
A Generalized Genetic Algorithm-Based Solver
for Very Large Jigsaw Puzzles of Complex Types

Dror Sholomon and Omid E. David and Nathan S. Netanyahu∗

Department of Computer Science
Bar-Ilan University

Ramat-Gan 52900, Israel
dror.sholomon@gmail.com, mail@omiddavid.com, nathan@cs.biu.ac.il

Abstract
In this paper we introduce new types of square-piece
jigsaw puzzles, where in addition to the unknown loca-
tion and orientation of each piece, a piece might also
need to be flipped. These puzzles, which are associated
with a number of real world problems, are considerably
harder, from a computational standpoint. Specifically,
we present a novel generalized genetic algorithm (GA)-
based solver that can handle puzzle pieces of unknown
location and orientation (Type 2 puzzles) and (two-
sided) puzzle pieces of unknown location, orientation,
and face (Type 4 puzzles). To the best of our knowledge,
our solver provides a new state-of-the-art, solving previ-
ously attempted puzzles faster and far more accurately,
handling puzzle sizes that have never been attempted
before, and assembling the newly introduced two-sided
puzzles automatically and effectively. This paper also
presents, among other results, the most extensive set of
experimental results, compiled as of yet, on Type 2 puz-
zles.

Introduction
Jigsaw puzzles are a popular form of entertainment, first
produced around 1760 by John Spilsbury, a Londonian en-
graver and mapmaker. Given n different non-overlapping
pieces of an image, the player has to reconstruct the orig-
inal image, taking advantage of both the shape and chro-
matic information of each piece. Despite the popularity and
vast distribution of jigsaw puzzles, their assembly is not triv-
ial, from a computational standpoint, as this problem was
proven to be NP-hard (Altman 1989; Demaine and Demaine
2007). Nevertheless, a computerized jigsaw solver may have
applications in many real-world problems, arising in vari-
ous domains such as archeology (Koller and Levoy 2006;
Brown et al. 2008), biology (Marande and Burger 2007),
chemistry (Wang 2000), literature (Morton and Levison
1968), speech descrambling (Zhao et al. 2007), art restora-
tion (Fornasier and Toniolo 2005), image editing (Cho et
al. 2008), and the recovery of shredded documents or pho-
tographs (Justino, Oliveira, and Freitas 2006; Marques and

∗Nathan Netanyahu is also with the Center for Automation Re-
search, University of Maryland, College Park, MD 20742 (e-mail:
nathan@cfar.umd.edu).
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Freitas 2009; Cao, Liu, and Yan 2010; Deever and Gallagher
2012). Besides, as noted in (Goldberg, Malon, and Bern
2004), pursuing this topic may be justified solely due to its
intriguing nature.

The first to tackle the jigsaw problem, computationally,
were Freeman and Garder (1964). Their solver handles up to
9-piece puzzles, using only piece shape information. Kosiba
et al. (1994) were the first to facilitate the use of image con-
tent by their solver. Subsequent research turned to color-
based square-piece puzzles, instead of the earlier shape-
based variants. Cho et al. (2010) presented a probabilistic
puzzle solver that can handle up to 432 pieces, given some
a priori knowledge of the puzzle (e.g., anchor pieces). Their
results were further improved by (Yang, Adluru, and Late-
cki 2011), who presented a so-called particle filter-based
solver and by (Pomeranz, Shemesh, and Ben-Shahar 2011),
who made a major contribution to the field by introducing
a fully automated jigsaw puzzle solver that handles puzzles
of up to 3,000 (square) pieces, without any prior knowledge
about the image. The latter solver treats puzzles with un-
known piece location but assumes a known orientation. Gal-
lagher (2012) was the first to handle puzzles with unknown
piece location and orientation (Type 2 puzzles), where each
piece might need to be translated and rotated (by 0, 90, 180,
or 270 degrees). This solver was tested on 432- and 1,064-
piece puzzles and a single 9,600-piece image. More recently,
a solver based on genetic algorithms (GA) (Holland 1975),
which can handle up to 22,755-piece puzzles, was presented
by(Sholomon, David, and Netanyahu 2013). Although ca-
pable of solving considerably larger puzzles, their solver is
restricted to known piece orientations (i.e., Type 1 puzzles).

