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Abstract

With rapid growth of information on the internet, rec-
ommender systems become fundamental for helping
users alleviate the problem of information overload.
Since contextual information can be used as a signifi-
cant factor in modeling user behavior, various context-
aware recommendation methods are proposed. How-
ever, the state-of-the-art context modeling methods treat
contexts as other dimensions similar to the dimensions
of users and items, and cannot capture the special se-
mantic operation of contexts. On the other hand, some
works on multi-domain relation prediction can be used
for the context-aware recommendation, but they have
problems in generating recommendation under a large
amount of contextual information. In this work, we pro-
pose Contextual Operating Tensor (COT) model, which
represents the common semantic effects of contexts as a
contextual operating tensor and represents a context as a
latent vector. Then, to model the semantic operation of
a context combination, we generate contextual operat-
ing matrix from the contextual operating tensor and la-
tent vectors of contexts. Thus latent vectors of users and
items can be operated by the contextual operating matri-
ces. Experimental results show that the proposed COT
model yields significant improvements over the compet-
itive compared methods on three typical datasets, i.e.,
Food, Adom and Movielens-1M datasets.

Introduction
With rapid growth of available information on the internet,
users are getting in trouble with the problem of information
overload. Recommender systems have become important for
helping user to select interesting information in many Web
applications such as social networks, e-commerce, online
reading, review websites and so on. Nowadays, with en-
hanced ability of systems in collecting information, a great
amount of contextual information in recommender systems
has been collected. The contextual information in real-world
application includes location, time, weather, companion and
so on. These kinds of contexts have significant effect on the
user behavior. For instance, a man may like to watch cartoon
with his children while may like to watch romantic movies
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with his wife. He may prefer to read novels during weekend
while may tend to read professional books during weekdays.

Due to the fundamental effect of contextual information in
recommender systems, many different kinds of context mod-
eling methods have been developed. Some existing works
(Karatzoglou et al. 2010; Rendle et al. 2011) incorporate the
contextual information in a factorization model via treating
the context as one or several dimensions which have sim-
ilar properties as dimensions of users and items. However,
treating contexts as same as users and items, these methods
cannot model the semantic operation of contexts. Moreover,
some works on multi-domain relation prediction (Zhang,
Agarwal, and Chen 2011; Jamali and Lakshmanan 2013)
can also be implemented for the context-aware recommen-
dation. These methods incorporate transfer matrix to map la-
tent vectors of entities from one domain to another domain.
To deal with context-aware recommendation, using transfer
matrix, latent vectors can be mapped from one context to
another context. However, since there are multiple contexts
in the real world (e.g., location, time, companion), using a
transfer matrix for each specific context combination, these
methods have problem in confronting with large amount of
contextual information.

To overcome the shortages mentioned above, we propose
a novel context modeling method, which uses contextual op-
erating tensor to capture the operation of contexts. In the re-
search of natural language processing, a noun has semantic
information as a latent vector, and an adjective has semantic
operation on nouns as an operating matrix (Baroni and Zam-
parelli 2010). For instance, in the phrase “excellent prod-
uct”, the noun “product” has a latent vector, while the ad-
jective “excellent” has the semantic operating matrix which
operate the vector of the noun “product”. Thus, the phrase
“excellent product” has a new latent vector which represents
a positive attitude to the “product”. In this work, we assume
that context combinations have similar properties of adjec-
tives and can operate the latent characteristics of entities.
For instance, when a man is with children, the context of
this companion operates his latent interests, and then he may
like to watch cartoons. Here, for the context combination in
a user-item rating behavior, we use contextual operating ma-
trix to represent the semantic operation. Inspired by (Socher
et al. 2013) in simplifying the matrix-vector operation, we
use contextual operating tensor to capture common effects
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of contexts. Besides, we represent each context combina-
tion as a latent vector, and then multiply it with the tensor
to generate the operating matrix. The main contributions of
this work are listed as follows:

• We model the contextual information as the semantic op-
eration on entities, which presents a novel perspective on
modeling of the contextual information.

