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Abstract

Automatically solving geometry questions is a long-
standing AI problem. A geometry question typically in-
cludes a textual description accompanied by a diagram.
The first step in solving geometry questions is diagram
understanding, which consists of identifying visual el-
ements in the diagram, their locations, their geometric
properties, and aligning them to corresponding textual
descriptions. In this paper, we present a method for di-
agram understanding that identifies visual elements in a
diagram while maximizing agreement between textual
and visual data. We show that the method’s objective
function is submodular; thus we are able to introduce
an efficient method for diagram understanding that is
close to optimal. To empirically evaluate our method,
we compile a new dataset of geometry questions (tex-
tual descriptions and diagrams) and compare with base-
lines that utilize standard vision techniques. Our experi-
mental evaluation shows an F1 boost of more than 17%
in identifying visual elements and 25% in aligning vi-
sual elements with their textual descriptions.

1 Introduction
Designing algorithms that can automatically solve math and
science questions is a long-standing problem in AI (Feigen-
baum and Feldman 1963). In this paper, we focus on geom-
etry questions where the question text is accompanied by a
diagram. More specifically, we address the problem of dia-
gram understanding in geometry questions (Figure 1), a pre-
lude to more sophisticated diagram understanding in scien-
tific textbooks.

Diagram understanding is the problem of discovering vi-
sual elements, their locations, their geometric properties in
the diagram, and their alignment to text. For example, un-
derstanding the diagram in Figure 1 entails identifying the
location and the area of the circle O, secant AB, their ge-
ometric relations, and aligning pixels in the diagram to the
corresponding textual mentions (color coded in the figure).

By and large, previous work in diagram understanding
has studied the problems of text analysis and diagram un-
derstanding separately. Several algorithms have identified
individual shapes such as circles (Zhang and Sun 2011),
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In the diagram, secant 
AB intersects circle O 
at D, secant AC 
intersects circle O at 
E, AE = 4, AC = 24, 
and AB = 16. Find AD. 
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Figure 1: Diagram understanding: identifying visual elements in
the diagram and aligning them with their textual mentions. Visual
elements and their corresponding textual mentions are color coded.
This Figure is best viewed in color.

lines (Climer and Bhatia 2003), triangles or rectangles (Li
et al. 2013; Jung and Schramm 2004) from images, but ig-
nore other shapes in the diagram, and do not attempt to dis-
cover them as we do. Furthermore, little attention has been
paid to identifying shapes in a diagram by also utilizing the
corresponding text.

Inspired by the growing body of work that has coupled
textual and visual signals (e.g., (Gupta and Mooney 2010)),
we present a novel method G-ALIGNER for diagram under-
standing in geometry questions by discovering visual ele-
ments and aligning them with their corresponding textual
mentions. Our G-ALIGNER method identifies visual ele-
ments by maximizing the coverage of explained pixels of the
diagram, the agreement between visual elements and their
textual mentions, and the coherence of the identified ele-
ments. G-ALIGNER can identify a wide range of shapes in-
cluding lines, circles, polygons, and other shapes composed
from visual primitives (see Section 5).

We show that G-ALIGNER’s objective function is sub-
modular. This observation allows us to devise a greedy but
accurate approximation procedure to identify visual ele-
ments in diagrams and align them with text. G-ALIGNER
has another key advantage in being much more robust than
standard vision techniques like the Hough transform (Stock-
man and Shapiro 2001). Whereas standard vision techniques
require parameter tuning when moving from one diagram to
the next, based on factors like the number of shapes in the
diagram and their size, G-ALIGNER does not.

To evaluate G-ALIGNER, we manually compiled a dataset
of geometry questions (textual descriptions and diagrams)
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that includes ground truth labels for visual elements and
their correct alignments to textual mentions. To our knowl-
edge, no comparable dataset existed previously. We evaluate
G-ALIGNER on two tasks of identifying visual elements and
aligning them to mentions in text. Our experiments show
that for both tasks G-ALIGNER significantly outperforms
baselines that use standard vision techniques. Moreover, our
experiments show the benefit of incorporating textual infor-
mation.

