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Abstract

Advertising effectiveness measurement is a fundamen-
tal problem in online advertising. Various causal in-
ference methods have been employed to measure the
causal effects of ad treatments. However, existing meth-
ods mainly focus on linear logistic regression for uni-
variate and binary treatments and are not well suited for
complex ad treatments of multi-dimensions, where each
dimension could be discrete or continuous. In this paper
we propose a novel two-stage causal inference frame-
work for assessing the impact of complex ad treatments.
In the first stage, we estimate the propensity parame-
ter via a sparse additive model; in the second stage,
a propensity-adjusted regression model is applied for
measuring the treatment effect. Our approach is shown
to provide an unbiased estimation of the ad effective-
ness under regularity conditions. To demonstrate the ef-
ficacy of our approach, we apply it to a real online ad-
vertising campaign to evaluate the impact of three ad
treatments: ad frequency, ad channel, and ad size. We
show that the ad frequency usually has a treatment ef-
fect cap when ads are showing on mobile device. In ad-
dition, the strategies for choosing best ad size are com-
pletely different for mobile ads and online ads.

Introduction
In the current online advertising ecosystem, user are ex-
posed to ads with diverse formats and channels, and user’s
behaviors are caused by complex ad treatments combining
of various factors (Rosenkrans 2009). The complexity of
ad treatments calls for an accurate and causal measurement
of ad effectiveness, i.e., how the ad treatment causes the
changes in outcomes. An outcome is the user’s response in
the ad campaigns, such as whether or not the user clicks a
link, or searches for a brand. The gold standard of accurate
ad effectiveness measurement is the experiment-based ap-
proach, such as A/B test, where different ad treatments are
randomly assigned to users. However, the cost of fully ran-
domized experiments is usually very high (Chan et al. 2010;
Kohav and Longbotham 2010; Stitelman et al. 2011) and in
some rich ad treatment circumstances, such fully random-
ized experiments are even infeasible (Bottou et al. 2013).
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Hence it is critical and necessary to provide statistical ap-
proaches to estimate the ad effectiveness directly from ob-
servational data rather than experimental data. Previous
studies based on observational data try to establish direct
relationship between the ad treatment and a success action
(Abraham 2008). However, in observational data, typically
the user characteristics may affect both the exposed ad treat-
ment and the success tendency. Ignoring such confounding
effects of user characteristics may lead to a biased estimation
of the treatment effect (Rosenbaum and Rubin 1984).

Causal inference aims to infer unbiased causality effect
of the ad treatment from observational data, by eliminat-
ing the impact of the confounding factors such as user
characteristics. The causal inference framework for a bi-
nary treatment was original proposed by Rosenbaum and
Rubin (1983). They introduced the concept of propensity
score and proposed to estimate it via a logistic regression.
To expand the scope of causal inference from a binary
treatment to a continuous/categorical treatment, a propen-
sity function-based framework was proposed (Imai and van
Dyk 2004), where Gaussian linear regression was applied
to estimate the propensity function. Based on the esti-
mated propensity score (or propensity function), an addi-
tional sub-classification procedure was usually performed to
produce the final treatment effect estimation. Recently, ma-
chine learning algorithms, e.g. gradient boosted machine,
bagged CART, and random forest, were employed to esti-
mate the propensity score (Lee, Lessler, and Stuart 2010;
Su et al. 2012). While these algorithms showed desirable
performance, they mainly focused on the scenario with a
univariate treatment and low dimensional user features. In
online advertising, causal inference methods have been de-
veloped to estimate the causal effect (Chan et al. 2010;
Dalessandro et al. 2012; Wang, Traskin, and Small 2013;
Wang et al. 2014). Nevertheless, these works also mainly
focused on the univariate and binary treatment and not well
suited for measuring the effects of complex treatment (e.g.,
a two-dimensional treatment consists of ad exposure fre-
quency and ad size), which are more realistic and in great
demand.

Measuring complex ad treatment effectiveness is still fac-
ing four major challenges. First, the general ad treatment can
be much more complex than binary treatment. It could be a
discrete or continuous, uni- or multi-dimensional treatment.
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Second, the widely enforced linearity condition on the re-
lationship between ad treatment and user characteristics is
too restricted. Third, the online dataset typically has high-
dimensional user characteristics and it is generally believed
that only a small number of features are truly informative
while others are redundant. Forth, existing propensity-based
sub-classification methods are sensitive to the choice of the
number of sub-classes and the format of sub-classification.