• We use contextual operating tensor to capture the com-
mon semantic effects of contexts, and latent vectors to
capture the specific properties of contexts. Then the con-
textual operating matrix can be generated from them.

• Experiments conducted on three real datasets show that
COT is effective and evidently outperforms the state-of-
the-art context-aware models.

Related Works
In this section, we review some related works on matrix fac-
torization and state-of-the-art context-aware models.

Matrix Factorization
Matrix Factorization (MF) (Mnih and Salakhutdinov 2007;
Koren, Bell, and Volinsky 2009; Koren and Bell 2011) has
become the state-of-the-art approach to recommender sys-
tems. The basic objective of MF is to factorize a user-item
rating matrix into two low rank matrices, each of which rep-
resents the latent factors of users or items. The original rat-
ing matrix can be approximated via the multiplying calcula-
tion.

MF has been extended nowadays. SVD++ (Koren 2008)
combines the neighborhood model with matrix factoriza-
tion model in one prediction function. Treating time in-
formation as a special context, timeSVD++ (Koren 2010)
and tensor factorization (Xiong et al. 2010) are proposed,
which achieve the state-of-the-art performance in the time-
aware recommendation. Factorization machine (FM) (Ren-
dle 2010) models all interactions between pairs of vari-
ables with the target by using factorized interaction parame-
ters. FM is a flexible model for recommendation, and other
state-of-the-art factorization models including SVD++ and
timeSVD++ can be implemented using FM by defining the
input data or features (Rendle 2012).

Context-aware Recommender Systems
Contextual information has been proved to be useful for rec-
ommender systems (Palmisano, Tuzhilin, and Gorgoglione
2008; Adomavicius and Tuzhilin 2011), and many context-
aware recommendation methods have been developed. Ac-
cording to the survey of (Adomavicius and Tuzhilin 2011),
these methods can be categorized into pre-filtering, post-
filtering and context modeling. Employing pre-filtering or
post-filtering strategies, conventional methods (Adomavi-
cius et al. 2005; Baltrunas and Ricci 2009; Panniello et al.
2009) utilize contextual information to drive data selection
or adjust the resulting set. These ad-hoc methods may work
in practice, but they require the supervision and the fine-
tuning in all steps of recommendation (Rendle et al. 2011).

The context modeling approaches, which use the contex-
tual information directly in the model, have become popu-
lar. Recent works on context modeling have focused on inte-
grating contextual information with user-item rating matrix
and building models based on factorization models. Multi-
verse recommendation (Karatzoglou et al. 2010) represents
the user-item rating matrix with contextual information as
a user-item-context rating tensor, which is factorized with
Tucker decomposition (Tucker 1966). And FM is easily ap-
plicable to a wide variety of context by specifying only the
input data (Rendle et al. 2011). However, these methods treat
contexts as one or several dimensions besides the dimen-
sions of users and items, and cannot capture the special se-
mantic operation of contexts.

Research on multi-domain relation prediction can also be
used for the context-aware recommendation. Collective Ma-
trix Factorization (CMF) (Singh and Gordon 2008) factor-
izes the rating matrix in each domain, and the latent vectors
of some entities are shared among different domains. CMF
can also be applied in social rating networks (Yang et al.
2011) and attribute-aware relation prediction (Lippert et al.
2008). The work of (Zhang, Agarwal, and Chen 2011) con-
siders user attributes as priors for user latent vectors, and a
transfer matrix is used to generate latent vectors from the
original ones. Similarly, Heterogeneous Matrix Factoriza-
tion (HeteroMF) (Jamali and Lakshmanan 2013) generates
context-specific latent vectors of entities using a context-
dependent transfer matrix and the original latent vectors of
entities. However, for context-aware recommendation, with
a transfer matrix for each context combination, these meth-
ods cannot be implemented for real applications with large
amount of contextual information.

Proposed COT Model
In this section, we introduce our proposed contextual oper-
ating tensor model. We introduce the notations at first, then
present the proposed model thoroughly, and finally describe
the process of parameter inference.