Our contributions are three-fold: (a) We present
G-ALIGNER, a method for diagram understanding that both
discovers visual elements in diagrams and aligns them to
textual mentions; (b) We introduce a submodular optimiza-
tion formulation and a greedy but accurate approximation
procedure for diagram understanding; (c) We introduce a
new dataset for geometry questions that includes ground
truth labels for visual elements and their alignment to textual
mentions. Our experiments show improvement of at least
25% in F1 over baselines in identifying visual elements, and
of 17% in aligning visual elements to textual mentions.1

2 Related Work
Diagram understanding has been explored since early days
in AI (e.g., (Srihari 1994; Lin et al. 1985; Ferguson and
Forbus 1998; Hegarty and Just 1989; Ferguson and For-
bus 2000; Novak 1995)). Space does not allow comprehen-
sive review of original attempts at the problem. We refer
interested readers to (O’Gorman and Kasturi 1995). Most
previous work differ from our method because they ad-
dress two problems of geometry understanding and text
understanding in isolation. Our paper is related to early
work on coupling over textual and visual data (Bulko 1988;
Novak and Bulko 1990; Srihari 1994), however these meth-
ods assume that the visual primitives of diagrams are manu-
ally identified. This paper aims at revisiting the problem of
diagram understanding by coupling two tasks of visual un-
derstanding of diagrams and detecting alignments between
text and diagrams.

The most common approach to diagram understanding
is a bottom up method where primitives can be linked to-
gether (Lin and Nevatia 1998) to form larger elements such
as rectangles (Li et al. 2013) or general shapes (Moon, Chel-
lappa, and Rosenfeld 2002). Using Hough transform is an-
other popular alternative in detecting visual elements (Zhang
and Sun 2011; Jung and Schramm 2004). What is common
among almost all conventional methods of visual element
identification is thresholding of a scoring function that de-
termines the existence of visual elements. Although being
considered as a well studied subject, our experiments re-
veal that the thresholding step hinders applications of such
techniques on real-world geometry questions. Our data sug-
gests that there is no single threshold that results in a reliable
discovery of visual elements across different diagrams. In
this paper, we propose a method that initially overestimates
the visual elements, but then benefits from submodular opti-
mization coupled with textual information to home in on the

1Our dataset and a demo of G-ALIGNER are publicly available
at:http://cs.washington.edu/research/ai/geometry

correct elements.
Coupling visual and textual information has recently at-

tracted attention in both vision and NLP (Farhadi et al. 2010;
Kulkarni et al. 2011; Gupta and Mooney 2010). We build on
this powerful paradigm, but utilize it for the more manage-
able task of understanding diagrams in geometry questions.
Understanding these diagrams is more manageable because
diagrams are less ambiguous, expose less visual variance,
have smaller vocabulary of elements than images typically
studied in machine vision. This easier task allows us to have
more reliable estimates of visual elements and focus on in-
teractions between textual mentions and visual elements.

3 Problem Definition
This paper addresses the problem of understanding diagrams
(Figure 1) by coupling discovering visual elements in the
diagram with aligning them with textual mentions. Before
giving the formal description of the problem, we first define
keywords that we use throughout the paper.

Definition 1. A primitive is a line segment or a cir-
cle segment (arc) extracted from the diagram. The set of
all primitives extracted from a diagram image is L =
{L1, L2, ..., Ln}.

Definition 2. A visual element is a combination of primi-
tives that has specific properties. For instance, a triangle is
a visual element that consists of three connected lines in a
specific way. The vocabulary of all visual elements and their
corresponding geometric properties is represented with V .
The primitives in V includes: line, segment, chord, diam-
eter, secant, tangent, radius, circle, arc, point, intersection,
triangle, rectangle, trapezoid, square, altitude, base. For their
geometric properties, please refer to our project web page.

Definition 3. A textual mention is a word or phrase that
corresponds to a visual element. For instance, the word
circle is the textual mention of the visual element circle.
The set of all textual mentions extracted from the question
is T = {T1, T2, ..., Tm}.

The input to our method is an image of a diagram with
non-white pixels D accompanied with the text of the ques-
tion that includes textual mentions T . The output is a sub-
set of primitives along with their alignments to textual men-
tions. Figure 1 shows examples of detections and alignments
established by our method.