In its most basic form, every puzzle solver requires an
evaluation function for the compatibility of adjacent pieces
and a tiling strategy for placing the pieces as accurately as
possible. Recent tiling strategies tend to be greedy and thus
are subject to the familiar disadvantages of greedy meth-
ods, i.e., they are more likely to be affected by local optima.
While (Sholomon, David, and Netanyahu 2013) successfully
employed a GA-based solver for Type 1 puzzles (unknown
piece location only), the question remains whether GA-
based solvers could be applied to more challenging types,
namely Type 2 puzzles (unknown piece location and orien-
tation) and Type 4 puzzles (two-sided pieces of unknown
location and orientation).

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2839

In this paper, we continue in the same vein of employing
genetic algorithms as a strategy for piece placement. We de-
scribe a detailed GA scheme for a solver capable of handling
both Type 1 and Type 2 puzzles more than twice as large as
puzzle sizes that have been attempted before, and present
extensive empirical results which demonstrate the efficiency
of the presented method in terms of speed and accuracy. We
further advance the state-of-the-art with respect to the jig-
saw puzzle problem by extending our solver to handle also
two-sided puzzles (Type 4 puzzles), i.e., puzzles where the
correct face of each piece is also unknown (adding another
degree of freedom to each piece). Thus, the solver has to
find the correct location for each piece, its correct orienta-
tion (out of four possible angles), and its correct face (out
of two possible ones). This type of puzzle, which is repre-
sentative of various real-world applications, is considerably
more complex. We present an extensive set of empirical re-
sults for all available datasets, establishing the effectiveness
of our solver in handling different images of different sizes.

Puzzle Types
The first discussion on different puzzle types appears in
(Gallagher 2012). In all types, n different non-overlapping
square pieces of an image are given and there exists a unique
tiling (arrangement) which is considered correct. Type 1 is
the most common variant handled; it refers to puzzles with
only piece location unknown. In Type 2 puzzles, a piece ori-
entation is also unknown, allowing each piece to be rotated
by 0, 90, 180 or 270 degrees. As noted by (Gallagher 2012),
this puzzle type increases the complexity in several ways.
First, a pair of pieces can fit together in any of 16 possi-
ble configurations, multiplying the number of possible so-
lutions by 4n in comparison to Type 1 puzzles. Second, an
algorithmic solver must consider both translations and rota-
tions. Third, the puzzle reconstruction should be considered
in both landscape and portrait orientations. Type 3 puzzles,
consisting of pieces with known location and unknown ori-
entation, are listed only for the sake of completeness.

We define here Type 4 puzzles, i.e., two-sided puzzles of
two images, where each piece face belongs to one of the
images. The solver has to determine the correct location
of each piece, its correct orientation, and its relevant face
(with respect to each of the two images). This problem ver-
sion is motivated by real-world applications, e.g., a shred-
ded document might have been printed on both sides be-
fore being shredded. (This is all the more applicable, in view
of current global environmental trends, encouraging double-
sided printing.) The computational complexity in this case
increases in several ways. First, each pair of pieces might
now fit together in any of 64 possible configurations, multi-
plying the number of possible solutions by 8n, relatively to
Type 1 puzzles. Second, the solver has to consider now the
possibility of flipping a piece, in addition to its translation
and rotation. Third, the solver must always consider the two
images (being formed on the fly) when placing new pieces
and assessing the results, e.g., whether to assemble each im-
age separately or assemble them simultaneously.

For completeness, one can define additional puzzle types

with all possibilities of (un)known piece location, orienta-
tion, and face.

Unknown Unknown Unknown
Type Location Orientation Face

1 3
2 3 3
3 3
4 3 3 3
5 3 3
6 3 3
7 3

Table 1: Puzzle types according to different problem speci-
fications.

Genetic Algorithms
In this section we provide a quick overview of the GA
methodology. A GA is a search procedure within a prob-
lem’s solution domain. Since examining all possible solu-
tions of a specific problem is virtually infeasible, GAs offer
an optimization heuristic inspired by biological natural se-
lection.

