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Abstract

Pair-wise ranking methods have been widely used in
recommender systems to deal with implicit feedback.
They attempt to discriminate between a handful of ob-
served items and the large set of unobserved items.
In these approaches, however, user preferences and
item characteristics cannot be estimated reliably due to
overfitting given highly sparse data. To alleviate this
problem, in this paper, we propose a novel hierarchi-
cal Bayesian framework which incorporates “bag-of-
words” type meta-data on items into pair-wise ranking
models for one-class collaborative filtering. The main
idea of our method lies in extending the pair-wise rank-
ing with a probabilistic topic modeling. Instead of reg-
ularizing item factors through a zero-mean Gaussian
prior, our method introduces item-specific topic propor-
tions as priors for item factors. As a by-product, inter-
pretable latent factors for users and items may help ex-
plain recommendations in some applications. We con-
duct an experimental study on a real and publicly avail-
able dataset, and the results show that our algorithm is
effective in providing accurate recommendation and in-
terpreting user factors and item factors.

Introduction
Recommender systems, as a subclass of information filter-
ing systems, attempt to model user preferences by analysing
user feedback. Explicit user feedback, e.g., numeric rat-
ing has been well studied in the literature (Koren 2008;
Rendle 2010). In most applications, however, the collected
data of user behaviors, e.g., assigning tags (Pan and Chen
2013b), purchasing products (Rendle et al. 2009) and watch-
ing videos (Rendle and Freudenthaler 2014), are usually im-
plicit. Collaborative Filtering (CF) with implicit feedback is
referred as One-Class Collaborative Filtering (OCCF) (Pan
et al. 2008).

Existing approaches to OCCF can be classified into two
categories: (1) point-wise preferences methods and (2) pair-
wise preferences methods. The main idea of these meth-
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ods is to learn user factors and item factors for model-
ing user preferences and item characteristics, respectively.
Point-wise methods assume that observed feedback denotes
“like” and unobserved feedback denotes “dislike”, and pro-
pose to train a recommendation model by approximating
the absolute rating scores (Hu, Koren, and Volinsky 2008;
Wang and Blei 2011), while pair-wise methods assume that
a user prefers an observed item to an unobserved item, and
convert the problem to a pair-wise ranking problem (Rendle
et al. 2009; Takács and Tikk 2012). Empirically, the latter as-
sumption of pair-wise preferences over two items yields bet-
ter recommendation accuracy than the point-wise assump-
tion (Lee et al. 2014).

However, the data sparsity problem has become a major
bottleneck for pair-wise ranking methods. In real world sce-
narios, a user typically interacts with a limited number of
items out of possibly thousands or millions of items, which
leads to extremely sparse user implicit feedback. These la-
tent factors based methods are too flexible and are very
likely to suffer from overfitting given sparse data, even for
small dimensionality of latent factors. That is, the amount of
information for learning user factors and item factors is far
from enough.

In many practical situations, though, we have more infor-
mation than the simple implicit feedback. Typically the item
in a recommender system is equipped with “bag-of-words”
type meta-data. Please note that “word” in this context is a
general term used to denote elements like phrases, tags and
movie actors in the applications of article recommendation,
tag-based picture recommendation, and movie recommen-
dation, respectively. The meta-data is highly informative in
terms of identifying item characteristics to differentiate the
item from others. This is especially crucial for addressing
the OCCF problem, as we are mostly interested in distin-
guishing those items which are of potential interest to users
from others. For example, given a user who likes “machine
learning” articles and two articles j1 and j2, we would rec-
ommend him/her the article j1 rather than j2 if we have the
prior knowledge that j1 is about “machine learning” while j2
is not. Thus, it is natural to consider item meta-data for alle-
viating data sparsity. Nevertheless, existing pair-wise rank-
ing approaches fail to provide a natural way to consider such
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meta-data available as free-form text.
In this paper, we propose a novel hierarchical Bayesian

framework, called Collaborative Topic Ranking (CTRank),
which incorporates meta-data on items and implicit feed-
back simultaneously for collaborative filtering with highly
sparse implicit feedback. By extending pair-wise ranking
models with probabilistic topic models, CTRank can utilize
item meta-data to tackle the data sparsity problem and fur-
ther to enhance recommendation accuracy. In CTRank, topic
models serve to identify topic proportions from item meta-
data, while pair-wise ranking models are to fit a ranked list
of items.