4 Optimization for Primitive Identification
and Alignment

Our key insight is to benefit from coupling textual and visual
information available in geometry questions. This problem
is a search for the best subset L̂ of all initial primitives L
extracted from the diagram. An ideal subset L̂ should con-
tain primitives that: (1) explain all important pixels in the
diagram, (2) are visually coherent, and (3) form visual ele-
ments that align well with textual mentions in the question.
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4.1 Formulation
We first intuitively define a set function F that measures the
quality of a subset L̂ based on the above properties (Equa-
tion 1). We then introduce the formal definition (Equation 2).

First, F has a component P to ensure that the ideal subset
L̂ has good coverage of the diagram image. That is, most of
the non-white pixels in the diagram D should be explained
by the subset of primitives L̂.

Second, F has a component C to encourage the selec-
tion of primitives L̂ that can form a bigger and coherent
visual element. This can be encoded by the visual agree-
ment between primitives in terms of distances between iden-
tified primitives in L̂ and the actual corners C (corners are
extracted from the diagram image and explained in Sec-
tion 5.1).

Third, F has a component S to model the alignment be-
tween textual mentions T in the question and visual ele-
ments discovered from the diagram.

For any given subset L̂ ⊆ L, we define:

F(L̂,D, T ) = P(D, L̂) + C(C, L̂) + S(T, L̂) (1)

where D is the diagram image, T is the set of all textual
mentions in the question. The best subset is the one that
maximizes the set function F .

Here, we present an optimization for identifying primi-
tives and aligning them with textual mentions. We introduce
a binary matrix W ∈ {0, 1}|L|×|T | where Wi,j identifies
whether the ith primitive li is aligned with the jth textual
mention Tj , or not. In particular, each row i in the identi-
fier matrix W represents textual mentions that include the
primitive li, and each column j in the identifier matrix rep-
resents primitives that are aligned with the textual mention
Tj . Therefore, a matrixW can represent both the set of prim-
itives as well as alignment between textual mentions and vi-
sual elements.

We reformulate the problem of searching for the best
subset L̂ that maximizes F in Equation 1 as the problem
of finding an identifier matrix W ∈ {0, 1}|L|×|T |. Opti-
mizing for Ŵ results in a unified solution for both prob-
lems of primitive identification and alignment. In this set-
ting, L̂ = L × (Ŵ × 1|T |×1) where the binary vector
Ŵ × 1|T |×1 represents what primitives in L are included
in Ŵ . Therefore, P(D, L̂) in Equation 1 is represented as
P(D,L × (Ŵ × 1)) in the new setting. Finally, the opti-
mization in equation 1 is reformulated as follows:

F(W,L,D, T ) = (2)
P(D,L× (W × 1)) + C(C,L× (W × 1)) + S(T,W )

The best subset of primitives and alignments are derived
by maximizing for the identifier matrix Ŵ = argmaxW F .
Here we formally define each component in the equation.

Definition 4. LetD be the set of pixels in the diagram, L be
the set of all the primitives initially identified in the diagram,
W be the identifier matrix, and L̂ = L× (Ŵ ×1) be the set
of identified primitives.

• Coverage function P: If DL̂ represents the set of pixels
covered by the identified primitives L̂ then P : D × L→
R is P(D, L̂) = |DL̂|

|D| .
• Visual coherence function C: LetC be the set of corners

initially detected in the diagram. We consider a corner c ∈
C to be matching, if there exists a point e ∈ DL̂ that is
close enough to the detected corner c (i.e., |c − e| < ε
for a fixed ε). If CL̂ is the set of matched corners, then
C : C × L→ R is C(C, L̂) = |CL̂|

|C| .
• Alignment constraint function S: Let T be the set of

textual mentions in the text of the question. The vocabu-
lary V consists of geometric descriptions of each visual
element. For example, Circle corresponds to the set of
points that have the same distance to the center, etc. A
textual mention in the text is aligned if our method can
find a corresponding model from the primitives. For ex-
ample, to align a textual mention like Triangle ABC,
our method needs to find three lines that mutually inter-
sect at corners close to labels A, B, and C in the diagram.2
A visual element like a triangle can be textually described
in multiple different ways. For example, Triangle
ABC or three lines AB, BC, AC. To avoid redundancy
between the visual elements, we need to penalize our
model for predicting overlapping visual elements. We de-
fine redundancy between two lines l1, l2 as a function of
the intersection of the projection of l2 to l1 over their
union. For arcs we do the same with the convex area of
the arcs.
If TŴ is the set of textual mentions covered in Ŵ , and rŴ
is the redundancy among the primitives in Ŵ that are not
mentioned in TŴ then S : T ×W → R is S(T, Ŵ ) =
|TŴ |
|T | − rŴ .