In GA terms, a solution to the problem (e.g., a suggested
arrangement of the puzzle’s pieces) is represented as an in-
dividual “organism” (i.e., chromosome) of a large popula-
tion. Essentially, a GA attempts to reach an optimal solution
by mimicking the processes of natural selection and evolu-
tion; the “fittest” individuals of each generation reproduce,
creating offspring chromosomes. If defined correctly, the
crossover operator responsible for offspring creation should
allow for ”good” qualities to pass on from parents to chil-
dren, in an attempt to create better offspring (i.e., solutions).
In each iteration (i.e., one generation of the algorithm), the
entire population is replaced by the many offspring created
by the crossover operation. (The total population size re-
mains fixed throughout all the generations.)

In order to imitate natural selection, a chromosome’s re-
production rate, i.e., the number of times it is selected to
reproduce (and hence the number of its offspring), is set
directly proportionate to its fitness. The fitness, which is a
score obtained by a fitness function, represents the quality
of a given solution. The crossover should, thus, take place
mainly between higher-rated solutions.

The successful performance of a GA depends mainly
on the appropriate choice of chromosome representation,
crossover operator, and fitness function. The chromosome
representation and crossover operator should yield an en-
hanced solution by merging two “promising” chromosomes
(i.e., chromosomes representing promising partial solutions)
that are passed on to the next generation. Figure 1 provides
a pseudo-code of a common GA framework.

Puzzle Solving
In this section we present our generalized GA-based solver,
which is designed to handle more difficult puzzle types. The

2840

population = create_random_population(POPULATION_SIZE);

for (i = 0; i < NUM_OF_GENERATIONS; ++i) {

new_population = NULL;

evaluate_population(&population);

for (j = 0; j < POPULATION_SIZE; ++j) {

parent1 = select_parent(population);

parent2 = select_parent(population);

child = crossover(parent1, parent2);

add_child_to_population(&new_population, child);

}

population = new_population;

}

solution = get_best(population);

Figure 1: Pseudocode of GA framework

GA starts from a fixed-size population of randomly gener-
ated solutions. In each iteration, the entire population is eval-
uated using the fitness function described below, and a new
population is (re)produced by employing the crossover oper-
ator to the selected chromosome pairs. We use the common
selection method of roulette wheel selection, where each
chromosome is selected to reproduce, with probability di-
rectly proportional to its fitness score.

We define each chromosome to be a complete solution to
the problem, i.e., a suggested tiling of all pieces, including
their orientation and face (if applicable). We now have to
supply an appropriate fitness function and a crossover oper-
ator.

The Fitness Function
The fitness function determines the quality of each chromo-
some (i.e., each solution), and hence the expected number of
its children. In every generation, all chromosomes are eval-
uated for the purpose of selection.

For fitness evaluation, we use the dissimilarity measure,
which was investigated thoroughly in previous compara-
tive studies (Cho, Avidan, and Freeman 2010; Pomeranz,
Shemesh, and Ben-Shahar 2011) and found to be very ef-
fective. The dissimilarity measure relies on the premise that
adjacent jigsaw pieces in the original image tend to share
similar colors along their abutting edges, i.e., the sum (over
all neighboring pixels) of squared color differences (over all
three color bands) should be minimal. Let pieces pi, pj be
represented in normalized L*a*b* space by corresponding
W ×W × 3 matrices, where W is the height/width of each
piece (in pixels). Assuming, for example, that pj is to the
right of pi, the piece dissimilarity in this case is given by:

D(pi, pj) =

√√√√ W∑
k=1

3∑
b=1

(pi(k,W, b)− pj(k, 1, b))2. (1)

Obviously, to maximize the compatibility of two pieces,
their dissimilarity should be minimized.

For Type 2 puzzles we set the fitness function of a given
chromosome to be the sum of pairwise dissimilarities over
all adjacent edges. Given that the puzzle consists of (N×M)
tiles, we represent each chromosome by an (N×M) matrix,

where a matrix entry xi,j(i = 1..N, j = 1..M) corresponds
to a single puzzle piece and its orientation, we define its fit-
ness as:

N∑
i=1

M−1∑
j=1

(D(xi,j , xi,j+1)) +
N−1∑
i=1

M∑
j=1

(D(xi,j , xi+1,j)) (2)

where the D term in each case is the dissimilarity of the two
pieces in question about their joint edge, taking into account
their actual rotations, as stored in the chromosome.

