 
analyze the input image successively through its deep belief 
propagation. As a result, the foreground object can be 
automatically separated from the background in a fully 
unsupervised way. Experimental evaluation on the 
benchmark dataset validated that our Deep Salience model 
can consistently outperform eleven state-of-the-art salience 
models, yielding the higher rates in the precision-recall tests 
and attaining the best F-measure and mean-square error in 
the experiments. 

Introduction 
Automated detection of visual objects in images and videos 
is a subject of primary interest because of its wide 
application in image/video indexing, content-aware editing, 
medical image analysis, intelligent computer-human 
interface, robotic vision, and visual surveillance. 
Researchers in artificial intelligence and computer vision 
have successfully developed a number of methods for 
object detection, such as AdaBoost face detection (Viola 
and Jones 2001), SVM-based human detection (Vedalid et 
al 2009; Dalal and Triggs 2005), and min-cut object 
segmentation (Rother et al 2004). These approaches usually 
depend on training on predefined datasets, or on user input 
such as scribbles or trimaps. However, when no prior 
knowledge of image content is available, unsupervised 
object detection is a hard problem, and it has attracted 
considerable interest from the research community. 

The past decade has seen consistent progress towards 
unsupervised image segmentation and object detection. A 
widely-adopted approach is to consider an image 
principally as a set of hierarchical contours (Arbelaez et al 

2011). This assumes that semantic content and the objects 
usually correspond to specific image structures. Recent 
research (Farabet et al 2013; Kohli et al 2013) has also 
suggested that this hierarchical view of image content may 
be correlated to the deep learning of image structures 
(Hinton et al 2006). In a development of this approach, we 
propose in this paper a Deep Salience model based on 
successive Markov Random Fields (sMRF) for 
unsupervised object detection. Our work is conceptually 
related to the recent pioneering work on hierarchical image 
analysis (Farabet et al 2013; Kohli et al 2013). 

Unsupervised object detection usually leads to the topic 
of visual salience, which stems from psychological research 
on biological visual perception (Koch and Ullman 1985; Itti 
and Koch 2001). The earliest bio-inspired computational 
salience model was proposed by Koch and Ullman (1985), 
where the contrast between visual stimuli (pixels) was 
considered as the origin of salience awareness. A number 
of publications (Itti et al 1998; Ma and Zhang 2003; Harel 
et al 2006; Hou and Zhang 2007; Judd 2009) have followed 
this roadmap to develop their salience models using a 
variety of features. These methods are usually based on 
local contrast and tend to produce higher salience values 
near edges instead of uniformly highlighting salient objects. 
Cheng et al (2011) categorized these approaches as local 
approaches. Recent efforts have been made towards using 
global contrasts, where pixels or regions were evaluated 
with respect to the entire image. Achanta et al (2009) 
proposed a frequency tuned method that defines pixel 
salience using region-averaged contrast. Goferman et al 
(2012) used block-based global contrast. Cheng et al 
(2011) extend   Achanta’s   method   to   region-based salience 
estimation. Perazzi et al (2012) further extend this region-
contrast approach by leveraging superpixels. Jiang and 
Crookes (2012) used mutual information (MI) evaluation 
with a center-surround a priori map for global salience 
estimation. Peng et al (2013) introduced the low-rank 
matrix computation for salience modeling. In summary, 
both local and global methods have been based on 
modeling salience using various visual contrast definitions 
with various features based on pixels, blocks or regions. 

From a biological viewpoint, we consider the conjecture 
that human visual salience is a consequence of the deep 
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propagation of visual stimuli along the human visual cortex 
(Ekstorm et al 2008). Hence, it is a complex procedure 
rather than a simple visual comparison using color contrast. 
To emulate this biological process, we present a Deep 
Salience model using our proposed successive Markov 
Random Fields (sMRF) model. 

In our sMRF model, a fuzzy graph is introduced with a 
Markov Random Field to allow each node to maximize its 
belief by solving the fuzziness of edges. When applied to a 
cascaded multi-scale image pyramid, the pyramid structure 
of multiple-layer MRFs forms successive MRFs (sMRFs) 
which processes the input visual signals via its deep belief 
propagation along layers, while a belief maximization 
procedure is applied to detect salient objects automatically 
from its iterative convergence. Fig.1 shows an example of 
applying our Deep Salience method to a challenging image. 