We also note that, by discovering the latent topics behind
both users and items, CTRank can reveal how an item re-
lates to a user’s preferences. The topic representation pro-
vides interpretability and may help in explaining recommen-
dations to users. Specifically, the entities of user factors re-
veal his/her preferences towards the specific topics, while
the entities of item factors represent its affinity to the top-
ics. With topics serving as a bridge between users and items,
there could be many ways to construct effective explanations
for recommendations, e.g., word clouds (Vig, Sen, and Riedl
2009).

To summarize, the contributions of this paper are as fol-
lows: (1) We propose a hierarchical Bayesian framework,
CTRank, which leverages item meta-data to remedy the
data sparsity for OCCF problem by bridging the gap be-
tween pair-wise ranking and probabilistic topic modeling.
Further, in the proposed framework, two alternative models
are developed based on different assumptions. (2) We de-
velop an efficient EM-style algorithm to learn the parame-
ters in CTRank. (3) We conduct an experimental study on
a large and real-world dataset. The results empirically show
that CTRank outperforms other recommendation methods,
in terms of prediction accuracy. Our method is also able to
interpret user factors and item factors.

Preliminaries
We start with formulating the problem discussed in this pa-
per, and then review some related works on point-/pair-wise
methods for OCCF, Latent Dirichlet Allocation (LDA) (Blei,
Ng, and Jordan 2003) and sparsity reduction.

Problem Definition Let U and I denote sets of users and
items, respectively. The set of observed implicit feedback
R+ = {(i, j) : rij = 1, i ∈ U , j ∈ I} from n users and
m items is available, where rij denotes the preferences from
user i for item j. The item meta-data wj is in the form of
“bag-of-words” representation. Needless to say, this is per-
vasive in web applications.

Let ui, vj ∈ RK be user i’s factor vector and item j’s
factor vector respectively, where K is the dimensionality of
latent space. We also have the corresponding representation
in matrix form, i.e.,U = u1:n and V = v1:m. The goal
is to learn user factors U and item factors V from implicit
feedback and to generate a personalized ranked list of items
for each user i.

Point-wise Ranking for OCCF Point-wise approaches
(Hu, Koren, and Volinsky 2008; Pan et al. 2008; Wang and

Blei 2011) assume unobserved feedback as a rating 0 and
learn latent factors by solving the following regression prob-
lem:

rij = 1, rik = 0, j ∈ I+i , k ∈ I\I
+
i , (1)

where I+i = {j : (i, j) ∈ R+}.
Pair-wise Ranking for OCCF Pair-wise ranking ap-
proaches capture the pair-wise preferences over two items.
Specifically, it is assumed that item j is preferred over item
k for a given user i, if and only if j but not k is observed:

rij � rik, j ∈ I+i , k ∈ I\I
+
i (2)

where � denotes a total order regarding user preferences.
Our model falls into this category.

The foremost of pair-wise ranking models is Bayesian
Personalized Ranking (BPR) (Rendle et al. 2009) which
maximizes the likelihood of pair-wise preferences over ob-
served items and unobserved items. More works that ex-
tend BPR are detailed in (Krohn-Grimberghe et al. 2012;
Pan and Chen 2013a; 2013b). Given sparse data, such la-
tent factor models are too flexible and would overfit if they
are not regularized appropriately. Also, all of the above pair-
wise methods ignore additional item meta-data while gener-
ating recommendations.

Based on pair-wise learning to rank techniques (Liu
2009), several approaches have been proposed to consider
additional textual information in some applications (Chen
et al. 2012; Qiang, Liang, and Yang 2013). However, di-
rectly adopting these ranking approaches is not suitable for
OCCF due to that they only learn a single ranking function,
i.e., they are non-personalized. The other key difference be-
tween those works and ours is how to use textual informa-
tion. Specifically, previous models utilize textual informa-
tion to manually craft application-oriented features while we
focus on leveraging meta-data, e.g., textual information, for
the purpose of automatic feature learning.