For Type 4 puzzles, we need to consider actually two abut-
ting edges (i.e., an adjacent edge for each piece face), for ev-
ery neighboring piece in a piece pair. We sum the pairwise
dissimilarities over all adjacent edges, computing effectively
a fitness score for each image of the two-sided puzzle. Thus,
the GA must balance the dissimilarity minimization on both
sides of the puzzle to obtain, hopefully, the correct recon-
struction of both images.

Type 2 Crossover
Given a chromosome representation, the crossover opera-
tor receives two tile configurations (i.e., two parent chromo-
somes) and produces a new arrangement of the pieces (i.e.,
a new offspring chromosome). In general, the crossover op-
erator should encourage “good” qualities to pass on from
the parents to their child. In particular, we would like an ef-
fective operator to meet the following three requirements.
First, it must create a valid child solution, where each piece
appears exactly once (i.e., no missing or duplicate pieces).
Second, the operator must support position independence of
puzzle segments assembled correctly. Namely, if a parent as-
sembles correctly part of the image (i.e., a segment), mod-
ulo some spatial offset, the operator should accommodate
the required spatial translation and rotation of the entire seg-
ment in the resulting child. For example, Figure 2 features a
parent chromosome containing a person’s head correctly as-
sembled, albeit spatially misplaced. The idea is to retain the
correctly assembled head segment but allow for its transla-
tion and rotation. Third, a proper heuristic should be applied
to detect correctly assembled segments (as the person’s head
in Figure 2).

Various works (Gallagher 2012; Sholomon, David, and
Netanyahu 2014) use a weighted graph representation for
the problem, where each node corresponds to a jigsaw piece
and each (graph) edge corresponds to a joint edge of two ad-
jacent puzzle pieces. We denote the edges of piece pi (in a
clockwise manner) as pi.a, pi.b, pi.c and pi.d. For example,
the graph edge pi.b− pj .d denotes the geometric configura-
tion where edge b of piece pi is adjacent to edge d of piece
pj . The weight of each graph edge is the dissimilarity of the
two-piece configuration (given by Eq. 1). For Type 2 puz-
zles, there are 16 possible edges between every two (graph)
vertices. This representation lends itself easily to an effective
crossover of correctly assembled segments in the parents.
The geometric relation pi.b − pj .d is invariant to both the
absolute spatial location and orientation of the pieces (e.g.,
translating and/or rotating both pieces by 90 degrees will not
affect this relation).

2841

(a) Parent1 (b) Parent2 (c) 17 Pieces (d) 91 Pieces

(e) 147 Pieces (f) 229 Pieces (g) 347 Pieces (h) Child

Figure 2: Illustration of Type 2 crossover operation: (a) Parent1, (b) Parent2, (c)–(g) evolution of kernel growth until (h) a
complete child is obtained. Note how the operator manages to locate and compose the skier’s body from all differently located
and oriented parts assembled in both parents.

Arriving at a piece arrangement can be viewed analo-
gously to constructing a spanning tree of n− 1 graph edges.
Although each jigsaw piece is represented exactly once in
this spanning tree, the correct dimensions and geometrical
feasibility of the corresponding image might not be satis-
fied. We propose a crossover procedure, analogous to Prim’s
algorithm (Prim 1957), for finding a minimal spanning tree
(MST). This procedure meets the required constraints while
attempting to construct a tree representing a better child so-
lution.

Prim’s algorithm starts from a single vertex and grows the
sub-tree, one edge (and vertex) at a time, selecting at each
step a minimum-weight edge connecting a sub-tree vertex
and an external one. Similarly, we start constructing the puz-
zle from one piece and grow it by adding a single jigsaw
piece (a graph edge) at a time. At every iteration we review
all edges emanating from the partially grown piece kernel. In
addition to Prim’s basic constraint (of avoiding edge cycles),
the following requirements should be met upon adding a new
piece (associated with a joint edge of an adjacent piece).
First, the known image dimensions must not be breached.
Second, each piece edge must be accounted for only once for
all selected edges (thus avoiding infeasible geometrical con-
figurations due to piece overlap, e.g., two competing pieces
for the same edge of an adjacent third piece). Thus, we en-
sure that each piece appears exactly once and that the result-
ing image is geometrically feasible. Finally, the constructed
tree is translated to a chromosome by recording the resulting
locations and orientations of all the pieces. Also recorded are
geometric configurations which are not part of the MST but
are implied by it.