Successive Image Analysis 
In image structure analysis, hierarchical analysis has been 
effective in tackling various computer vision tasks. Lowe 
(2004) proposed the use of a pyramid computation of DoG 
for multi-scale feature point detection. Sun and Pfister 
(2013) applied a pyramid-based coarse-to-fine approach to 
optical flow and achieved improved accuracy. In these 
methods, images were processed at different scales and the 
computation was carried out hierarchically. In the recent 
research (Arbelaez et al 2011; Farabet et al 2013; Kohli et 
al 2013), images have been considered as a collection of 
hierarchical contours. While hierarchical methods have 
been seen very successful in these challenging vision tasks, 
in this paper we apply this strategy to our visual salience 
analysis for unsupervised object detection. 

In our method, the first step is to compute a pyramid of 
hierarchical images. Usually this can be done by using 
discrete wavelet transform (DWT). Given an input image, 
the 2D DWT computation will result in four components, 
namely LL, LH, HL and HH, as shown in Fig.2-a. In our 
approach, we keep only the LL (low-pass) component of 
each level. Consequently, we obtain a hierarchical pyramid 
of resized images at different resolutions, as shown in 
Fig.2-b. Our Deep Salience method will then take these 
images as input, and perform hierarchical analysis 
successively from the top of the pyramid downwards. The 
proposed coarse-to-fine process is akin to an emulation of 
the human visual system where the input visual signals are 
propagated along the visual cortex from eyes to brain 
(Koch and Ullman 1985; Ekstorm et al 2008). 

Maximum Belief Propagation in MRF 
Markov random fields have been a powerful tool for image 
analysis. Given an undirected graph G = (V, E) and 
observations X={xk} with k∈V  indexed by V, a set of 
random variables Y={yk} forms a conditional random field 

with respect to G  when they satisfy the local Markov 
properties that a variable is conditionally independent of 
any variables that are not its neighbors. Hence, global 
belief propagation over a CRF can then be simplified as 
local belief propagation over cliques. 

Our work starts from the pair-wise MRF model proposed 
by Jegelka and Bilmes (2011). Let V be the set of pixels in 
the image X we want to process, and let the set E contain all 
pairs of neighboring pixels that are edges in the MRF. The 

 
a) An image 

 
b) Our DS result 

 
c) Ground truth 

 
d) Salience maps from several state-of-the-art methods 

Fig.1. A simple example that challenges most state-of-the-
art methods. a) The image; b) Our Deep Salience(DS) 
map; c) Ground truth; d) Results by several state-of-the-art 
salience methods, SR (Hou & Zhang 2007), IT (Itti et al in 
1998), GB (Harel et al 2006), MZ (Ma & Zhang 2003), LC 
(Zhai & Shah 2006), FT (Achanta et al 2009), CA 
(Goferman et al 2010), and RC (Cheng et al 2011). Here  
the ‘jet’  color  map  is  applied  to  visualize  the results. 

      
a) Successive DWT         b) Hierarchical pyramid    

Fig.2. Hierarchical image analysis with wavelet pyramid. 

 
Fig.3 The proposed successive Markov random fields allow 
multi-layer deep belief propagation downwards along 
directed edges. 
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label of each pixel in V is given by a binary random 
variable yi whose labels (0/1) denote the label 
“foreground”/“background”. 

Considering a clique of two vertices i and j, if the 
confidence on the i-th vertex is known as Pi, the belief 
propagation along the clique edge can be inferred as a MAP 
(maximum a posteriori) formula: 

ijji PP T              (1) 

Tij denotes the conservative probability from the jth vertex 
to the ith vertex, which can be simply formulated with the 
feature difference between the ith and jth pixels: 

� �jiij xx � \T        (2) 

Here, ψ(·) denotes a penalty function when the belief is 
propagated across two color-different pixels. For example, 
given a pixel k0 with a confidence P0, a neighbor k1 with 
exactly the same color should have a confidence P1=P0 
with Tij=0. 