To address above challenges, in this paper we propose a
novel two-stage causal inference framework to tackle the
general ad effectiveness measurement problem. In the first
stage, we model the propensity parameter via a sparse addi-
tive model and in the second stage, we employ a propensity-
adjusted regression model to measure the final treatment ef-
fect. The novelty and advantages of the proposed method
can be summarized as follows:

• Our causal inference is fully general, where the treatment
can be single- or multi-dimensional, and it can be binary,
categorical, continuous, or a mixture of them. We prove
that this framework offers an unbiased estimation of the
treatment effect under standard assumptions.

• Our sparse additive model for propensity parameter esti-
mation deals with high-dimensionality and non-linearity
issues in online advertising data.

• The propensity-adjusted regression model in our second
stage estimates the treatment effect directly and avoids the
tuning in existing sub-classification methods.

We further apply our framework to an online advertising
campaign and provide practical guideline to assess advertis-
ing strategy on mobile and online platforms. Our extensive
experiments show that the ad frequency usually has a treat-
ment effect cap on mobile devices and the choice of best ad
size are completely different for ads shown on mobile and
online. Hence it is important for the ad providers to make
appropriate adjustment for the number of the ads and the
format of the ads delivered to the users.

Background
We first review the basic concepts of causal inference, and
then mention potential drawbacks of existing approaches.

Define a treatment as a random variable T and a potential
outcome associated with a specific treatment T = t as Y (t).
Since the treatment can be uni- or multi-dimensional, we use
the boldface T and t to indicate a multivariate treatment vari-
able and T and t to indicate a univariate treatment variable.
In general, multivariate variable T could be of a mixture of
categorical and continuous variables. For each user, indexed
by i = 1, 2, ..., N , we observe a vector of pretreatment co-
variates (i.e., user characteristics) Xi of length p, a treatment
Ti, and an univariate outcome Yi corresponding to the treat-
ment received. Typically, one would like to evaluate the ef-
fect of a given treatment t on the outcome Y , removing the
confounding effect of X.

A primary interest of causal inference is the distribution
p(Y (t)) for each treatment t. In order to unbiasedly evaluate
this distribution, two standard assumptions are usually made
in the literature (Rosenbaum and Rubin 1983).

Assumption 1: Stable unit treatment value assumption.
The potential outcome for one unit should be unaffected by
the particular assignment of treatments to the other units.

Assumption 2: Strong ignorability of treatment assign-
ment. Given the covariates X, the distribution of treatment T
is independent of the potential outcome Y (t) for all t.

Assumption 1 allows us to model the outcome of one sub-
ject independent of another subject’s treatment status, given
the covariates. Assumption 2 enables the modeling of the
treatment with respect to the covariates, independent of the
outcome, i.e., all the features related to both the treatment as-
signment and the outcome have been included in the model.
Under Assumption 2, Rosenbaum and Rubin (1983) showed
that the distribution p(Y (t)) can be computed as

p(Y (t)) =
∫

X
p(Y (t)|T = t,X)p(X)dX, (1)

where p(Y (t)|T = t,X) is the conditional distribution of
Y (t) given t and X, and p(X) is the distribution of X. In
order to compute (1), one can model p(Y (t)|T = t,X) di-
rectly. But experience shows that the result can be strongly
biased if the relationship between T and X is omitted or mis-
specified (Rosenbaum and Rubin 1983). When the observed
covariates X is low-dimensional, one way to avoid this bias
is to classify subjects according to X and estimate (1) via
the weighted average over X. However as the dimension of
X increases, exact sub-classification according to covariates
becomes computationally infeasible.