Notations
In typical recommender systems, there are users and items
denoted by U = {u1, u2, ...} and V = {v1, v2, ...}. The
latent vectors of user i and item j can be denoted by ui ∈ Rd
and vj ∈ Rd. There are multiple contexts C1, ..., Cn, such
as location, time, companion and so on. A context value c
is a variable of the context C, and a specific combination
{c1,k, ..., cn,k} is named context combination k. The latent
vector of the context value cm,k is denoted as hm,k ∈ Rdc ,
then the context combination k can be represented as a latent
matrix Hk = [h1,k, ..., hn,k] ∈ Rdc×n.

In this work, the rating that user i provides to item j under
the context combination k can be written as ri,j,k. Note that,
in some cases, i and j can be the same entity. For example,
in social network, both i and j are users.

Contextual Operating Matrix
In typical matrix factorization methods, latent vectors of
users and items are constant with varying contexts. But in
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Figure 1: Overview of our proposed COT model. Contextual operating tensors and latent vectors of entities are shown on the
left side, and the computational procedure under each context combination is illustrated in the square.

real-world applications, user interests and item properties
are changed with different context combinations. Here, we
use context-specific latent vectors for users and items under
different context combinations. Then, the matrix factoriza-
tion equation can be rewritten as:

r̂i,j,k = ω0 + ωi + ωj +

n∑
m=1

ωm,k + uTi,kvj,k , (1)

where ω0 denotes the global bias, ωi and ωj denote the bi-
ases of user i and item j, ωm,k is the bias of the context value
cm,k, ui,k and vj,k are context-specific latent vectors of user
i and item j under the context combination k.

Similar to a phrase of noun and adjective, where the noun
has semantic information and the adjective has semantic op-
eration on the noun, in recommender systems, entities have
rich semantic information and contexts act like adjectives
which have the operation on entities. For example, com-
panion with children can make users would like to watch
cartoons, and romantic films become popular during Valen-
tine’s Day. We use two contextual operating matrices for a
specific context combination. These matrices describe how
a context combination affects the properties of entities and
how context-specific latent vectors of users and items can be
generated from their original ones. Here, we can calculate
context-specific latent vectors as:

ui,k = MU,kui , (2)

vj,k = MV,kvj , (3)

where MU,j and MV,j are both d× d matrices, denoting the
contextual operating matrices for users and items under the
context combination k.

Contextual Operating Tensor
As discussed above, with two contextual operating matrices
for each context combination, the number of parameters will
grow rapidly as the number of context combinations grows.

Besides, different contexts share similar common semantic
effects, for example, both weekend and being at home can
make you would like to read novels. Context operation can
be represented as a unity of common semantic effects and
specific properties of contexts. Therefore, it will be won-
derful and plausible if we can generate contextual operating
matrices from several basic matrices which represent some
common semantic effects of contexts. In this way, we can
not only reduce the number of parameters to be estimated,
but also model the underlying characteristics of contexts.
Here, incorporating contextual operating tensors, we have:

MU,k = aTk T
[1:d]
U , (4)

MV,k = aTk T
[1:d]
V , (5)

where T [1:d]
U and T [1:d]

V are both dc×d×d tensors, denoting
the contextual operating tensors for users and items. Repre-
senting the context combination k, ak is a dc dimensional
latent vector, which is a weighted combination of latent vec-
tors of each context value:

ak = HkW , (6)

where W is a n dimensional vector, indicating the weights
of each context, and each column of Hk denotes the latent
vector of each context value under the context combination
k. Then, substituting the Equation (4-6) into the context-
specific latent vectors of users and items in Equation (2-3),
we have:

ui,k = (HkW )TT
[1:d]
U ui , (7)

vj,k = (HkW )TT
[1:d]
V vj , (8)

Equation (7-8) can be calculated as:

ui,k =

 (HkW )TT
[1:d]
U,1 ui

· · ·
(HkW )TT

[1:d]
U,d ui

 , (9)
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vj,k =

 (HkW )TT
[1:d]
V,1 vj

· · ·
(HkW )TT

[1:d]
V,d vj

 , (10)

where T [1:d]
U,m and T [1:d]

V,m denote the mth slices of the tensor

T
[1:d]
U and T [1:d]

V , and each slice is a dc × d matrix.
With such a computation, the contextual operating tensor

can relate latent vectors of entities and latent vectors of con-
texts. Each slice of contextual operating tensor can capture
a specific type of common semantic operation on users or
items.