LDA for CF In this work, we use LDA (Blei, Ng, and
Jordan 2003) to discover topics from meta-data available
as free form text. For LDA and Matrix Factorization (MF)
techniques, both of which are methods to reduce original
data into latent space, it is natural to combine them to-
gether. Typical works include (Agarwal and Chen 2010;
Shan and Banerjee 2010; Wang and Blei 2011; McAuley
and Leskovec 2013). With point-wise preference assump-
tion, these methods focus on squared error minimization and
are suitable for rating prediction. However, it is the rele-
vancy of the top items on the list that is crucial to the suc-
cess of recommender systems, which just has been ignored
by point-wise approaches. To overcome this limitation, we
propose to directly approximate the order of items. In the
experimental study, we use CTR (Wang and Blei 2011) as
our major comparison method.

Sparsity Reduction for CF Recently, several research
works have been conducted on sparsity reduction. In (Li,
Yang, and Xue 2009; Pan et al. 2010), transfer learning tech-
niques are used to transfer knowledge from auxiliary domain
to the target domain for sparsity reduction while in prac-
tice an auxiliary domain is difficult to identify. Our work
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Table 1: Some notations used in this paper.
Notation Description
K the number of topics
α Dirichlet prior
IK K-dimensional identity matrix
wjt the t-th word in item j
wj item j’s word vector (meta-data)
W = w1:m item-word matrix
zjt the topic assigned to word wjt

θj item j’s topic proportions
βk topic k’s distribution over words
δijk response variable
δ = (δijk)n×m×mi=1,j=1,k=1 response variable matrix
Pi = {(j, k) : rij � rik} user i’s pair-wise preferences
Tj number of words in item j
λu, λv precision parameter
cijk confidence parameter

Figure 1: The CTRank model in plate notation.

is also related to hybrid recommendation approaches which
combines content-based models with CF models in differ-
ent ways (Kim et al. 2006; Gunawardana and Meek 2009;
Tang and Zhou 2013). However, these methods are devised
for explicit feedback while we focus on implicit feedback.

Collaborative Topic Ranking
In this section, we present the proposed model, CTRank,
which integrates pair-wise ranking models with LDA into
a unified generative model for collaborative filtering with
highly sparse implicit feedback.

Model Description
Overview Fig. 1 shows the graphical representation of
CTRank, with the notations described in Table 1. The ba-
sic idea here is to use two correlated generative processes
to model item meta-data and pair-wise preferences together.
The first process is to model words associated with items
and to specify the relationship between item factors and
item topic proportions. Consequently, meta-data is intro-
duced into our generative model. Specifically, we follow
the same process as in LDA to generate words (meta-data),
and we regularize item factors vj through the item’s topic
proportions θj . This is a key difference between CTRank
and existing pair-wise models that attach latent factors with
zero-mean Gaussian priors to each item. The second pro-
cess models the interaction among user i, observed item j
and unobserved item k. In particular, δijk is observed re-
sponse variable which denotes the response from user i for

item j over k. With different assumptions on δijk, we de-
velop two alternative models for capturing the relative order
of pair-wise items.

Bernoulli Assumption First, a natural choice is to directly
model the order of the pair-wise items. Specifically, we as-
sume δijk follows Bernoulli distribution, then the generative
process of CTRank is as follows:

1. For each item j,
(a) Draw topic proportions θj ∼ Dirichlet(α).
(b) Draw item factor vector vj ∼ N (θj , λ

−1
v IK).

(c) For each word wjt in wj ,
i. Draw a topic zjt ∼Mult(θj).

ii. Draw word wjt ∼Mult(βzjt ).
2. For each user i,

(a) Draw user factor vector ui ∼ N (0, λ−1u IK).
(b) For each pair-wise preferences (j, k) ∈ Pi, draw the

response variable δijk = 1 ∼ Bernoulli(ρcijkijk ),

where ρijk is the individual probability that user i really
prefers item j over k, and is given by:

ρijk = P (rij � rik|ui, vj , vk, ...)
= P (δijk = 1|ui, vj , vk, ...)

= (1 + exp−(u
T
i vj−uT

i vk))
−1
.