Unlike Prim, instead of selecting literally the minimum-
weight edge in each iteration, we employ a heuristic based
on intrinsic knowledge of the parents and edge weights. The
procedure first selects an edge appearing in both parents;
e.g., if p3 is in the current kernel, both parents contain the
edge p3.b − p6.d, and all of the above constraints are met,

this edge will be selected. Second, if no common edge can be
added to the kernel, the procedure seeks a best-buddy edge
(described below) residing in either parent; e.g., if p3 is in
the current kernel, one parent contains the edge p3.b− p6.d,
which is a best-buddy edge, and all other constraints are
met, this edge will be picked. The notion of best-buddy
pieces was first introduced by (Pomeranz, Shemesh, and
Ben-Shahar 2011); two pieces are said to be best-buddies if
each piece considers the other as its most compatible piece
according to the compatibility measure defined. Extending
this notion to best-buddy edges is straightforward. Finally,
if none of the above holds, the procedure follows Prim’s
approach and chooses a minimal-weight edge, for which
all of the required constraints are satisfied. Note that only
edges emanating from the growing piece kernel are consid-
ered, in each iteration. Hence, each edge (jigsaw piece) addi-
tion introduces additional possible edges (i.e., edges shared
amongst the parents or best-buddy edges) that should be
considered next.

A subtle issue that requires careful consideration is that
of image dimensions. Since a piece orientation is unknown,
it cannot be determined, in advance, whether an N ×M or
an M × N frame should be used. Choosing either frame,
in advance, could discard all chromosomes trying to assem-
ble correctly rotated instances of the intended image by 90
or 270 degrees. We overcome this problem by maintaining
initially a flexible frame. After each piece assignment, we
check the farthest boundaries. Assuming M < N , once a
length of M + 1 is reached along one of the dimensions,
the frame must grow up to N along this same dimension.
This allows the images to be assembled in any direction,
with no boundary violations. Thus, the crossover operator
is invariant to the orientation chosen when creating a child.
Experimental results show, indeed, that the GA assembles
the images correctly in different orientations in each gener-
ation.

The above described procedure achieves all its prede-

2842

fined goals. The resulting chromosome (image) is valid, each
piece appears exactly once and both image dimensions and
geometric feasibility are maintained. Furthermore, segments
assembled correctly (through the addition at each step of
shared piece edges between parents or best-buddy edges)
are copied to the child solution. Since only piece adjacen-
cies are copied, the segments might appear in different spa-
tial positions and orientations in the two parents (see Figure
2), achieving position- and orientation-independence.

Type 4 Crossover
In this puzzle type each piece is two sided and might need
to be flipped. Segments assembled correctly might appear in
different absolute locations, different orientations, and op-
posite sides of the puzzle. For example, the same segment
might be located on opposite sides of two different chro-
mosomes while two segments belonging to the same image
(e.g., a person’s head and their body) might be located on
opposite sides of the same chromosome.

Similarly to the discussion on Type 2 puzzles, eight edges
are now associated with each piece, four edges on each piece
face. We mark the piece edges as a, b, c, d and their op-
posite counterparts as a′, b′, c′, d′, respectively (e.g., if b is
the right piece edge, b′ is the left edge of the flipped face).
All graph edges will be labeled using the augmented edge
scheme. There are now 64 possible edges between every two
vertices; each piece edge should be considered during every
iteration of the crossover procedure (e.g., the procedure con-
siders adding a piece pi, possibly rotated and/or flipped, to
the growing kernel). To maintain geometrical validity, we
add the following constraint. The flipping side of a piece
edge at the joint boundary of a two-piece configuration may
not be selected for another two-piece configuration, e.g., if
edge pi.b−pj .a

′ is selected, then all MST edges incident on
pi.b
′ or pi.a are prohibited.

Choosing an edge such as pi.b − pj .a
′ effectively im-

plies flipping one of the pieces. Hence, the operator easily
merges correctly assembled segments residing in different
image sides (e.g., copying the first segment, flipping one
piece from the second segment, and copying and flipping
the remaining pieces accordingly).