After discussing our model above, the overall rating pre-
diction function for COT can be written as:

r̂i,j,k = ω0 + ωi + ωj +
n∑

m=1
ωm,k

+


MU,k︷ ︸︸ ︷

(HkW )
T
T

[1:d]
U ui︸ ︷︷ ︸

ui,k


T MV,k︷ ︸︸ ︷

(HkW )
T
T

[1:d]
V vj︸ ︷︷ ︸

vj,k

. (11)

As shown in Figure 1, under each context combination k,
the contextual operating matrix MU,k or MV,k is a certain
combination of all types of semantic operation described
in contextual operating tensor T [1:d]

U or T [1:d]
U . In addition,

latent factor of context combination k is represented as a
weighted combination of columns in the latent matrix Hk.
Therefore, the context-specific latent vectors ui,k and vj,k
are the latent vectors ui and vj under the context operation
captured by MU,k and MV,k.

Parameter Inference
We have already introduced our model mathematically in the
previous section. Now, to accomplish the parameter infer-
ence, we need to minimize the following objective function:

min
U,V,H,T,W

J =
∑

〈i,j,k〉∈Ω

(ri,j,k − r̂i,j,k)2

+λ
2 (||U ||2 + ||V ||2 + ||H||2 + ||T ||2 + ||W ||2)

, (12)

where Ω denotes the train set, and λ is a parameter to control
the regularizations, which can be determined using 5-fold
cross validation.

The derivations of J with respect to all the parameters can
be calculated as:

∂J

∂ui
= −2

∑
〈i,j,k〉∈Ω

li,j,k

(
d∑

m=1

T
[1:d]
U,m vi,k,m

)T
HkW+λui ,

∂J

∂vj
= −2

∑
〈i,j,k〉∈Ω

li,j,k

(
d∑

m=1

T
[1:d]
V,m uj,k,m

)T
HkW+λvj ,

∂J

∂T
[1:d]
U,m

= −2
∑

〈i,j,k〉∈Ω

li,j,kHkWuTi vj,k,m + λT
[1:d]
U,m ,

∂J

∂T
[1:d]
V,m

= −2
∑

〈i,j,k〉∈Ω

li,j,kHkWvTj ui,k,m + λT
[1:d]
V,m ,

∂J

∂Hk
= −2

∑
〈i,j,k〉∈Ω

li,j,kQi,j,kW
T + λHk ,

∂J

∂W
= −2

∑
〈i,j,k〉∈Ω

li,j,kH
T
k Qi,j,k + λW ,

where ui,k,m and vj,k,m denote the mth components of la-
tent vector ui,k and vj,k, li,j,k and Qi,j,k are two intermedi-
ate variables which are computed as follows:

li,j,k = (ri,j,k − r̂i,j,k) ,

Qi,j,k =
(
T

[1:d]
U ui

)
vj,k +

(
T

[1:d]
V vj

)
uj,k .

After calculating all the derivations, a solution of J in
Equation (12) can be obtained by using stochastic gradi-
ent descent, which has been widely used in recommender
systems (Koren, Bell, and Volinsky 2009; Koren and Bell
2011).

Experiment
In this section, we empirically investigate the performance
of COT. First we describe the datasets and settings in our
experiments, then report and analyze the experiment results.

Experiment Datasets
Our experiments are conducted on three real datasets.

• Food dataset (Ono et al. 2009) is collected from a restau-
rant. There are two contexts: virtuality describes if the sit-
uation in which the user rates is virtual or real, and hunger
captures how hungry the user is.