(3)

cijk is the confidence parameter for user i’s preferences for
item j over k. For simplicy, we set cijk = 1 in our exper-
iments. For (j, k) ∈ Pi, j is an observed item and k is an
unobserved item which is sampled from user i’s unobserved
items using bootstrap sampling (Rendle et al. 2009).

Based on the generative process above, we have
the following conditional probability: P (δ|U,V)
=

∏n
i=1

∏
(j,k)∈Pi

P (δijk = 1|U,V)cijk . User fac-
tor matrix and item factor matrix are given by
P (U|λu) =

∏n
i=1N (ui|0, λ−1u Ik) and P (V|θ, λv) =∏m

j=1N (vi|θj , λ−1v Ik), respectively. As in LDA (Blei, Ng,
and Jordan 2003), the likelihood of the meta-data under
the topic model is a product of likelihood of each wj ,
P (W, θ|α, β) =

∏m
j=1

∏Tj

t=1

∑K
k=1 θjkβk,wjt

. Here we fix
the hyperparameter α = 1 to keep the computation simple.

Parameters can be learned by using the maximum a poste-
riori probability (MAP) estimator. Through Bayesian infer-
ence, we have the following posteriori probability of U, V
and θ given the model parameters:

P (U,V, θ|δ,W, β, α, λu, λv) ∝
P (U|λu)P (V|θ, λv)P (δ|U,V)P (W, θ|α, β).

(4)

That is, in our model, it is equivalent to maximize the fol-
lowing log-likelihood:

L1 =−
∑
ijk

cijklog (1 + exp−(uT
i vj−uT

i vk))− λu

2

∑
i

uT
i ui

− λv

2

∑
j

(vj − θj)T(vj − θj) +
∑
jt

log (
∑
k

θjkβk,wjt)

+ C,
(5)

where C is a constant and can be omitted.
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Gaussian Assumption Unlike in the first model, we use
δijk to model the preference difference between a pair of
items, i.e., δijk = rij − rik: when δijk > 0, item j ranks
higher than k, otherwise lower. Specifically, we draw the re-
sponse variable as follows:

δijk ∼ N (uTi vj − uTi vk, c−1ijk). (6)

The complete log-likelihood is denoted as L2:

L2 =−
∑
ijk

cijk
2

(δijk − (uT
i vj − uT

i vk))2 − λu

2

∑
i

uT
i ui

− λv

2

∑
j

(vj − θj)T(vj − θj) +
∑
jt

log (
∑
k

θjkβk,wjt)

(7)

Discussion By defining ∆ijk = uTi vj−uTi vk as predicted
preference difference, we derive a general framework by
rewriting L1 and L2 as follows:

L =−
∑
ijk

cijk`(δijk,∆ijk)− λu

2

∑
i

uT
i ui

− λv

2

∑
j

(vj − θj)T(vj − θj) +
∑
jt

log (
∑
k

θjkβk,wjt),

(8)
where `(δijk,∆ijk) is pair-wise loss function, such as log-
loss in L1, and squared loss in L2. With this framework,
more pair-wise loss functions can be adapted for collabora-
tive topic ranking, such as hinge loss (Joachims 2002) and
exponential loss (Freund et al. 2003). From this point of
view, we refer the first model as CTRank-log and the sec-
ond model CTRank-squared.

As Eq. 8 shows, the framework CTRank mainly consists
of two key components: a ranking modeling component and
a meta-data modeling component, between which a topic
regularization term

∑
j(vj−θj)T(vj−θj) serves as a bridge.

In CTRank, topic proportions guide the learning of latent
factors for ranking while the latent factors further improve
the meta-data modeling. As with previous pair-wise ranking
approaches, the ranking component is too flexible and needs
to be regularized appropriately. In our model, topic propor-
tions θj are used as priors to specific constraints on item
factors vj , reducing the effective degrees of freedom and
yielding good performance. The parameter λv controls the
extent of topic regularization, and thus plays a vital role in
our model. In the extreme case, if we use a very small value
of λv , we almost lose the effect from topic information, then
CTRank reduces to a general pair-wise ranking approach.
On the other side, if we employ a very large value of λv ,
topic proportions θj will dominate the learning process, and
then CTRank benefits little from the ranking component.