To address these issues, Rosenbaum and Rubin (1983) in-
troduced the balancing score to summarize the information
required to balance the distribution of covariates and pro-
posed the propensity score method for the binary treatment
problem. The balancing score is the random variable such
that conditioned on it, the observed covariates and the treat-
ment assignment are independent. Later on, Imai and van
Dyk (2004) generalized propensity score to propensity func-
tion for a categorical or continuous treatment. Specifically,
the propensity function e(X) is defined as the conditional
density of the treatment given the observed covariates, i.e.,
e(X) = p(T|X). It was shown that this propensity function
is a balancing score, that is, p(T|X) = p(T|e(X)). Hence we
can obtain p(Y (t)) in (1) as

p(Y (t)) =
∫
e(X)

p(Y (t)|T = t, e(X))p(e(X))de(X). (2)

To compute the integral in (2), Imai and van Dyk (2004) as-
sumed that there existed a unique finite-dimensional propen-
sity parameter θ such that the propensity function e(X) de-
pended on X only through θ(X). Here θ is also a balancing
score, and hence we can obtain p(Y (t)) in (2) as

p(Y (t)) =
∫
θ

p(Y (t)|T = t,θ)p(θ)dθ. (3)

Usually θ has a much smaller dimension than X , hence this
strategy tackles the high dimensionality issue of the covari-
ates in (1).

In many advertising applications, e(X) or θ is unknown
since the collected data are observational data. Although the
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ad publisher designs the advertising algorithm, the specific
e(X) may not be fully controlled due to the system com-
plexity. More importantly, the probability of a specific user
visiting an ad publisher is unknown, which is an important
factor of e(X). For example, some ads are only posted on
given pages, and it is unknown whether a specific user visits
this page or not. Therefore, in practice, we need to estimate
θ based on given samples.

To approximate (3), Imai and van Dyk (2004) suggested
to estimate the propensity parameter θ via Gaussian linear
regression (for a continuous treatment) or linear logistic re-
gression (for a binary treatment), classify samples into sev-
eral sub-classes with similar value of the estimations of θ,
estimate the treatment effect within each sub-class, and then
average the estimators from each sub-class.

However, linear models for estimating θ require restricted
assumptions on functional form and distributions of vari-
ables. The violation of these assumptions may result in a
biased treatment effect estimation (Lee, Lessler, and Stu-
art 2010). In addition, the final treatment effect estimation
could be sensitive to the number of sub-classes and the strat-
egy of sub-classification (Hullsiek and Louis 2002). Note
that a larger number of sub-classes leads to a more accu-
rate estimation of the integral in (3) but inevitably implies
a less accurate estimation of the inner conditional distri-
bution due to limited observations in each sub-class. Fur-
thermore, although equal-frequency strategy is generally
used to form the sub-classes (Rosenbaum and Rubin 1984;
Imai and van Dyk 2004), experiments showed that this strat-
egy often leads to highly unstable estimators for the extreme
sub-classes (Hullsiek and Louis 2002). Therefore, it is nec-
essary to introduce a new method which has a more flexi-
ble modeling strategy and can avoid the specifications of the
number of sub-classes and the format of sub-classification.

Methodology
To address the above drawbacks, we propose a two-
stage causal inference method for more realistic problem—
complex ad effectiveness analysis. The method applies a
more flexible modeling approach for estimating the propen-
sity parameter and avoids specifying the number of sub-
classes. The outline of our algorithm is shown in Table 1
and Figure 1. The detailed modeling approaches in Stages
1-2 are discussed in the following subsections.

Table 1: Our Two-stage Algorithm
Input: Yi, Xi, Ti for i = 1, 2, ...N .
Output: Estimated treatment effect for t.
Stage 1: Obtain the estimated propensity parameter

θ̂(Xi) by modeling Ti|Xi via SAM.
Stage 2: Calculate the final treatment effect by modeling

Yi|Ti, θ̂(Xi) via GAM as in (10).

Stage 1: Propensity Parameter Estimation via SAM
We propose to estimate the propensity parameter via a sparse
additive model (SAM) which relieves the restricted linear

Figure 1: Outline of our algorithm. “SAM” and “GAM” re-
fer to sparse additive model and generalized additive model,
respectively.

assumption in existing propensity parameter estimation ap-
proaches, and deals with the high-dimensionality issue of X
where only a small number of them are truly informative.
For a m-dimensional treatment T = (T1, . . . , Tm), we esti-
mate the propensity parameter θj , j = 1, . . . ,m, by mod-
eling each Tj |X via SAM. The final estimated propensity
parameter for T is the combination of all the individually es-
timated propensity parameters, i.e., the tuple (θ1, . . . ,θm).
In this sequel, we will discuss the modeling approach for a
continuous treatment, a binary treatment, and a multi-class
categorical treatment, separately. For ease of notation, we
will suppress the dependence of Tj on the index j in this
subsection and consider a generic modeling for T |X for a
univariate treatment T .

