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Abstract 
Discovery of communities in networks is a fundamental da-
ta analysis problem. Most of the existing approaches have 
focused on discovering communities of nodes, while recent 
studies have shown great advantages and utilities of the 
knowledge of communities of links. Stochastic models pro-
vides a promising class of techniques for the identification 
of modular structures, but most stochastic models mainly 
focus on the detection of node communities rather than link 
communities. We propose a stochastic model, which not on-
ly describes the structure of link communities, but also con-
siders the heterogeneous distribution of community sizes, a 
property which is often ignored by other models. We then 
learn the model parameters using a method of maximum li-
kelihood based on an expectation-maximization algorithm. 
To deal with large complex real networks, we extend the 
method by a strategy of iterative bipartition. The extended 
method is not only efficient, but is also able to determine the 
number of communities for a given network. We test our 
approach on both synthetic benchmarks and real-world net-
works including an application to a large biological network, 
and also compare it with two existing methods. The results 
demonstrate the superior performance of our approach over 
the competing methods for detecting link communities. 

 1. Introduction   
Many complex systems in the real world exist in the form 
of networks, such as social networks, biological networks, 
and the Internet, which are collectively referred to as com-
plex networks. One of the main problems in the study of 
complex networks is the detection of community structures 
(Girvan and Newman 2002), which has drawn a great deal 
of interest. Although no common definition has been 
agreed upon, a community within a network is usually con-
sidered as a group of nodes that are densely connected with 
respect to the rest of the network. In the past few years, 
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many different approaches have been proposed to uncover 
network community structures, as reviewed in (Fortunato 
2010; Xie, Kelley, and Szymanski 2013). 
 Although previous research on community detection has 
been mainly focusing on finding communities of nodes, 
several recent works considered finding communities of 
links (Ahn, Bagrow, and Lehmann 2010; Evans and Lam-
biotte 2009; Evans and Lambiotte 2010; Kim and Jeong 
2011; Pan et al. 2011; He et al. 2012). In many real net-
works, link communities are often more informative and 
intuitive than node communities, because links usually 
have unique identities, while nodes typically have multiple 
roles. In a social network, for instance, most individuals 
belong to multiple communities such as families, friends, 
and co-workers, while the link between two individuals 
often exists for a dominant reason which may represent 
family ties, friendship, or professional relationships. Fur-
thermore, multiple links connecting to a node may belong 
to distinct link communities, so that the node can be as-
signed to multiple communities of links. Accordingly, 
overlapping communities of nodes, another attractive topic 
in community detection (Palla et al. 2005), could be de-
tected as a natural byproduct of link communities. 
 Thanks to the good performance and sound theoretical 
basis, stochastic models constitute a promising technique 
for identifying modular properties of networks, and thus 
have been actively researched (Newman 2012). However, 
most of them focused on the detection of node communi-
ties (Wang et al. 2011; Psorakis et al. 2011; Zhang and 
Yeung 2012; Ren et al. 2009; Shen, Cheng, and Guo 2011; 
Karrer and Newman 2011; Zhang, Wang, and Ahn 2013), 
with only one exception for detecting link communities 
(Ball, Karrer, and Newman 2011). However, like most 
stochastic models, Ball’s model requires the number of 
communities to be given and is computationally inefficient, 
so that its applicability is limited, particularly for large-
scale networks. More importantly, it fails to describe hete-
rogeneous distributions of community sizes of real net-
works, providing distorted resulting link communities. 
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Therefore, much needs to be done for stochastic models for 
link community detection. 
 In this work, we introduce a stochastic model for link 
communities, namely LM (link model), which considers 
the heterogeneity of link community sizes when describing 
community structures. We learn the parameters of this 
model using a maximum likelihood method based on an 
expectation-maximization algorithm. We then extend the 
above method, by introducing a scheme of iterative biparti-
tion, to link model with iterative bipartition (LMBP). Our 
new LMBP method can not only autonomously determine 
the number of communities but is also efficient. Therefore 
it is applicable to large networks. Our experimental results 
show that LMBP outperforms two related competing me-
thods on both synthetic and real-world networks for detect-
ing link communities. 