A node in a MRF may have multiple edges. Typical 
MRF methods using mean field continuum approximation 
(Yedidia et al 2005) may easily bleach the edges in an 
image and allow the belief propagation to cross region 
borders. To address this problem, we introduce a maximum 
belief propagation algorithm. We consider all edges of a 
node as a potential fuzzy edge in a fuzzy graph (Kosko 
1986; Blue and Bush 2002; Salzenstein and Collet 2006) 

� �EVG ~,~
 . Hence, the pixel may have multiple choices of 

likelihood Pi
j inferred from different edges, and the 

fuzziness can be described by: 
¦¦
��

  
Cj

ijjij
Cj

j
iij PfPfFi T        (3) 

Here, fij stands for the fuzziness of the j-th fuzzy edge. To 
maximize the belief in propagation, we apply a winner-
takes-all strategy in the local iteration over random fields, 

°̄
°
®
­  

 
                 otherwise ,0

maxarg when,1 j
i

jij

P j
f     (4) 

In the above winner-takes-all strategy, a node always 
favors the edge with the maximum confidence and 
dynamically sets other fuzzy edges as disconnected. 

A major advantage of the above maximum belief 
propagation (MBP) algorithm is to guarantee that belief 
propagation in MRF will not blur the region borders in an 
input image. Besides, by disconnecting some edges 
dynamically, MBP inference problem is simplified into a 
local search of the winner in the fuzzy set of neighbors. In 
an analogy, the above MBP is more like a quantum 
mechanism (Birkhoff and Neumann 1936) that allows each 
node to switch between multiple quantum energy levels, 
while each fuzzy edge stands for a specific quantum energy 
level. For our convenience, we refer to our above simple 
implementation of MBP random fields as Quantum 
Random Fields (QRF) in this paper. Fig.5 shows the 
different belief propagation results in our Deep Salience 
model using typical MRF and our QRF. It is shown that 
QRF can easily converge on the salient object quickly. 

Deep Belief Propagation via Successive MRF 

Successive Markov Random Field 
In research in unsupervised image segmentation and object 
detection, a common approach is to consider an image as a 
set of hierarchical contours (Arbelaez et al 2011). Recent 

   
a) Sample image b) Level 4 c) Level 3 

   
d) Level 2 e) Level 1 f) Level 0 

Fig.4. Deep Salience: Successive salience analysis via 
deep belief propagation over sMRF. 

 
Images QRF (0.1sec)  MRF (3.5sec) 

Fig.5. DS modeling with sMRF using our QRF or 
standard MRF at each layer. QRF-based DS takes only 
0.1s and highlights the foreground object, while typical 
MRF based DS needs longer time (3.5s) and blurs the 
region borders. 

 
Images One-layer MRF sMRF 

Fig.6. sMRF vs one-layer MRF: sMRF helps overcome 
the texture problem by its deep belief propagation. 
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research (Farabet et al 2013; Kohli et al 2013) has also 
suggested that this hierarchical view of image content may 
be correlated to the deep learning of image structures. 

As mentioned above, a pyramid of hierarchical images 
can be obtained from an input image using DWT, as shown 
in Fig.2. Each image in the pyramid can be mapped as an 
observation for each layer of successive MRF (sMRF). 
Fig.3 shows the concept of sMRF, where fuzzy edges not 
only present in one layer of random fields, but also connect 
a layer to the previous and next layers. Hence, the belief 
propagation is carried out down the pyramid of random 
fields. For a node in our successive QRF (sQRF), its inter-
layer edges can be added into the search of its maximum 
belief, 
  },{maxarg

,

"

"
i

j
i

j
m PPj          (5) 

Here "
iP  is the estimated belief propagated from the nodes 

in other layers. In this work, we assume that the inter-layer 
connection is unidirectional so that the belief can only 
propagate from the upper layer to its lower layer. This 
implies an inheritance of the confidence map hierarchically 
down the pyramid from coarse to fine. 

Starting from the top level of sMRF, we carry out the 
maximum belief propagation process (in Eq.(5)) iteratively 
over each layer of our quantum random field to solve its 
fuzziness. The computation on the top image (the one 
resized to 1/2k) gives the result as the kth level belief map 
Gk. Then the belief map is propagated to the next layer 
down the pyramid. 