Interestingly, as a result of the above mentioned proce-
dure, the crossover operator actually assembles both images
concurrently (this approach is different from how a human
would solve such a puzzle, and is considerably superior).
Thus, we achieved a concurrent puzzle solver, that exploits
“easier” segments in each image for achieving a better score.
The solver is completely invariant to the orientation and side
of the assembled images. Indeed, our experiments reveal that
these parameters change constantly in the best chromosome
of each generation.

Experimental Results
In all experiments we used the same GA parameters. Each
generation consists of 1,000 chromosomes, selection is due
to the roulette-wheel selection method (as previously men-
tioned), and the number of generations (for each run) is
30. (Based on our experience, the latter number seems to
achieve a good balance between accuracy and efficiency.)

Pieces Direct Neighbor Perfect Run-time
432 94.58% 94.86% 10 8 sec
540 89.57% 91.98% 8 11.9 sec
805 87.76% 92.07% 6 22.1 sec

5,015 93.24% 93.66% 8 9.74 min
10,375 96.18% 97.05% 4 35.12 min
22,755 77.43% 91.07% 1 3.48 hr

Table 2: Accuracy results (under direct and neighbor com-
parison) on Type 2 puzzles, running the generalized GA five
times on each image of every 20-image set; average of best
result (per image) is shown for each image set.

Following previous works (Cho, Avidan, and Freeman
2010; Pomeranz, Shemesh, and Ben-Shahar 2011; Gallagher
2012; Sholomon, David, and Netanyahu 2013), we evaluated
our scores using the direct comparison and neighbor com-
parison measures. Direct comparison returns the fraction of
pieces in the assembled puzzle that are in their correct ab-
solute position. Neighbor comparison is the fraction of pair-
wise piece adjacencies that are correct. We also report the
number of images reconstructed perfectly in every set.

For Type 2 puzzles we tested our solver on all pre-
viously established benchmarks (Pomeranz, Shemesh, and
Ben-Shahar 2011; Sholomon, David, and Netanyahu 2013)
using standard tile dimensions of 28 × 28 pixels. These
benchmark datasets contain 20 images of 432-, 540-, 805-,
5,015-, 10,375-, and 22,755-piece puzzles. The largest Type
2 puzzle that has been attempted before is a single 9,600-
piece puzzle, i.e., we have tackled 20 puzzles more than
twice as large as this size. Due to the stochastic nature of
GAs, we ran the solver five times on each image in every
set, and recorded the best, worst, and average result over
these five runs. The average best results for each image set
(with respect to the direct comparison and neighbor compar-
ison measures) is reported in Table 2. Comparing the results
achieved on the 432-piece dataset to the best results reported
in (Gallagher 2012, Table 6) reveals their algorithm yields a
90.4% accuracy, i.e., we obtained a significant improvement
of over 4%.

For completeness, we also report set averages (according
to the neighbor comparison) of the average and worst results
obtained for each image (over its five runs). Table 3 contains
these additional results for all image sets experimented with.
Despite the random nature of GAs, the results are consistent
(i.e., the small standard deviation suggests that a single run
could have sufficed).

For Type 4 puzzles we did not experiment with the entire
benchmark, as each puzzle requires two images so running
the entire 400 possible pairs associated with each image set
would have been very tedious, if not infeasible. Instead, we
composed three two-sided puzzles (each containing two im-
ages) from the 5,015- and 10,375-piece puzzle sets. The first
(two-sided) puzzle from each set contained two perfectly
solved images as Type 2 puzzles, the second contained one
perfectly solved image and a different image, and the third
contained two images that were not solved perfectly as Type
2 puzzles. All puzzles with at least one perfectly solved side

2843

(a) Puzzle - Front (b) Generation 1 - Front (c) Generation 2 - Front (d) Final - Front

(e) Puzzle - Back (f) Generation 1 - Back (g) Generation 2 - Back (h) Final - Back

Figure 3: Solution process of 432-piece Type 4 puzzle: (a) Given puzzle, and best chromosome obtained by the GA in the (b)
first, (c) second, and (d) last generation; (e)–(f) opposite sides of exact same chromosomes. Final chromosome’s accuracy is
100%. Largest Type 4 puzzle solved contains 10,375 pieces.