Taking a deep insight into Eq. 8, we find that maximizing
−
∑

j(vj−θj)T(vj−θj) will make vj close to its topic pro-
portions parameter θj . If items j and k are similar in terms of
topic distributions, we are actually minimizing the distance
between item factors vj and vk. That is, knowledge can be
transferred from items with sufficient feedback to items with
little feedback. Consequently, we can still learn an accurate
representation for items even though the data is extremely
sparse.

Parameter Learning
Since the two proposed models can be optimized in a sim-
ilar way, we only demonstrate how parameters of CTRank-
squared are learned in this subsection. We optimize the ob-
jective function L2 using coordinate ascent which alterna-
tively optimizes latent factor variables ui, vj and topic pro-
portions θj .

We first fix θj and update ui, vj and vk using the following
stochastic Newton-Raphson rules:

ui = ui − η
λuui − cijkEijk(vj − vk)

λu + cijk(vj − vk)T(vj − vk)
, (9)

vj = vj − η
λv(vj − θj)− cijkEijkui

λv + cijkuTi ui
, (10)

vk = vk − η
λv(vk − θk) + cijkEijkui

λv + cijkuTi ui
, (11)

where η is learning rate, and Eijk = δijk − (uTi vj − uTi vk).
Given updated U and V, we now optimize topic pro-

portions θj . We define q(zjt = k) = φjtk, where φj =

(φjtk)
T×K
t=1,k=1. We then separate the terms that contain θj

and apply Jensen’s inequality to obtain a tight lower bound
of L2(θj):

L2(θj) ≥
∑
t

∑
k

φjit(log θjkβk,wjt
− log φjtk)

− λv
2

(vj − θj)T(vj − θj) = L2(θj , φj).

(12)

The optimal φjtk satisfies φjtk ∝ θjkβk,wjt
. Thus, projec-

tion gradient (Bertsekas 1999) can be applied to update θj .
For the parameter β, we follow the same M-step update

as in LDA (Blei, Ng, and Jordan 2003), i.e.,

βkt′ ∝
∑
j

∑
t

φjtk1(wjt = t′), (13)

where 1(x) is an indicator function that is equal to 1, if x is
true, otherwise 0.

In practice, we iteratively update the parameters until the
likelihood does not increase (by 0.01%) or the maximum
iteration limit, say 100, is reached.

Top-N Recommendation
After we learn the optimal parameters U, V, and θ, we pre-
dict rij from its expectation, based on which a ranked list of
N items is generated, as follows:

E(rij |ui, vj , θ, ...) = uTi vj . (14)

Complexity Analysis
The complexity for updating U and V is in the order of
O(nn̄K), where n̄ is the average number of items a user
likes. Optimizing θ requires timeO(m(T̄K+ĩK)), where T̄
is the average number of words in an item and ĩ is the num-
ber of iterations for projection gradient algorithm. The final
complexity for one full iteration of CTRank is O(nn̄K +
m(T̄K + ĩK)) which is much lower than that of CTR, our
major counterpart,O(2nn̄K2+(n+m)K3+m(T̄K+ĩK)).
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Experiments
Experiment Settings
Dataset CiteULike1 is an academic social network, which
allows users to create individual reference libraries for the
articles they like. In this work, we use a large dataset col-
lected by Wang (Wang and Blei 2011) from CiteULike.

Articles in a user’s reference library are considered as ob-
served items. In this dataset, 5551 users expressed 204,986
observed ratings for 16,980 items (articles) with a high
sparseness of 99.78%. On average, each user has 37 articles
in the library, ranging from 1 to 321, and each article appears
in 12 users’ libraries, ranging from 1 to 321. By randomly re-
moving observed feedback, we obtain 4 datasets with differ-
ent sparsity levels of 99.80%, 99.85%, 99.90% and 99.95%
correspondingly. For each article, its title and abstract are
abstracted to form the bag-of-word representation of mete-
data. Removing stop words and choosing top words based
on tf-idf (Manning, Raghavan, and Schütze 2008) construct
a corpus with 1.6M terms from a vocabulary of size 8000.