Continuous treatment: For a continuous treatment T ,
Imai and van Dyk (2004) estimated the propensity param-
eter via a Gaussian linear regression T = XTβ + ε with
X the p-dimensional user features and ε a standard Gaus-
sian. Despite of its simplicity, the linearity assumption is
too restrictive. To relax this constraint, Woo et. al. (2008)
applied the generalized additive model (GAM) (Hastie and
Tibshirani 1990) to estimate the propensity parameter. For
smooth functions f1, . . . , fp, the additive model assumes
T =

∑p
j=1 fj(Xj)+ε, which is more general than Gaussian

linear regression, but only has good statistical and computa-
tional performance when p is relatively small.

In high-dimensional scenario, the sparsity constraint has
been incorporated into the additive model for variable se-
lection. The key idea of SAM (Ravikumar et al. 2009) is to
scale each component function by a scalar βj and then im-
pose an l1 penalty on the coefficient β = (β1, . . . , βp)

T to
encourage the sparsity of the nonlinear components. Denote
Hj as the Hilbert space of measurable functions fj(xj) of
the single variable xj with E[fj(Xj)] = 0 and E[f2j (Xj)] <
∞. The SAM solves

min
β∈Rp,gj∈Hj

E

(
T −

p∑
j=1

βjgj(Xj)

)2

(4)

subject to
p∑
j=1

|βj | ≤ λ (5)

E(gj) = 0, j = 1 . . . , p (6)

E(g2j ) = 1, j = 1 . . . , p. (7)

Similar to the lasso penalty (Tibshirani 1996) for Gaussian
linear regression, the upper bound constraint in (5) encour-
ages the sparsity, which results in a sparse additive function∑p

j=1 fj(xj) =
∑p

j=1 βjgj(xj). Furthermore, the last two
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constraints (6) and (7) are used for identifiability. The above
optimization problem can be solved efficiently by the coor-
dinate descent algorithm (Ravikumar et al. 2009), where the
tuning parameter λ can be tuned by BIC or stability-based
criterion (Sun, Wang, and Fang 2013). After solving (4), we
can estimate the propensity parameter θ(X) using the vector
of the fitted treatments T̂ .

Binary treatment: The SAM in (4) can be extended to
nonparametric logistic regression for estimating the propen-
sity parameter θ(X) = P(T = 1|X). Specifically, for a bi-
nary treatment T ∈ {0, 1}, the additive logistic model is

P(T = 1|X) =
exp

(∑p
j=1 fj(Xj)

)
1 + exp

(∑p
j=1 fj(Xj)

)
with the population log-likelihood function L(f) =

E[Tf(X) − log(1 + exp(f(X)))]. Then sparse additive lo-
gistic model can be solved by replacing the squared loss in
(4) with the corresponding new log-likelihood L(f). The
propensity parameter θ(X) for a binary treatment can then
be estimated as the vector of fitted conditional probabilities
P̂(T = 1|Xi) with i = 1 . . . , N .

Multi-class treatment: When the treatment T is categori-
cal with more than 2 classes, e.g., T ∈ {1, . . . ,K}, the one-
vs.-rest multi-category strategy (Liu, Lafferty, and Wasser-
man 2008) can be employed. Specifically, the treatment T is
expanded as aK−1 dimensional vector (T (1), . . . , T (K−1))
in which at most one element can be one and all others being
zero. The multi-category additive logistic model is,

P(T (k) = 1|X) =
exp

(∑p
j=1 f

(k)
j (Xj)

)
1 +

∑K−1

k
′
=1

exp
(∑p

j=1 f
(k

′
)

j (Xj)
) ,

for k = 1, . . . ,K − 1 with the multinomial log-loss

l(f) =

K−1∑
k=1

T (k)f (k)(X)− log

(
1 +

K−1∑
k=1

exp(f (k)(X))

)
.

Finally, the propensity parameter for a K-class categori-
cal treatment can be estimated as the N × (K − 1) matrix
whose (i, k)-th element is the estimated conditional proba-
bility P̂(T = k|Xi) for k = 1, . . . ,K − 1 and i = 1 . . . , N .