Avg. Avg. Avg. Avg.
of Pieces Best Worst Avg. Std. Dev.

432 94.86% 93.79% 94.44% 0.39%
540 91.98% 90.60% 91.33% 0.49%
805 92.07% 90.76% 91.45% 0.48%

5,015 93.66% 93.19% 93.42% 0.17%
10,375 97.05% 96.75% 96.91% 0.11%
22,755 91.07% 90.47% 90.80% 0.22%

Table 3: Accuracy results (under neighbor comparison) on
Type 2 puzzles, running generalized GA five times on each
image of every 20-image set; average of best, worst, and av-
erage score (and average standard deviation) per image is
given for each image set.

were again solved perfectly. This result is quite remarkable,
as it attests to the GA’s power to assemble concurrently the
two images by focusing, presumably, on the “easier” one.
Even the more challenging puzzles were solved with far
greater accuracy than when solved separately, again due to
the GA solver’s ability to effectively incorporate the infor-
mation to the opposite face of a given piece.

Finally, to further challenge our generalized GA solver, in
terms of handling real-world applications, we also attempted
a two-sided, 5,015-piece puzzle whose one side is an image
scene and its other side is a scanned document. Trying to
solve the document as a Type 1 puzzle, we obtained hor-
rendous accuracy, probably due to the ineffectiveness of the
compatibility measure used, as all pieces are mostly white.
This experiment is the closest attempt known to us to au-
tomatically solve a large jigsaw shredded document. A sce-
nario in which such a document contains an image on its
other side is not very frequent but is definitely possible.
Given such a puzzle, the generalized GA solver reaches
99.86% accuracy, reassembling almost completely the cor-
rect image(s). This was accomplished despite the possible

Pieces Images Direct Neigh. Run-time
5,015 09, 10 100% 100% 20.08 min
5,015 19, 07 100% 100% 17.88 min
5,015 05, 14 84.77% 85.73% 28.57 sec
5,015 03, doc 99.92% 99.86% 27.88 min
10,375 01, 04 100% 100% 76.02 min
10,375 15, 11 100% 100% 81.65 min
10,375 15, 19 99.35% 99.20% 85 min

Table 4: Results for Type 4 GA on selected puzzles, under
direct and neighbor comparisons, including total run-time.

interference of the white piece faces.
All test results regarding Type 4 puzzles can be viewed in

Table 4. The tests were performed on a modern PC. Average
run-time of the solver on the larger, 10,375-piece puzzles
was 1.35 hours, a considerable improvement compared to
the 23.5 hours reported by (Gallagher 2012) for a slightly
smaller and far less complex, 9,600-piece Type 2 puzzle.

Conclusion
In this paper, we introduced a new puzzle type, the two-sided
puzzle, where the location, orientation, and face of each
piece is unknown. This type of puzzle is likely to stir great
interest, as it is supposedly the most complex type known;
more importantly, it is highly representative of real-world
applications, such as the reconstruction of shredded docu-
ments.

In addition, we presented the first GA-based solver capa-
ble of solving both Type 2 and Type 4 puzzles. Our general-
ized GA solver outperforms, to a significant extent, current
state-of-the-art solvers, as it is capable of solving Type 2
puzzles far more accurately and efficiently. Specifically, our
solver can handle Type 2 puzzles of up to 22,755 pieces, i.e.,
more than twice as large as the size of Type 2 puzzles that

2844

have been reported. In addition, our solver is the only Type
4 solver, as of yet, and it manages, among other tasks, to re-
construct perfectly two-sided puzzles of up to 10,375 pieces.

We believe our contributions can be further generalized to
other, more difficult types of puzzles, in a similar manner.