Evaluation Following one-class CF literature (Rendle et
al. 2009; Hariri, Mobasher, and Burke 2012; Paquet and
Koenigstein 2013), we adopt the popular 10-fold leave-one-
out cross validation to evaluate the performance of recom-
mendation models. That is, we randomly remove one ex-
ample from CiteULike dataset R+ to form test set Rtest,
and the remaining constitutes the training set Rtrain. The
models are learned on Rtrain and their predicted ranking is
evaluated onRtest by averaging HitRatio@N, the probabil-
ity that the removed article is recommended as part of the
top-N recommendations:

HitRatio@N =
1

|Rtest|
∑

(i,j)∈Rtest

1(rankij < N),

where rankij denotes the rank position of item j in user i’s
recommendation list. We repeat this process 10 times and
report the average results. As the definition shows, a higher
value of HitRatio@N indicates a better performance.

Parameter Effect on CTRank
We vary the dimensionality of latent space K in CTRank
models in the range {100, 150, 200, 250}, and the precision
parameter λv in the range {0.0025, 0.025, 0.25, 2.5} with
fixed λu = 0.0025. How proposed models behave with dif-
ferent combinations of parameters are shown in Fig. 2.

Effect of Dimensionality In Fig. 2(a), we investigate the
effect of K on the performance of CTRank, measured by
HitRatio@10. As expected, HitRatio@10 increases mono-
tonically with the growing number of iterations. When the
dimensionality grows from 100 to 200, CTRank achieves
higher HitRatio@10. We also notice that CTRank withK =
250 yields slightly lower HitRatio@10 than K = 200 even
though the former is the quickest approach leading to con-
vergence.

1http://www.citeulike.org

Effect of Parameter λv In Fig. 2(b), we observe that the
value of λv affects the recommendation performance signif-
icantly, which demonstrates that exploiting topic informa-
tion can greatly improve recommendation accuracy. It is also
observed that, as λv decreases, the HitRatio@10 value in-
creases at first, but when λv goes beyond a certain thresh-
old like 0.025, the HitRatio@10 value drops with further
decrease of λv . This shows that purely using implicit feed-
back or purely using topic information cannot generate bet-
ter performance than appropriately fusing these two sources
together.

Effect of Loss Function The loss function determines
how the ranking component impacts latent factors. As shown
in Fig. 2(c), CTRank-log converges very early but only con-
verges to a low value of HitRatio@10, whereas CTRank-
squared obtains increasing HitRatio@10 as the growth of
the number of iteration. The poor performance of CTRank-
log arises from the limitation that the approaches minimiz-
ing log-loss function focus on incorrectly ordered pairs, and
benefit little from pairs that are currently correctly ordered.
In the scenarios where the majority of items are irrelevant, a
sampled unobserved example is likely to be ranked correctly
below an observed item, and thus these models do not bene-
fit from the training examples, i.e., the gradient vanishes.

Performance Comparison
To evaluate the proposed model, we compare it with other
models in datasets with varying sparsity levels.

Comparison Methods To study the effect of topic infor-
mation discovered from meta-data, we consider the follow-
ing general pair-wise ranking approaches which do not con-
sider topic information.

BPR: Bayesian Personalized Ranking optimization for
MF (Rendle et al. 2009), which is the state-of-the-art ap-
proach for implicit feedback data. It can be absorbed as a
special case of CTRank-log without considering topic infor-
mation.

PALS: Pair-wise Alternating Least Squares, a variant of
CTRank-squared without considering topic information.

To investigate the advantage of pair-wise methods over
point-wise approaches, we compare CTRank with CTR
(Wang and Blei 2011), a point-wise model, which links MF
and LDA together.

Parameter Settings For all comparison methods, we set
respective optimal parameters either according to corre-
sponding references or based on our validation experiments.
Specifically, we randomly select one test example per user
from training set and use these examples as validation set
to determine the trade-off parameters {K,λv, λu}. For all
these latent factor based methods, we set the dimensionality
of latent space K = 200 and the learning rate η = 0.005.
For BPR, parameters λu and λv are 0.0025. For PALS
λv = λu = 0.0025. For CTR, λu and λv are set to 0.01
and 100, respectively. For CTRank models, λv = 0.025,
λu = 0.0025.