2. Related Work 
A number of approaches to the detection of link communi-
ties in networks have been proposed. (Ahn, Bagrow, and 
Lehmann 2010) used a hierarchical clustering with similar-
ity between links to build a dendrogram to describe hierar-
chical link structures. In order to obtain the most relevant 
communities, they introduced a link density function to 
determine the best level to cut the tree to determine the 
number of communities. (Evans and Lambiotte 2009; 
Evans and Lambiotte 2010) transformed a given network 
into a line graph based on several types of random walk, 
and detected link communities by applying some existing 
algorithms for node partitioning to the line graph. (Kim 
and Jeong 2011) extended the map equation method (Ros-
vall and Bergstrom 2008), which was originally developed 
for node communities, to link community detection by 
assigning the communities to links instead of nodes, mod-
ifying the encoding rule for the random walk to represent 
this change in the community structure, and proposing the 
corresponding map equation for the link community. (Pan 
et al. 2011) proposed a local-based method for finding nat-
ural link communities through expanding a selected seed to 
optimize a local function. (He et al. 2012) presented a sto-
chastic process based on a link-node-link random walk to 
unfold the community structure of links, and then utilized 
the local mixing properties of the Markov chain to extract 
emerged link communities. 
 Moreover, stochastic models provided a promising tech-
nique for identifying communities from networks, which 
has been actively researched (Newman 2012). Several 
model-based methods have been proposed; they were 
based on a blockmodel or its variations and employed dif-
ferent inference algorithms, e.g., expectation-maximization 
and nonnegative matrix factorization, to derive the number 
of communities. Nevertheless, most of these methods fo-
cused on the detection of node communities (Wang et al. 
2011; Psorakis et al. 2011; Zhang, and Yeung 2012; Ren et 
al. 2009; Shen, Cheng, and Guo 2011; Karrer and Newman 
2011; Zhang, Wang, and Ahn 2013). One exception for 
detection of link communities that we are aware of is the 

algorithm designed by (Ball, Karrer, and Newman 2011). 
While Ball’s model seemed to have a high similarity with 
the one that we proposed here, there are several key differ-
ences. Compared with Ball’s model, the most salient fea-
ture of ours is its high flexibility. In our model, the size of 
a link community is modeled by a set of parameters ωz. 
This enables it to better describe the heterogeneous com-
munity sizes, such as that following a power law distribu-
tion which often appears in the real world. This feature, 
lacking in Ball’s model, allows us to better characterize 
community structures of links of real-world networks. 
Moreover, our extended LMBP method does not need the 
number of communities a priori, which in contrast is re-
quired by the Ball’s method BModel. LMBP is also more 
efficient than BModel. Therefore, compared with BModel, 
our LMBP method is more suitable for large networks, a 
necessity for real-world applications. 

3. The Methods 
We first introduce a model for the description of link 
communities, and then present a method based on maxi-
mum-likelihood estimation to learn the model parameters. 
For clarity, we present an example to illustrate the method. 
We then extend the basic method to make it more suitable 
for large real networks. 

3.1  Stochastic Model 
We define a stochastic model of link communities to cha-
racterize networks with a given number n of vertices and m 
undirected edges divided among a given number c of 
communities. Taking the notion of soft membership of 
links, the model is parameterized by two sets of parameters, 
ωz’s and θiz’s. Here, ωz denotes twice the expected number 
of links in community z, which is defined as the sum of all 
expected counts of z-links (links in community z) that a 
node connects to, and θiz denotes the probability that com-
munity z selects node i when generating edges, which is 
defined as the expected proportion of z-links node i con-
nects to in this community. Thus, we have ∑ z ωz = 2m and 
∑ i θiz = 1. 