Stage 2: Propensity-adjusted Regression
With the propensity parameter θ, we now measure the treat-
ment effect via the propensity-adjusted regression, which
can more naturally estimate the treatment effect than the ex-
isting sub-classification methods. In short, we consider the
propensity parameter as an additional feature and directly
model the relationship between the outcome and the combi-
nation of treatment and propensity parameter via regression
models. Specifically, given the propensity parameter θ and
the treatment T, we model Y |T,θ as

Y = g
(
T,θ

)
+ ε (8)

with g(·) an unknown function and ε a standard Gaussian.
Next we show that the treatment effect estimator based on

(8) is unbiased under some regularity conditions.

Theorem 1 Under Assumptions 1-2, and assume true out-
come model is (8), if there exists an unbiased functional es-
timator ĝ for g, i.e., ED[ĝ] = g where the expectation is with
respect to the samples D, then the estimated treatment effect
of t is unbiased. That is,

Eθ [ED[ĝ(t,θ)]− ED[ĝ(0,θ)]] = E[Y (t)− Y (0)].1 (9)

Proof of Theorem 1: First, for any given treatment t, we
have E[Y (t)] = Eθ {E[Y (t)|θ]}. Since the propensity pa-
rameter θ is a balancing score, according to Theorem 3 in
Rosenbaum and Rubin (1983) and Assumption 2, we have

(Y (t), Y (0)) ⊥⊥ T|θ.
Therefore, we have E[Y (t)|θ] = E[Y (t)|T = t,θ] for any
treatment t. According to (8), we have E[Y (t)|T = t,θ] =
g(t,θ) and E[Y (0)|T = 0,θ] = g(0,θ). Combining these
results with the unbiasedness of ĝ leads to (9). This ends the
proof of Theorem 1. �

We next discuss an estimation procedure of the treat-
ment effect based on (8). Given the training samples
{(Yi,Ti,Xi, ), i = 1, . . . , n}, in Stage 1, we obtain the esti-
mated propensity parameter θ̂ via SAM, and in Stage 2 we
estimate the function ĝ(·) in (8) via GAM, where GAM is
applied since it offers flexible modeling and performs well
when dimensions of T and θ are low. Finally, the averaged
treatment effect (ATE) of a treatment t can be estimated as

ÂTE(t) =
1

N

N∑
i=1

{
ĝ(t, θ̂(Xi))− ĝ(0, θ̂(Xi))

}
. (10)

Simulations
This section evaluates the efficacy of our model via a sim-
ulated experiment. We first illustrate the performance of
model fitting in Stage 1 by comparing our approach with up-
to-date machine learning algorithms, and then demonstrate
the superiority of our treatment effect estimation.

We set sample size N = 1000 and number of features
p = 200. Define basis functions f1(x) = −2 sin(2x),
f2(x) = x2−1/3, f3(x) = x−0.5, f4(x) = e−x−e−1−1,
f5(x) = (x − 0.5)2 + 2, f6(x) = I{x>0}, f7(x) = e−x,
f8(x) = cos(x), f9(x) = x2, and f10(x) = x. We first
generate the features X1, . . . , Xp

iid∼ N(0, 1). The three
dimensional treatment T and the outcome Y are produced
as follows. We generate the continuous treatment T1|X ∼
N(
∑4

j=1 fj(Xj), 1), the binary treatment T2|X = 1 if∑5
j=1 fj(Xj) > 0 and 0 otherwise, and the multi-class

treatment T3|X ∈ {1, 2, 3, 4} based on 25%, 50%, 75%,
and 100% quantiles of

∑2
j=1 fj(Xj), and generate the out-

come model as Y |X,T ∼ N(
∑5

j=1 fj+5(Xj) + αT T, 1)
with α = (1, 1, 1).

In this example, the features X1, . . . , X5 are informative
variables and have confounding effects to both treatment
and outcome, and the rest X6, . . . , Xp are noisy variables to
mimic the sparse data of online advertising. The true effects
for three treatment T1, T2, or T3 are all 1.

1We implicitly consider t = 0 as the baseline treatment.
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To evaluate the performance of model fitting in Stage 1,
we independently generate a testing data with size 1000,
and report the averaged prediction errors for fitting T1 and
the averaged misclassification errors for fitting T2 over 100
replications. The results for fitting T3 are similar and are
omitted to save space. We compare SAM with gradient
boosted machine (gbm), lasso, sparse logistic regression
(slogit), bagged tree (bagging), and random forest (rf). As
shown in Figure 2, SAM achieves smallest errors for both
continuous and binary treatment model fittings and the ad-
vantages over other models are significant.
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Figure 2: Errors of fitting T1 (left plot) and T2 (right plot).
“sam” refers to sparse additive model, “gbm” refers to gra-
dient boosted machine,“slogit” refers to sparse logistic re-
gression, “bagging” refers to bagged tree, and “rf” refers to
random forest. The one standard deviation bar is shown for
each model.