Comparison Results We report the comparison results in
Table 2. The key conclusions are summarized as follows: (1)
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Figure 2: Effect of parameters on the performance of CTRank. The sparsity level of the dataset used is 99.80%. Parameter
settings: (a) λv = 0.025, λu = 0.0025 and squared loss is used. (b) λu = 0.0025, K = 200 and squared loss is used. (c)
λv = 0.025, λu = 0.0025, K = 200.

Table 2: HitRatio (%) comparison over datasets with different sparsity levels. Numbers in boldface (e.g., 21.13) and in Italic
(e.g., 18.27) are the best and second best results among all methods, respectively. N is the number of recommended items.

Methods
Sparsity
99.80% 99.85% 99.90% 99.95%
N=5 N=10 N=15 N=5 N=10 N=15 N=5 N=10 N=15 N=5 N=10 N=15

BPR 16.59 22.75 27.49 10.37 16.33 20.55 5.40 9.71 13.64 4.77 7.94 10.59
PALS 18.04 25.62 29.94 11.69 17.29 21.17 6.70 10.61 13.80 3.31 5.56 7.44
CTR 17.51 24.84 30.23 12.43 19.04 23.01 6.12 10.23 13.13 4.99 9.01 12.47
CTRank-log 18.27 25.65 29.43 13.01 18.84 23.61 7.30 11.71 15.18 6.10 9.76 12.56
CTRank-squared 21.13 28.33 32.73 14.80 20.52 25.40 8.90 14.39 18.52 6.11 9.97 12.83

The proposed CTRank-squared outperforms all other base-
lines at all sparsity levels while CTRank-log achieves the
second best results in most cases. (2) The improvement from
CTRank-squared over PALS and that from CTRank-log over
BPR coincide with our assumption that meta-data can be
used to differentiate the relevant items from the irrelevant
ones. In particular, the relative improvement is more signif-
icant when the data is more sparse, which confirms the ef-
fectiveness of CTRank in alleviating data sparsity. (3) The
pair-wise approaches directly optimizing ranking loss yields
better performance than point-wise approaches, as revealed
by CTRank and CTR.

Table 3: An example user from CiteULike dataset. We show
some typical articles he/she likes, top 3 topics in ui and top
5 recommended articles.

√
means the target article.

Articles in
his/her
library

1. Parallel human genome analysis microarray based expression moni-
toring of genes
2. Gene expression data analysis
3. Experimental design for gene expression microarrays
4. The nature of statistical learning theory
5. On the convergence properties of the em algorithm
6. A tutorial on support vector machines for pattern recognition
...

CTRank

Top 3
topics

1. gene-expression-microarray-expressed-profiling-...
2. algorithms-class-optimization-output-binary-...
3. learning-classification-machine training-vector-...

Top 5
Articles

1. Distinct types of diffuse large bcell lymphoma identified by gene
expression profiling

√

2. An introduction to support vector machines and other kernelbased
learning methods
3. Interpreting patterns of gene expression with selforganizing maps
4. The elements of statistical learning
5. Computational cluster validation in postgenomic data analysis

Interpretability
Besides promising recommendation performance, an impor-
tant advantage of our model is that it can interpret fine-
grained levels of latent spaces: (1) user preferences space
(ui) and (2) item characteristics space (vj) using the topics
identified by CTRank. In Table 3, we show an example user
from CiteULike dataset. From the user’s library, we may ob-
serve that he/she is interested in the topics “gene expression”
and “machine learning”. We also list the user’s top-3 topics
(found by k = arg maxkuik) along with top-5 articles rec-
ommended by CTRank. It is obvious that user preferences
can be well explained by the learned topics, and the recom-
mended articles are closely linked to these topics. Likewise,
we can also interpret item characteristics using top topics
discovered by CTRank. And the overlapping topics between
users and items may serve to generate explanations for rec-
ommendations.

Conclusion
In this paper, we propose a novel hierarchical Bayesian
framework CTRank that incorporates “bag-of-words” type
meta-data on items into pair-wise ranking models for alle-
viating the data sparsity problem. By regularizing item fac-
tors through item topic proportions, CTRank extends pair-
wise ranking models with topic models. This design allows
to learn expressive latent factors for users and items from
extremely sparse implicit feedback. As an additional bene-
fit, CTRank is able to provide interpretable user factors and
item factors. This property may help in generating explana-
tions for recommendations in some applications.
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