 Based on the model above, an edge <i, j> can be gener-
ated as follows. A link community z is chosen with size ωz, 
and within community z, nodes i and j are selected with 
probabilities θiz and θjz, respectively, to form an edge. Con-
sequently, the expected number of links between nodes i 
and j in community z is  

ˆ z
ij z iz jzA ω θ θ= .                                    (1) 

Summing over communities z, the expected number of link 
between i and j can be written as 

ˆ ˆ z
ij ij z iz jzz zA A ω θ θ= =  .                        (2) 

 Under this model, link communities will appear with the 
generating of networks. Intuitively, two nodes i and j 
which have large values of ωz, θiz and θjz for some value of 
z have a high probability of being connected by a link 
within community z. Thus, groups of such nodes will tend 
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to be connected by relatively dense webs of z-links, and 
these sets of edges correctly form the link communities we 
expect to see. 

 Formally, assume that the community assignments are 
represented by a set of variables Rij

z’s, where Rij
z denotes 

the fraction that a link <i, j> belongs to community z. Then 
we have  

ˆ
ˆ

z
ij z iz jzz

ij
s is jsij s

A
R

A
ω θ θ

ω θ θ
= =


,                          (3) 

As the soft membership of communities cannot be used 
directly, we simply assign each link <i, j> to community r 
satisfying r = argmaxz {Rij

z, z=1,2,…,c}, and then derive a 
hard partition of links. 

3.2  Parameter Learning 
Since the (stochastic) model parameters for a given net-
work are unknown, we need to learn the parameters in or-
der to infer the link communities in the network. This can 
be done by maximizing a likelihood function that the net-
work was presumably generated from the model. Since the 
number of links between two nodes is given in the expecta-
tion of a Poisson distribution (Karrer and Newman 2011; 
Ball, Karrer, and Newman 2011), the probability of gene-
rating a graph G with adjacency matrix (Aij)n×n by the mod-
el specified in (2) is 

( ) ( )
,

( | , ) exp
!

ijA
z iz jzz

z iz jzz
iji j

P G
A

ω θ θ
ω θ ω θ θ= −


∏ .       (4) 

The best fit between the given network G and its expected 
network in (2) can be achieved by maximizing the likelih-
ood function in (4). 

 Likelihood maximization does not typically work direct-
ly with the likelihood itself, but with its logarithm. Taking 
the log of (4), rearranging, and dropping additive and mul-
tiplicative constants, we derive the log-likelihood 

( )logij z iz jz z iz jzij z ijzL A ω θ θ ω θ θ= −   .              (5) 
Direct maximization of this expression by differentiating 
leads to a set of nonlinear implicit equations for ωz and θiz 
that seem to be difficult to solve. Here we adopt an expec-
tation-maximization (EM) algorithm (Dempster, Laird, and 
Rubin 1977). We apply Jensen’s inequality to (5), and ob-
tain 

,
,

log z iz jz
ij ij z z iz jz

ij zijz
L L A q

q
ω θ θ

ω θ θ
 

≥ = −  
 

 ,                (6) 

where the probabilities qij,z can be freely chosen, provided 
they satisfy ∑ z qij,z =1. Especially, the exact equality can 
always be achieved by making a particular choice 
qij,z=ωzθizθjz/∑sωsθisθjs. Thus, it follows that the double 
maximization of the new function L  with respect to both 
the model parameters (ωz and θiz) and the probabilities (qij,z) 
is equivalent to maximizing the original log-likelihood L 
with respect to the model parameters alone. Given the op-
timal model parameters ωz and θiz, the optimal values of 
probabilities qij,z are given by 

,
z iz jz

ij z
s is jss

q
ω θ θ

ω θ θ
=


,                                (7) 

since these are the values that give the inequality in (6) an 
exact equality. Meanwhile, given the optimal probabilities 
qij,z, the optimal values of model parameters ωz and θiz can 
be found by maximizing L  with the constraints ∑ z ωz = 2m 
and ∑ i θiz = 1. Introducing Lagrange multipliers ρ and γz to 
incorporate these constraints, the Lagrange form of L  is  

( ) ( )2 1z z izz z iL L mρ ω γ θ= + − + −   .            (8) 
By differentiating (8), the optimal values of ωz and θiz are 
given as 