Optimizing Equation 2 is a combinatorial optimization
that requires 2|L| evaluations of F . In the next section we
show how to optimize Equation 2.

4.2 Optimization
Optimizing for Equation 2 is NP-hard by reduction from
weighted set cover problem. However, the objective function
is submodular. This means that there exists a greedy method
that can accurately approximate the optimal solution.
Lemma 1. The objective function F in Equation 2 is sub-
modular.
Proof sketch. To show that the objective F in Equation 2 is
submodular we need to show that for L′′ ⊆ L′ ⊆ L, and for
l ∈ L \ L′

F(L′′ ∪ l)−F(L′′) ≥ F(L′ ∪ l)−F(L′) (3)
We compare components of F in two sides of inequality 3:

(|DL′′∪l| − |DL′′ |)/|D| ≥ (|DL′∪l| − |DL′ |)/|D|
(|TL′′∪l| − |TL′′ |)/|T | ≥ (|TL′∪l| − |TL′ |)/|T |
(|CL′′∪l| − |CL′′ |)/|C| ≥ (|CL′∪l| − |CL′ |)/|C|

−(|rL′′∪l − rL′′) ≥ −(|rL′∪l − rL′)

2For finding positions of labels we use an off-the-shelf OCR
package of Tesseract.
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Inputs:
• V : the set of known visual elements and their geometric properties.
• D: the set of non-white pixels in the diagram.
• L̂: the set of identified primitives
1. Initialization (section 5.1)

(a) Initialize primitives L in the diagram
i. Run Hough transform to initialize lines and circles segments
ii. set L← top n picks from the output of the line and circle detection where n is generously high

(b) Initialize corners C in the diagram
(c) Initialize mentions T in the text

2. Optimize Equation 2 to identify primitives and alignments given the diagram and text (section 5.2)
(a) Let L̂← ∅
(b) Repeat

i. For every primitive l ∈ L:
A. Compute G(l)← F(L̂ ∪ l)−F(L̂) using P, C,S from Equation 2

ii. select l← argmaxl∈L G(l)
iii. add l to the set of primitives L̂

(c) until @l ∈ L such that G(l) > 0.

Figure 2: G-ALIGNER: Method for coupling primitive identification and alignment.

(itr1)	
   (itr2)	
  

(itr3)	
  

(input)	
  

Figure 3: This figure shows steps of the method. It starts with an
over-generation of primitives and at each iteration adds a primi-
tive that provides the biggest gain based on Equation 4. Red line
segments correspond to primitives that are added at each iteration.
Blue crosses correspond to detected corners.

Adding a primitive to the smaller set does not decrease the
coverage of pixels, corners, and alignments. The intuition
behind the last inequality is that adding a primitive to a
larger set of primitives will result in more redundancy. Sum-
ming over these inequalities proves that the inequality 3
holds.

The objective function F in Equation 2 is also monotone
until all the textual mentions in the text are covered (adding
new primitives does not decrease the value of the objective
function).

The objective function (Equation 2) is monotone and
submodular. This means that there exist a greedy method
that finds a (1 − 1/e)-approximation of the global opti-
mum (Nemhauser, Wolsey, and Fisher 1978; Sviridenko
2004). In the next section we explain the greedy method to
identify primitives and alignments.

5 Method
Figure 2 explains the steps in our method G-ALIGNER for
diagram understanding. Submodularity of the objective

function implies that we can introduce the following itera-
tive greedy method with proven bounds. We first initialize
the set of possible primitives (Section 5.1, Step 1 in Fig-
ure 2) and then iteratively add the primitives that maximize
gain (Section 5.2, Step 2 in Figure 2). Figure 3 schematically
depicts steps of G-ALIGNER.