• Adom dataset (Adomavicius et al. 2005) is collected
on a movie website and has rich contextual information.
There are five contexts: companion captures who the user
watches the movie with, when shows whether the user
watches the movie at weekend, release indicates whether
the user watches the movie on first release, rec captures
how will the user recommend the movie, and where indi-
cates whether the user watches the movie in the theater.

• Movielens-1M1 is collected from a movie recommender
system Movielens2. There is no explicit contextual infor-
mation, but the timestamp can be split into two contexts:
hour and day.

Compared Methods
We compare COT model with four state-of-the-art models.

• SVD++ (Koren 2008) is a context-unaware model which
is used as a baseline in our experiments. We use LibFM3

to implement the method.

1http://grouplens.org/datasets/
2http://movielens.org/
3http://www.libfm.org/
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Table 1: Performance comparison on three datasets and two kinds of splitting, measured by RMSE and MAE (d = 8, dc = 4).

Food Dataset Adom Dataset Movielens-1M

All Users Cold Start All Users Cold Start All Users Cold Start
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVD++ 1.155 0.948 1.278 1.086 2.782 2.093 3.421 2.436 0.942 0.721 1.248 0.956
Multiverse 1.063 0.841 1.121 0.921 1.833 1.383 2.168 1.556 0.883 0.669 1.025 0.771

FM 1.055 0.845 1.115 0.918 1.852 1.446 2.125 1.563 0.878 0.672 1.001 0.766
HeteroMF 1.072 0.862 1.136 0.932 2.084 1.552 2.384 1.782 0.902 0.686 1.072 0.792

COT 1.002 0.792 1.098 0.898 1.726 1.367 2.056 1.518 0.841 0.645 0.987 0.759

• Multiverse Recommendation (Karatzoglou et al. 2010)
is a state-of-the-art model and has been shown to outper-
form other context-aware recommendation models on the
Food dataset and the Adom dataset.

• FM (Rendle et al. 2011) is applicable to the contextual
information by specifying the input data. We also use
LibFM as its implementation.

• HeteroMF (Jamali and Lakshmanan 2013) uses transfer
matrix to model the contextual information. Each specific
context combination has a transfer matrix in HeteroMF.

Evaluation Metrics

To measure the performance of rating prediction, we use the
most popular metrics, Root Mean Square Error (RMSE) and
Mean Average Precision (MAE):

RMSE =

√√√√ ∑
(i,j,k)∈Ωtest

(ri,j,k − r̂i,j,k)
2

ntest
, (13)

MAE =

∑
(i,j,k)∈Ωtest

|ri,j,k − r̂i,j,k|

ntest
, (14)

where Ωtest denotes the test set, and ntest denotes the num-
ber of ratings in test set. The smaller the value, the better the
performance.

Experiment Methodology

To examine the performance on all users and cold start users,
we adopt two different ways to split the datasets.

• All Users: We randomly sample about 10% of the ratings
from the original dataset to create the test set, and the re-
maining 90% ratings are treated as the train set.

• Cold Start: We randomly sample some users from the
original dataset then select less than three of their ratings
as the train set, and leave all remaining ratings as the test
set. The numbers of ratings of each user in test set are
randomly decided. Also, the test set covers about 10% of
the original dataset, and the train set covers about 90%.

Performance Comparison
Table 1 illustrates all the experiment results measured by
RMSE and MAE on three datasets and two kinds of split-
ting. This table shows that COT achieves the best results
consistently, which demonstrates the effectiveness of using
contextual operating tensor to model the contextual informa-
tion. On all users splitting, comparing with the best perfor-
mance of other models, COT improves the RMSE values by
5.2%, 6.0% and 4.2% on the Food, Adom and Movelen-
1M datasets respectively. On cold start splitting, the im-
provements become 1.5%, 3.2% and 1.0%. COT improves
greatly on the Adom dataset, which proves COT to be par-
ticularly helpful for the dataset with rich contextual infor-
mation. Through all the experiments, context-aware mod-
els outperform the context-unaware model SVD++, which
demonstrates the importance of the utilization of contex-
tual information in recommender systems. Multiverse Rec-
ommendation and FM achieve close performance on all the
datasets. On Food and Movielens-1M datasets, HeteroMF
performs close to Multiverse Recommendation and FM, but
fails on the Adom dataset. This may be because HeteroMF
needs to estimate too many transfer matrices with rich con-
textual information in the Adom dataset.