,
,

,
;

ij ij zj
z ij ij z iz

kj kj zij kj

A q
A q

A q
ω θ= =


 

.                     (9) 

 Maximizing the log-likelihood L is now equivalent to 
simultaneously solving (7) and (9), which can be done ite-
ratively by choosing a random set of initial values and al-
ternating back and forth between the two equations. The 
EM algorithm implemented here is guaranteed to converge 
under the above conditions. 
 Notice that the qij,z are only defined for node pairs i, j 
that are actually connected in the network (so that Aij = 1), 
and hence there are only as many of them as there are ob-
served edges. Thus the time to evaluate (7) once is O(mc), 
where m is the number of edges and c the number of com-
munities. Similarly, the time for calculating (9) once is 
O(mc) as we only need to consider the observed edges. 
Therefore, the time complexity of our method is O(Tmc), 
where T is the number of iterations to convergence. 

3.3  An Illustrative Example 
We now illustrate the idea of our method using a simple 
example shown in Figure 1 and Table 1. 
 The given network G is in Figure 1(a). Under our model, 
given the parameters ωz’s and θiz’s such as that in Table 1, 
we can form the expected graphs of all the link communi-
ties in G according to (1), which are shown in Figure 1(b) 
and (c). Further, we can form the expected graph of the 
whole network G according to (2), which is an ensemble of 
the expected graphs of all its communities, shown in Fig-
ure 1(d). However, the model parameters are unknown, 
they must first be learned in order to find the communities 
in the network. To this end, we consider network G and its 
expected graph by optimizing (4), and then get the best 
ωz’s and θiz’s, as shown as Table 1. Thereafter, we infer the 
community structure of links according to (3), which per-
fectly matches the ground-truth given in Figure 1(a). 

Table 1: The learned model parameters ωz’s and θiz’s 
 ωz 

θiz 
i=1 i=2 i=3 i=4 

z=1 19.99992 0.2 0.2 0.2 0.2 
z=2 20.00008 5.20E-07 5.36E-07 5.19E-07 5.04E-07
 θiz 

i=5 i=6 i=7 i=8 i=9 
z=1 0.199999 1.39E-09 1.36E-09 1.43E-09 8.37E-10
z=2 0.200001 0.199999 0.199999 0.199999 0.199999
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(a)                                              (b) 

 
(c)                                               (d) 

Figure 1: An illustration of our method for identifying the com-
munity structure of links. (a) The given network G with two link 
communities (in red and blue). (b) and (c) The expected graph of 
the red and blue link community, respectively. (d) The expected 
graph of G, which is an ensemble of the expected graphs of its red 
and blue communities. The width of a link corresponds to its ex-
pected values, and values smaller than 1.0e-3 are omitted. 

3.4  A Practical Extension 
The method discussed above can be improved. A drawback 
of our basic method is that it offers no criterion for deter-
mining the value of parameter c, i.e., the number of com-
munities in a network. This is also a common problem suf-
fered by all exiting methods based on stochastic models. A 
statistical model selection method can be, in principle, ap-
plied to stochastic models to find the number of communi-
ties (Brunet et al. 2004; Tan and Févotte 2012). Such a 
model selection method is too computationally demanding 
to be desirable to any but some small networks (Ball, Kar-
rer, and Newman 2011). Even if the number c of communi-
ties is given, because large networks often have large val-
ues of c, the convergence rate of the core learning algo-
rithms, such as expectation maximization and nonnegative 
matrix factorization, will become very slow. This is also a 
crucial limitation for the existing model-based methods 
when dealing with large real networks. It remains an open 
problem whether an accurate and efficient model selection 
method can be developed for large real networks (Karrer 
and Newman 2011). 