5.1 Initialization
The left image in Figure 3 shows an example of initial sets
of primitives from which our method starts.
Initialize primitives: For noise removal, we apply a weak
Gaussian blur on the raw image and then binarize it us-
ing Otsu’s method (Otsu 1975). We then use Hough trans-
form (Stockman and Shapiro 2001) to extract primitives
(line and circle segments) for a given diagram. The result
of Hough transform has no information about the start and
end points of the lines or arcs. Only the parametric represen-
tation of the primitive is known. Therefore, post-processing
is required in order to determine endpoints. We detect and
connect continuous binary points that lie on the same line or
arc. For each primitive of interest, the result will be a few in-
dependent segments where the start and end of the segments
are stored.

Standard application of Hough transform is not applica-
ble to our problem. This is mainly due to (1) inaccuracies
at the intersections (2) confusions between circles and poly-
gons composed of several small lines; and (3) sensitivity to
parameters of Hough transform and all post processing tech-
niques. Our experimental evaluations show that there is no
single set of parameters that work well on large number of
samples. To overcome these issues, we set the threshold to
a low number to over-generate a large number of primitives.
This way, the right set of primitives are most likely among
the over-generated set of primitives. We typically obtain 20
to 60 primitives in each diagram. Figure 3 shows an example
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of overproduced primitives L. We then use the optimization
in Equation 2 to select the right set of primitives L̂ from a
big pool of noisy estimates of primitives L.
Initialize Corners: To enforce coherent visual elements, we
need to encourage the set of selected primitives to be visu-
ally coherent. We use corners in diagrams as a gluing func-
tion. Two primitives that share endpoints very close to a
corner in an image are preferred to primitives that are far
away from corners. We use Harris Corner detectors (Harris
and Stephens 1988) to identify possible locations of corners.
Corners are scored based on how close they are to primitives.
Initialize mentions: We extract mentions from textual de-
scriptions by keyword search using the list of visual ele-
ments in V .

5.2 Iterative Optimization
We initialize the optimal set of primitives as an empty set
L̂ = ∅. Then we repeat the following step. At every iteration
k+1, we select the primitive l that maximizes the following
equation given that Lk is the best subset at iteration k.

L̂k+1 = arg max
l∈L\L̂k

F(L̂k ∪ l)−F(L̂k) (4)

Figure 3 shows three steps of this greedy method on a
sample diagram.

6 Experiments
To experimentally evaluate our method we build a dataset of
geometry questions along with annotations about visual el-
ements and alignments. We test our method on how well it
can identify visual elements and how accurate are the align-
ments established by our method. We compare our method
G-ALIGNER with baselines that use standard techniques of
diagram understanding. To also better understand our model
we perform ablation studies for our model.

6.1 Experimental Setup
Dataset We build a dataset of high school plane geometry
questions where every question has a textual description in
English accompanied by a diagram. For evaluation purposes,
we annotate diagrams with correct visual elements as well as
alignments between textual mentions and visual elements.

Questions are compiled from four test preparation web-
sites (RegentsPrepCenter; EdHelper; SATMath; SATPrac-
tice) for high school geometry. Ground truth labels are col-
lected by manually annotating all the primitives in the di-
agram. In addition, we annotate all the alignments between
textual mentions and visual elements in the diagram. In total,
our dataset consists of 100 questions and 482 ground truth
alignments. The dataset is publicly available in our project
web page.

Tasks and metrics We evaluate our method G-ALIGNER in
two tasks of (1) identifying primitives in diagrams and (2)
aligning visual elements with textual mentions.

For task 1, we compare detected primitives by
G-ALIGNER against the ground truth dataset. For every
identified primitive l′ and the corresponding ground truth

primitive l, we measure the amount of overlap. If the prim-
itive is a line segment, we project l′ onto l and measure the
ratio of area of intersection over the union. For arc primi-
tives we use the convex area and measure the amount of area
of intersection over union. A detection l′ is considered as a
correct prediction if the amount of intersection over union
is bigger than a threshold α (called overlap-to-ground-truth
ratio). For evaluation purposes, we vary α ∈ [0.7 : 1] and
report F1 scores. Precision is the number of correctly iden-
tified primitives divided by total number of identified primi-
tives. Recall is the number of correctly identified primitives
divided by the number of primitives in ground truth.