Fig.4 shows an example of sMRF. Fig.4-a shows the 
sample image where, similar to Judd’s   work   (2009), we 
assume that most pixels on the borders are taken as 
background (PB=1). With this priori, the belief is then 

propagated based on the coarse observation from the top 
level, and successively downward to the lower sMRF 
layers. It can be seen that the resolution of the confidence 
maps increases and the details are gradually added via deep 
belief propagation. In our experiment, we use SF method 
(Perazzi et al 2012) to initialize the border and keep non-
salient pixels as initial background. 

The benefits of sMRF over single-layer MRF stem from 
its successive analysis of hierarchical image structures. It 
focuses on global structures at its initial coarse level and 
gradually focuses on local details in the subsequent levels. 
Therefore, it can allow belief propagation to go across 
texture regions easily. Fig.6 shows several examples 
comparing sMRF against single-layer MRF. We can see 
that the belief propagation in single-layer MRF gets stuck 
in texture-like regions in the background, while sMRF can 
overcome these local textures and highlight the salient 
foreground objects successfully in these test images. 

Computing Complexity 
Usually, the computing complexity of MRF is not readily 
predictable. However in our sQRF, the problem can 
become much easier. While the belief propagation is 
simplified as a local maximum problem in Eq.(5), the 
computing time is proportional to the range for a belief to 
propagate from the source to the pixel, which is related to 
the number of pixels. As shown in Fig.7, our experiment 
validated that the convergence time of sQRF is nearly 
proportional to the number of pixels, namely O(N). 

It is noted that sMRF needs to converge on multiple 
layers. However, the number of nodes has been reduced to 
1/2k, and the search space at the top level of the pyramid is 
then drastically reduced to (1/2k)2 as well. While the sMRF 
iteration moves downwards, the pre-converged confidence 
map is inherited by the next level and hence it can be 
expected to help reduce the total convergence time. Table I 
gives the experimental results of the computation times at 
different layers. The computing time was measured for a 
MATLAB solution. We can see that the single-level MRF 
took the longest time to converge (210 ms), while 5-level 
sMRF needs only 23 ms in total for all five levels. From 
this comparison we can see that successive MRF not only 
helps overcome texture background, but also helps reduce 
the computing time. 

Experiments 
We tested our method on the widely used object dataset ---
the EPFL object dataset (Achanta et al 2009), which is 
publicly available and the ground truth of foreground 
objects is provided as binary masks. Most state-of-the-art 
methods have been reported with their benchmark results 
on this dataset. The EPFL dataset has the same images as 
MSRA-1000 except that it takes segmented objects as 
ground truth instead of gaze points from psychological 

 
Fig.7. Computing time versus the number of pixels N. 

Table I. Convergence time vs the number of layers (ms) 
Layers 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 

1st 210 103 78 61 12 
2nd -- 29 16 14 4 
3rd -- -- 6 3 3 
4th -- -- -- 2 2 
5th -- -- -- -- 2 

Total 210 132 100 80 23 
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measurement. Hence, the dataset is well suited to our 
purpose of unsupervised object detection. 

Our algorithm was implemented in MATLAB. We ran 
our code on the dataset, and compared the results against 
11 state-of-the-art unsupervised visual salience models. 
The methods for comparison include: SR (Hou & Zhang 
2007), IT (Itti et al in 1998), GB (Harel et al 2006), MZ 
(Ma & Zhang 2003), LC (Zhai & Shah 2006), FT (Achanta 

et al 2009), CA (Goferman et al 2010), HC and RC (Cheng 
et al 2011), MI (Jiang & Crookes 2012) and SF (Perazzi et 
al 2012). The following are our experimental results. 

Visual Comparison 
Fig.8 provides a visual comparison of the various methods 
using a number of sample images. Most of the state-of-the-
art methods failed to find the salient objects in these test 
images. In comparison, we can see that our Deep Salience 
method using sMRF can robustly highlight salient objects 
from their background. 

Fig.9 shows several more examples. By applying 
thresholds of 2*mean and 3*mean respectively to the 
salience maps, we have firstly identified object-like regions 
(shown as red rectangles) and then, even further, attempted 
to identify their salient parts (shown as green rectangles).  

The success of our sQRF-based object detection can be 
attributed to the use of hierarchical analysis that is able to 
capture the global spatial structures of an image. However, 
we note that we did not build any contrast-based salience 
model explicitly. Instead, object detection is a natural 
outcome of maximizing the belief iteratively over the sQRF. 