The benefit of SAM is not at the cost of expensive com-
putations. As shown in Figure 3, SAM is the second fastest
algorithm when fitting the continuous treatment, which is
only slightly slower than lasso, and its computational cost is
comparable to gbm when fitting the binary treatment.
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Figure 3: Computational time (in seconds) for fitting treat-
ment T1 (left plot) and treatment T2 (right plot) from various
models.

Secondly, we demonstrate the superior treatment effect
estimation performance of our model. Specifically, we com-
pute the absolute difference of the estimated treatment ef-
fects and their corresponding true treatment effects. We in-
vestigate the comparison among a direct treatment effect es-
timation method (Model 1), the existing propensity-adjusted
methods (Models 2-3) as well as their sparse versions (Mod-
els 4-5), and the proposed two-stage models.

Model 1: a linear regression for Y |(T,X).

Model 2: fit a linear regression for T1|X, logistic regres-
sion for T2|X, multi-class logistic regression for T3|X to ob-
tain the propensity parameter matrix θ̂ and then fit a linear
regression for Y |T, θ̂.

Model 3: same as Model 2 except that Stage 2 fits a GAM
for Y |T, θ̂.

Model 4: same as Model 2 except that Stage 1 fits a linear
sparse model for Tj |X, j = 1, 2, 3.

Model 5: same as Model 3 except that Stage 1 fits a linear
sparse model for Tj |X, j = 1, 2, 3.

Our Model 1: fit a SAM for Tj |X, j = 1, 2, 3 to obtain θ̂

and fit a linear regression for Y |T, θ̂.
Our Model 2: same as Our Model 1 except that Stage 2

fits a GAM for Y |T, θ̂.
In Figure 4, we report the sum of errors of all three treat-

ment effect estimations over 100 replications. Clearly, our
models achieve the smallest errors and their advantages are
significant. For our two models, fitting a GAM in Stage
2 provides with more accuracy gain. Besides, comparing
Model 2, Model 4, and our Model 1 reveals that the accu-
racy of treatment fitting in Stage 1 is extremely important for
the final treatment effect estimation. Furthermore, the sparse
models (Models 4-5) outperform their non-sparse counter-
parts (Models 2-3), which ensures the importance of feature
selection in the high dimensional scenario.

linear linear&linear linear&gam slinear&linear slinear&gam sam&linear sam&gam
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Figure 4: Errors of treatment effect estimations. “linear”,
“linear&linear”, “linear&gam”, “slinear&linear”, “slin-
ear&gam” refer to Models 1-5, and “sam&linear”,
“sam&gam” are our Models 1-2.

Experiments
We apply our model on a real advertising campaign for a ma-
jor auto company from a premium internet media company.
This campaign involves advertisements delivered via mobile
devices (including iPhone, iPad, Android Phone, Android
Tablet, Windows Phone and Windows Tablet) and personal
computers (PCs). We aim to measure the exposure frequency
impact and the size impact of the ads from both platforms.

The datasets contains about 5 millions of users, among
which 1.6 thousand users perform success actions (online
quotes) 2. The advertising treatment T is a 3-dimensional

2The reported dataset and results are deliberately incomplete
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vector: The first dimension is the ad frequency which can be
treated as a continuous variable; the second dimension is the
device indicator which is a binary variable with 1 referring
to a mobile and 0 referring to a PC; and the third dimen-
sion is the ad size indicator which is a categorical variable
with 3 classes: small, medium, and large. We consider ad fre-
quency of values at most 10 which consists of 99% samples.
In total, there are 2483 features, including the demographic
information, personal interest, and online and TV activities.
The personal interest includes high-dimensional and sparse
features, and hence SAM is well suited for the modeling.