For task 2, we evaluate if G-ALIGNER correctly aligns
a textual mention with a visual element. For that,
we establish alignments and report the accuracy of
G-ALIGNER compared to ground truth annotations.

Baselines We compare our method G-ALIGNER with a
baseline that uses Hough transform for identifying primi-
tives. Similar to almost all of the Hough-based methods, this
baseline requires a set of sensitive parameters: two thresh-
olds for picking elements in Hough line and circle space,
respectively, and three non-maximum suppression neighbor-
hood parameters (two for line and one for circle). To find the
best possible baseline, we perform a sampled grid search.
This way, we can find the best set of parameters as if we have
tuned the parameters on the test set. This baseline works as
an upper bound on how well one can detect visual primitives
using standard Hough-based methods. The overall distribu-
tion of F1 for several samples of parameters is shown in 5.

For task 1, the baseline identifies primitives that score
higher than a threshold. This threshold is manually set to
produce the best possible detection in our dataset. For task 2,
we use identified primitives from task 1 and align them with
the mention corresponding to the closest visual element.

Parameters Our method G-ALIGNER also uses Hough
transform to extract initial primitives out of diagrams. How-
ever, G-ALIGNER method is not sensitive to the choice of
parameters in Hough transform. We set the parameters so
that we always overly generate primitives. Our optimization
method reasons about what primitives to select.

6.2 Results
Identifying primitives We report the performance of
G-ALIGNER in identifying primitives and compare it with
the best baseline explained above. Figure 4 shows the
F1 score at different overlap-to-the-ground-truth ratios.
G-ALIGNER significantly outperforms the baseline be-
cause (1) G-ALIGNER couples visual and textual ele-
ments (2) G-ALIGNER enforces diagram coherency (3)
G-ALIGNER does not require parameter tuning. The base-
line typically maintains relatively high recall but low preci-
sion. For example, at α = 0.8 the baseline achieves preci-
sion of 69% at the recall of 86% compared to our precision
of 95% at the recall of 93%.

Figure 5 reports the distribution of the F1 scores for
the baseline for 500 samples of parameters. This fig-
ure also shows where the “best baseline” (whose pa-
rameters we manually tuned for the entire dataset) and

2835



0.00#

0.10#

0.20#

0.30#

0.40#

0.50#

0.60#

0.70#

0.80#

0.90#

1.00#

0.70$ 0.72$ 0.74$ 0.76$ 0.78$ 0.80$ 0.82$ 0.84$ 0.86$ 0.88$ 0.90$ 0.92$ 0.94$

F1
#

Overlap#with#GT#Threshold#

Baseline# G@ALIGNER#

Figure 4: Comparison between G-ALIGNER and the baseline in
task 1 in terms of F1 by varying overlap to the ground truth ratio α.
This threshold is used to evaluate correct predictions of primitives.

G-­‐Aligner	
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tuned	
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Figure 5: Normalized histogram of 500 F1 scores for the base-
line obtained by randomly chosen parameters. We observe a nor-
mal distribution centered at 0.5 with standard deviation 0.04. The
F1 scores of best baseline parameters and G-ALIGNER also drawn.

G-ALIGNER stand. The comparison clearly demonstrates
how G-ALIGNER outperforms the baseline with any com-
bination of parameters.

Ablation study We study the importance of each compo-
nent in G-ALIGNER (optimization Equation 2). To study the
effect of enforcing agreement between visual elements and
textual mentions, we remove the term S from the optimiza-
tion in Equation 2. In addition, to study the effect of enforc-
ing diagram coherency we remove the term C from the opti-
mization in Equation 2. We also show the effects of remov-
ing both S, C from the equation. Table 1 shows the precision,
recall, and F1 scores of identifying primitives for α = 0.8.
Removing both components decreases both precision and re-
call. The effect of removing the S is higher than that of C
implying the importance of coupling textual and visual data.

Aligning textual mentions and visual elements To study
the performance of G-ALIGNER in aligning textual men-
tions and visual elements, we compare our alignment results
with baseline alignments. G-ALIGNER achieves an accuracy
of 90% and baseline obtains the accuracy of 64% for the
overlap ratio of α = 0.8. This approves that coupling tex-

model F1 Precision Recall
G-ALIGNER (P + S + C) 0.94 0.95 0.93

No C (P + S) 0.93 0.93 0.93
No S (P + C) 0.89 0.85 0.93

No S, C (P) 0.83 0.76 0.93
baseline 0.77 0.69 0.86

Table 1: Ablation study on Task 1 (identifying primitives).