Statistic Evaluation 
Fig.10-a shows the typical statistical results of precision-
recall curves for the EPFL dataset. The curves are 
computed in the same way as reported by previous work. 
Here, precision corresponds to the percentage of salient 
pixels correctly assigned, while recall rate corresponds to 
the fraction of detected salient pixels in relation to the 
number of ground truth salient pixels. As shown in Fig.10-a, 
our method achieves the best overall precision and recall 
rates of all the compared methods, and consistently 
outperforms previous salience models in term of precision 
and recall rates. It is also observed that the DS curve goes 
up much steeper than other methods. 

 
Fig.8. Visual comparison of salience maps. From left to right columns: original images; ground truth; salience maps from  
1) SR; 2) IT; 3) GB; 4) MZ; 5) LC; 6) FT; 7) CA; 8) HC; 9) RC; 10) SF;  and our Deep Salience (DS) maps. It can be seen 
that our DS model can robustly highlight salient objects in images where other algorithms failed. 

 

 

 

 

 
  a) Input images       b) DS maps     c) Detected objects 

Fig.9. Unsupervised object detection with our Deep 
Salience model. Red rectangles denote the object-like 
regions, and green ones highlight the most salient parts. 
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Fig.10-b shows the results of F-measure, which 
combines both precision and recall to evaluate salience cut. 
Here, we use the adaptive threshold similar to that proposed 
by Achanta (2009), defined as twice the mean salience of 
the image. Appling this threshold to the salience map, we 

can get the precision and recall of its binary cut, and then 
the F-measure can be subsequently computed by: 
  

� �PrecisionRecall
RecallPrecision

�
u

 F         (6) 

From Fig.10-b, we can see that our Deep Salience achieves 
the best F-measure score than all the other methods in the 
comparison. 

Precision and recall measures do not consider true 
negative salience assignment, i.e., the number of pixel 
correctly marked as non-salient. Moreover, the quality of 
the weighted, continuous saliency maps may be of higher 
importance than the binary masks from psychological view 
of visual attention. To measure how successful a method is 
in the detection of non-salient background regions, we also 
carried out the comparison using mean square error (MSE) 
between the continuous saliency map S (before 
thresholding) and the binary ground truth G. MSE measure 
is then defined as, 

  � � � �¦¦ �
u

 
x y

yxGyxS
HW

MSE 2,,1  (7) 

where W and H are the width and the height of the 
respective saliency map and ground truth image. 

Figure 11 shows that our method also outperforms other 
approaches in terms of the MSE measure, which provides a 
better estimate of the dissimilarity between the saliency 
map and ground truth. Results have been averaged over all 
images in the test dataset. 

Conclusion 
In conclusion, a new salience model has been successfully 
developed for unsupervised object detection via its deep 
belief propagation along the pyramid of successive Markov 
Random Fields (sMRF). The hierarchical structure of 
sMRF helps overcome the problem of background textures 
in belief propagation and also speeds up the convergence in 
multi-layer MRFs. It is also worth noting that our 
maximum belief propagation in QRF differs from typical 
mean-field approximation in that it employs a dynamic 
selection of fuzzy edges in its random fields, making it 
possible to guarantee that the belief propagation will not 
bleed over region borders in an image. Our benchmark 
experiments successfully validated that the proposed Deep 
Salience method consistently achieved better rates in 
precision-recall curves, and also attained better scores in 
both F-measure and MSE tests. 

This work was initially inspired by the observed fact that 
visual salience arises during the propagation of visual 
stimuli along human visual cortex. Unlike most previous 
methods that are based on algorithmic math computation of 
various global contrasts, our salience estimation is a natural 
outcome of visual signal propagation over sMRF, which is 
more like the way how our human vision system processes 
the input visual signals. 

 
a) Precision-recall test 

 
b) F-measure test 

Fig.10. Evaluation on the EPFL database. a) Precision-
recall test: DS model consistently achieved the best 
prevision/recall rates; b) F-measure test: DS attained the 
best scores in F-measure and recall, and the precision 
after thresholding was exceeded only by RC and SF. 

 
Fig.11. Mean square error (MSE) test. 
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