Moreover, we compute and illustrate the RMSE improve-
ments of the context-aware models comparing with SVD++
in the left part of Figure 2. We can observe that, on all three
datasets, the RMSE improvements are larger on cold start
splitting than those on all users splitting. This shows that the
contextual information is more important in the cold start sit-
uation and can be used to compensate for the lack of history
information.

The convergence curves are illustrated in the right part of
Figure 2. The convergence curves show that the RMSE of
COT becomes stable after about 30 iterations. These indi-
cate that COT has a satisfactory convergence rate and can be
trained rapidly and effectively in practical applications.

Analysis of Contexts
As we discussed in the section of the COT model, each slice
of contextual operating tensor represents one kind of com-
mon operation. With larger difference among all the slices,
the contextual operating tensor is more powerful in model-
ing the context operation. Similar to the content diversity
measuring the difference among content of movies (Nguyen
et al. 2014), we use a metric matrix diversity measuring the
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(a) Food Dataset

(b) Adom Dataset

(c) Movielens-1M

Figure 2: Performance comparison on three datasets. The
left part illustrates the RMSE improvement of the context-
aware models compared to SVD++. The right part illustrates
the convergence curves of the models.

difference among all slices. Matrix diversity is defined as
average RMSE of all slice pairs of tensor. Figure 3 illus-
trates how matrix diversity of the contextual operating ten-
sors changes with increasing number of iterations. The fig-
ure shows that values of matrix diversity increase when the
number of iterations grows from 1 to about 30. After the it-
eration 30, the values of matrix diversity become stable. Be-
sides, we can see that COT achieves convergence in Figure 2
at the same time as the values of matrix diversity converged
in Figure 3 on three datasets. These evidences indicate that
in the training process, when matrix diversity achieves sta-
ble results, COT achieves the best performance. Moreover,
the final value of matrix diversity on the Adom dataset is
larger than those on the other two datasets. This may be be-
cause richer contextual information on the Adom dataset has
more powerful operating ability in changing the properties
of users and items.

The weights of different contexts captured by W on three
datasets are illustrated in Figure 4. The figure shows that the
context hunger is more important than virtuality on the Food
dataset, and day is more important than hour on Movielens-
1M. These observations follow our intuition. For the Adom

Figure 3: Matrix diversity of tensor TU and TV with increas-
ing number of iterations on three datasets.

Figure 4: Weights of different contexts on three datasets.

dataset, the context rec has much higher weight and becomes
the dominant context. This may be because the context rec,
which indicates how will the user recommend the movie, has
high relevance with the final rating.

Impact of Parameters
As shown in Figure 5, we study the model performance with
varying dimensionalities of entity vector d and context vec-
tor dc on the Food dataset. With increasing d and dc, the
value of RMSE decreases at first, then stays nearly stable af-
ter d = 5 and dc = 3. The parameter dc can be selected in
a large range, which means that the performance of COT
doesn’t rely on parameter selection very much. Since the
performances of COT with different parameter values se-
lected from these ranges are very similar, in previous sub-
section, we only illustrate the results with d = 8 and dc = 4
on three datasets for simplicity.

Figure 5: Performance of COT on the Food dataset with
varying dimensionalities d and dc.

Conclusion
In this paper, a novel context-aware recommendation
method, i.e. COT, is proposed. In COT, the context is con-
verged to be a vector and the common semantic effects of
contexts are captured by a contextual operating tensor. Be-
sides, the semantic operation of a context combination on
entities, i.e., users and items, are captured by a contextual
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operating matrix, which can be generated from the contex-
tual operating tensor and latent vectors of contexts. The ex-
perimental results on three real datasets show that COT out-
performs the state-of-the-art context-aware models and can
well reveal the relationship between contexts and entities.
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