In the diagram at the 
right, Circle O has a 
radius of 5, and CE=2. 
Diameter AC is 
perpendicular to chord 
BD at E. What is the 
length of BD? 

C	
  

E	
  B	
  

O

D	
  

A	
  

2	
  

5	
  

5	
  

Given triangle ABC with 
base AFEDC, median BF, 
altitude BD, and BE 
bisects angle ABC,  
which 
conclusions  
is valid? 

A	
  
F	
   E	
   D	
   C	
  

B	
  

Figure 6: Examples of alignments produced by G-ALIGNER. Tex-
tual mentions and visual elements are color coded. This figure is
best viewed in color.

tual and visual information provides a better alignment.

Qualitative results Figure 6 shows examples of align-
ments between visual elements and textual mentions
produced by G-ALIGNER . Mentions and their corre-
sponding visual elements are color coded. For example,
G-ALIGNER establishes an alignment between the textual
mention base AFEDC and the corresponding line (red
line) in Figure 6.

To show the effects of S, C in G-ALIGNER, Figure 7
shows examples of mistakes in primitive identification that
happens when either S or C are removed from G-ALIGNER.
In Figure 7, black pixels correspond to the actual diagram
and red lines and circles correspond to the detected ele-
ments. Removing S in (a) results in wrong detection of an
extra circle. Without S, G-ALIGNER does not know what to
expect and therefore picks a circle whose coverage is larger
than the rest of the lines in the diagram. Removing C in (b)
results in estimates of an incorrect line on the pixels on the
word tangent in the diagram. By considering agreements
between corners, G-ALIGNER correctly discards this false
detection. Note that, one might come up with heuristics to
avoid any of these specific cases. However, this paper pro-
vides a unified method that reasons about diagrams and can
handle these cases without any specific heuristic.

Limitations Our method shows promising results in our ex-
periments. However, there are cases in which our model fails
to identify diagram elements. The benefits of our model over
the standard baselines is marginal if the text of the ques-
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(a) removing S (b) removing C
Figure 7: Examples of mistakes when S or C are removed from
G-ALIGNER. In this figure, black pixels correspond to the actual
pixels in the diagram and red lines or circles are detected elements.
In (a), removing S results in adding a wrong detection of an extra
circle whose coverage is actually bigger than some of the correct
lines in the figure. In (b), removing C results in an incorrect detec-
tion of an incorrect line on the word tangent. G-ALIGNER correctly
understands both of the diagrams above.

tion does not mention any of diagram elements. Our method
doesn’t recognize out of the vocabulary visual elements and
fails if the scale of one visual elements is out of the range.

7 Conclusion and Future Directions
Our ultimate goal is to build an automated system that can
solve geometry questions. The very first step toward this
goal is to build a method that can understand diagrams. To
our surprise, despite a large body of work in diagram under-
standing, the literature lacks a unified framework that does
not require parameter tuning and problem specific heuristics.
This paper is one step toward building such systems. We in-
troduce G-ALIGNER that understands diagrams by coupling
primitive detection and their alignments to text. The output
of G-ALIGNER is a set of detected visual elements, their
location, their geometric properties, and their correspond-
ing textual mentions. Further, G-ALIGNER can exhaustively
enumerate all possible visual elements (even the ones that
are not explicitly mentioned in the text).

A direct extension of G-ALIGNER allows us to solve ge-
ometry problems with drawn-to-scale diagrams, through a
scaling method. For example, G-ALIGNER identifies sev-
eral visual primitives (i.e., lines BD, BO, DO and CA
and circle O) in the problem in Figure 8. Additionally,
G-ALIGNER can enumerate all possible visual elements,
their geometric properties, and their geometric relations
(Figure 8 (c)). For instance, G-ALIGNER identifies line CE
and its length in pixels. Moreover, G-ALIGNER can capture
geometric relations. For example, G-ALIGNER identifies
line BO as the radius of the circle O using the visual infor-
mation that one end of the line BO is near the center of the
circle O and the other end of the line is on the circumference
of the circle.