We first estimate the propensity parameter via SAM and
compare it with estimators via gradient boosted machine and
sparse linear model, where the latter two demonstrate good
empirical performance in the simulations. The accuracy of
the propensity parameter estimation is evaluated via the pre-
diction errors by refitting the model for each treatment. The
averaged prediction errors over all the treatments are sum-
marized in Figure 5. Clearly, SAM achieves minimal errors
and is significantly better than other two models.
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Figure 5: Prediction errors of treatment fitting in real ex-
ample. The“gbm”, “slinear”, and “sam” refer to gradient
boosted machine, sparse linear model, and sparse additive
model, respectively.

We then illustrate the findings on mobile and desktop plat-
forms from three perspectives: 1) the ad frequency impact ;
2) the ad size impact; and 3) the synthetic impact of ad fre-
quency and ad size.

The ad frequency impact for both mobile devices and PCs.
As shown in Figure 6, when the customers are exposed to
ads via the mobile devices, the number of conversions mono-
tonically increases as the ad exposure increases. When cus-
tomers are exposed to ads via the PCs, the number of conver-
sions increases at the beginning and then decreases, and the
maximal number of conversions is obtained when the users
are shown 7 ads via PCs. These results advise that 7 ads are
sufficient to maximize the number of conversions for on-
line advertisements and there is little demand for this auto
company to deliver more than 7 ads to the eligible users;
while they should continue to show ads to customers who
are exposed to less than 10 mobile ads. In addition, Figure 6
delivers that the ad frequency effects on mobile devices are
marginally much larger than that on PCs. Specifically, ex-

and subject to anonymization, and thus do not necessarily reflect
the real portfolio at any particular time.

posing the user to 5 ads via mobile, as opposed to 1 ad via
mobile will lead to about 5 extra conversions; while expos-
ing the user to 5 ads via PCs, as opposed to 1 ad via PCs
will lead to only 1 extra conversion. This suggests that in
this campaign users generally has a larger chance to convert
when they are shown mobile ads, which is consistent with
the observation in Butcher (2010) that mobile ad campaigns
are generally more effective than online norms.
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Figure 6: Fitted number of conversions versus the ad fre-
quency for mobile devices (left) and PCs (right). The X axis
is the ad frequency and Y axis is the fitted number of con-
versions based on our model.

The ad size impact for mobile devices and PCs from our
causal inference estimation in Figure 7. A general trend is
that, when the ads are shown via mobile devices, the smaller
ad delivers more conversions than the larger ad. In contrast,
when the ads are displayed on PCs, larger ad size triggers
more conversions. This advises that on PCs it is more eco-
nomic to split the large ads into several small ads to achieve
more conversions.
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Figure 7: Fitted number of conversions versus the ad size
for mobile devices (left) and PCs (right). The X axis is the
ad size and Y axis is the fitted number of conversions based
on our model.

The synthetic impact of ad frequency and ad size. We
group ad frequencies as 1-2, 3-4, 5-6, 7-8, and 9-10 buck-
ets for easy presentation. As illustrated in Figure 8, when
the ads are shown on mobile devices, the largest conversion
is obtained when the users are shown 9− 10 ads with small
ad size; On the other hand, the largest conversion is obtained
when the users are shown 7 − 8 ads with large ad size via
the PCs. Therefore, it is crucial for the ad providers to make
appropriate adjustment based on the number and size of the
ads the users have been exposed to.
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Figure 8: Heatmaps of fitted number of conversions for mo-
bile devices (left plot) and PCs (right plot). The rows are the
ad frequencies and the columns are the ad sizes.

Conclusion
In this paper we propose a novel two-stage causal inference
framework for assessing the impact of complex advertis-
ing treatments. In Stage 1, we utilize SAM for propensity
parameter estimation, which is essentially a non-parametric
method which is more general and flexible than linear mod-
els and is suited for sparse advertising data with complex
treatments. In Stage 2, we devise a propensity-adjusted re-
gression to estimate treatment effect, which can more nat-
urally estimate the treatment effect than the existing sub-
classification methods. Our model is theoretically unbiased
and outperforms existing approaches in extensive experi-
ments. Our approach is applied to a real campaign with both
mobile and online ads to investigate the impact of ad fre-
quency, ad size, and the synthetic impact across platforms.
Our approach successfully draws meaningful insights from
the complex dataset and provides practical guideline to the
advertisers.

Note that our framework is not limited to online advertis-
ing, but is also applicable to other user engagement studies
where causal impact of general treatments (e.g., UI design,
content format, ad context) needs to be measured with ob-
servational data.
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