References
Altman, T. 1989. Solving the jigsaw puzzle problem in
linear time. Applied Artificial Intelligence an International
Journal 3(4):453–462.
Brown, B.; Toler-Franklin, C.; Nehab, D.; Burns, M.;
Dobkin, D.; Vlachopoulos, A.; Doumas, C.; Rusinkiewicz,
S.; and Weyrich, T. 2008. A system for high-volume ac-
quisition and matching of fresco fragments: Reassembling
Theran wall paintings. ACM Transactions on Graphics
27(3):84.
Cao, S.; Liu, H.; and Yan, S. 2010. Automated assembly
of shredded pieces from multiple photos. In IEEE Interna-
tional Conference on Multimedia and Expo, 358–363.
Cho, T.; Avidan, S.; and Freeman, W. 2010. A probabilistic
image jigsaw puzzle solver. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 183–190.
Cho, T.; Butman, M.; Avidan, S.; and Freeman, W. 2008.
The patch transform and its applications to image editing. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 1–8.
Deever, A., and Gallagher, A. 2012. Semi-automatic assem-
bly of real cross-cut shredded documents. In International
Conference on Image Processing, 233–236.
Demaine, E., and Demaine, M. 2007. Jigsaw puzzles, edge
matching, and polyomino packing: Connections and com-
plexity. Graphs and Combinatorics 23:195–208.
Fornasier, M., and Toniolo, D. 2005. Fast, robust and ef-
ficient 2D pattern recognition for re-assembling fragmented
images. Pattern Recognition 38(11):2074–2087.
Freeman, H., and Garder, L. 1964. Apictorial jigsaw puz-
zles: The computer solution of a problem in pattern recog-
nition. IEEE Transactions on Electronic Computers EC-
13(2):118–127.
Gallagher, A. 2012. Jigsaw puzzles with pieces of unknown
orientation. In IEEE Conference on Computer Vision and
Pattern Recognition, 382–389.
Goldberg, D.; Malon, C.; and Bern, M. 2004. A global
approach to automatic solution of jigsaw puzzles. Compu-
tational Geometry: Theory and Applications 28(2-3):165–
174.
Holland, J. H. 1975. Adaptation in natural and artificial
systems. Ann Arbor, MI: University of Michigan Press.
Justino, E.; Oliveira, L.; and Freitas, C. 2006. Reconstruct-
ing shredded documents through feature matching. Forensic
Science International 160(2):140–147.
Koller, D., and Levoy, M. 2006. Computer-aided reconstruc-
tion and new matches in the forma urbis romae. Bullettino
Della Commissione Archeologica Comunale di Roma 103–
125.

Kosiba, D. A.; Devaux, P. M.; Balasubramanian, S.; Gandhi,
T. L.; and Kasturi, K. 1994. An automatic jigsaw puzzle
solver. In International Conference on Pattern Recognition,
volume 1, 616–618. IEEE.
Marande, W., and Burger, G. 2007. Mitochondrial DNA as
a genomic jigsaw puzzle. Science 318(5849):415–415.
Marques, M., and Freitas, C. 2009. Reconstructing strip-
shredded documents using color as feature matching. In
ACM Symposium on Applied Computing, 893–894.
Morton, A. Q., and Levison, M. 1968. The computer in
literary studies. In IFIP Congress, 1072–1081.
Pomeranz, D.; Shemesh, M.; and Ben-Shahar, O. 2011. A
fully automated greedy square jigsaw puzzle solver. In IEEE
Conference on Computer Vision and Pattern Recognition, 9–
16.
Prim, R. C. 1957. Shortest connection networks and some
generalizations. Bell system technical journal 36(6):1389–
1401.
Sholomon, D.; David, O. E.; and Netanyahu, N. S. 2013.
A genetic algorithm-based solver for very large jigsaw puz-
zles. In IEEE Conference on Computer Vision and Pattern
Recognition, 1767–1774.
Sholomon, D.; David, O. E.; and Netanyahu, N. S. 2014.
Genetic algorithm-based solver for very large multiple jig-
saw puzzles of unknown dimensions and piece orientation.
In Proceeding of the 16th Genetic and Evolutionary Com-
putation Conference. To appear.
Wang, C.-S. E. 2000. Determining molecular conforma-
tion from distance or density data. Ph.D. Dissertation, Mas-
sachusetts Institute of Technology, Dept. of Electrical Engi-
neering and Computer Science.
Yang, X.; Adluru, N.; and Latecki, L. J. 2011. Particle filter
with state permutations for solving image jigsaw puzzles. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2873–2880.
Zhao, Y.; Su, M.; Chou, Z.; and Lee, J. 2007. A puzzle
solver and its application in speech descrambling. In WSEAS
International Conference on Computer Engineering and Ap-
plications, 171–176.

2845