With simple textual processing, we also extract numeri-
cal relations from the question text and what the question is
looking for (Figure 8 (b)). Textual information for the ex-
ample question includes (1) the radius of circle O = 5, (2)
line CE = 2, and (3) the question is looking for the length
of line BD. By combining textual information (1) with the
extracted visual information that states “BO is the radius of

(a) In the diagram at the 
right, Circle O has a radius of 
5, and CE=2. Diameter AC is 
perpendicular to chord BD at E. 
What is the length of BD? 
 
i) 12  
ii) 10  
iii) 8  
iv) 4 

C	
  

E	
  B	
  

O	
  

D	
  

A	
  

2	
  

5	
  

5	
  

(b)	
  Extracted	
  Textual	
  Informa5on	
  
•  The	
  radius	
  of	
  Circle	
  O	
  =	
  5	
  
•  The	
  Length	
  of	
  CE	
  =	
  2	
  
•  There	
  exists	
  a	
  circle	
  with	
  

diameter	
  AC.	
  
•  There	
  exists	
  a	
  circle	
  that	
  passes	
  

through	
  B	
  and	
  D.	
  
•  Find:	
  length	
  of	
  BD.	
  

(c)	
  Extracted	
  Visual	
  Informa5on	
  
•  Length	
  of	
  CE	
  =	
  30px	
  
•  Length	
  of	
  BD	
  =	
  122px	
  
•  Length	
  of	
  EO	
  =	
  47px	
  
•  Length	
  of	
  BO	
  =75px	
  
•  BO	
  is	
  the	
  radius	
  of	
  Circle	
  O.	
  
•  AC	
  is	
  the	
  diameter	
  of	
  Circle	
  O.	
  
•  BD	
  is	
  the	
  chord	
  of	
  Circle	
  O.	
  
…etc.	
  
	
  

(d)	
  Linking	
  &	
  Scaling	
  
Solu%on	
  1	
  
1.  BO	
  is	
  the	
  radius	
  of	
  Circle	
  O	
  &	
  the	
  radius	
  of	
  Circle	
  O	
  =	
  5	
  	
  
à	
  Length	
  of	
  BO	
  =	
  5	
  units	
  =	
  75px	
  	
  
à	
  1	
  unit	
  =	
  15px	
  
1.  Length	
  of	
  BD	
  =	
  122px	
  *	
  unit	
  /	
  14px	
  =	
  8.1	
  units	
  
	
  
Solu%on	
  2	
  
1.  Length	
  of	
  CE	
  =	
  2	
  units	
  =	
  29px	
  à	
  1	
  unit	
  =	
  14.5px	
  
2.  Length	
  of	
  	
  BD	
  =	
  122px	
  *	
  unit	
  /	
  14.5px	
  	
  =	
  8.4	
  units	
  	
  
	
  

(e)	
  Answer:	
  both	
  soluOons	
  lead	
  to	
  choice	
  (iii)	
  

Figure 8: Using G-ALIGNER to solve a geometry problem.

Circle O”, we infer that the length of line BO = 5.
This enables us to compute the scale between the units

in the question (BO=5) and pixels in the diagram (Length
of line BO is 75 pixels). Using textual information (2), we
can solve the example problem in a slightly different way
(See Figure 8 (d) for step-by-step demonstration of how
G-ALIGNER can solve this problem).

G-ALIGNER, with the scaling, finds correct answers for
problems with well-drawn diagrams. In future, we plan to
solve the problems using more complex mathematical and
logical reasoning for geometry theorem proving. We also
plan to link several uncertain visual and textual relations to
formulate a collective probabilistic model that will output
the most probable answer to the question. In addition, we
intend to use the results of diagram understanding to help
understand the semantics of sentences. This is feasible be-
cause diagrams are easier to understand compared to real
images. Diagram understanding should also help recogni-
tion of out-of-vocabulary visual elements and disambigua-
tion of textual mentions. The current formulation can handle
extensions to diagrams that are composed of well-defined
primitives. We also plan to extend G-ALIGNER to under-
stand more complex diagrams in other science areas. The
demo and the dataset are available on our project page.
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