 To mitigate the above problems, we extend our original 
method LM (link model) to “link model with iterative bi-
partition”, or LMBP for short. In LMBP, we first divide a 
network into two link modules using LM with community 
number c = 2, and then recursively subdivide the two parts. 
In dividing a subnetwork, we isolate it from the rest of the 
network and perform a ‘nested’ LMBP on it, resulting in a 
partition of the subnetwork with two smaller link commun-
ities. For each partition, we decide whether to accept a bi-
partition based on the quality of the resulting link partition. 
We summarize the algorithm LMBP using the following 
recursive algorithm: 

Algorithm P = LMBP(G) // G is a graph, P is a link par-
tition of G 

1. P = {E(G)}; // E(G) denotes the edge set of G 

2. Divide G into two link modules N1 and N2 by LM; 
// E(N1) ∩ E(N2) = Φ, E(N1)   E(N2) = E(N) 
3. If the link partition quality cannot be improved by this 

bipartition, return P;  
// the quality function is to be introduced later 
4. P1 = LMBP(N1); 
5. P2 = LMBP(N2); 
6. Return P = P1   P2. 

 We now consider the termination condition for the repe-
titive process of subdividing the links of network G, so as 
to obtain a superior link community structure. Several 
measures for community structures exist, most of which 
were developed for node communities (Fortunato 2010; 
Newman and Girvan 2004; Lancichinetti et al. 2011). For-
tunately, partition density D (Ahn, Bagrow, and Lehmann 
2010) was specially designed for link communities. Here 
we adopt it as our quality metric, i.e., we iteratively biparti-
tion each (sub)network until the density D cannot be fur-
ther improved to determine the acceptance of the biparti-
tion. 

 For a network with m links and n nodes, P = {P1, P2, …, 
Pc} is a partition of the links into c communities. The 
number of links in community z, Pz, is mz = |Pz|. The num-
ber of induced nodes, the nodes that those links connect to, 
is nz = |  eij ∈ Pz, {i, j}|. The link density Dz of Pz is 

( )
( ) ( )

1
1 / 2 1

z z
z

z z z

m n
D

n n n
− −

=
− − −

.                       (10) 

This is mz normalized by the minimum and maximum 
numbers of links among nz connected nodes. Thus, Dz = 1 
when Pz is a clique, or Dz = 0 when Pz is a tree. In particu-
lar, we assume that Dz = 0 if nz = 2 without loss of gene-
rality. In essence, Dz measures how ‘clique-ish’ versus 
‘tree-ish’ that Pz is. Then, the partition density, D, is the 
average of Dz, weighted by the fraction of links that are 
present: 

( )
( )( )

12
2 1

z z
z

z zz

m n
D m

m n n
− +

=
− − .                       (11) 

4. Experiments 
In order to evaluate the performance of our method LMBP, 
we tested it on synthetic networks and widely used real-
world networks. The synthetic networks allow us to test 
LMBP’s ability to detect known communities, while the 
real networks allow us to assess its performance in practice. 
As an application, we applied LMBP to a large biological 
network. 

 In our analysis, we compared LMBP with two well-
known and closely related methods. The first (denoted as 
BModel) is a model-based method for link communities 
proposed by (Ball, Karrer, and Newman 2011), and the 
second (denoted as LC) is the notable method of link 
communities proposed by (Ahn, Bagrow, and Lehmann 
2010). To the best of our knowledge, LMBP and BModel 
are the only two methods based on stochastic models for 
link communities, and LMBP and LC are the only two 
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hierarchical methods using partition density D (Ahn, Ba-
grow, and Lehmann 2010) as a quality metric to detect link 
communities. Note that BModel needs the number c of 
communities as a given parameter, thus we used the com-
munity number obtained by our LMBP as its input. Besides, 
the LMBP and BModel converge to local minima, thus we 
ran each of them 20 times and reported the best results. 

4.1  Synthetic Networks 
Several benchmarks of synthetic network have been pro-
posed for node communities (Girvan and Newman 2002; 
Lancichinetti, Fortunato, and Radicchi 2008; Lancichinetti 
and Fortunato 2009). In contrast, only one benchmark, to 
our knowledge, has been designed for testing algorithms 
for link community detection (Ball, Karrer, and Newman 
2011), which we used in this evaluation. We also em-
ployed two accuracy measures introduced in (Ball, Karrer, 
and Newman 2011), namely “Fraction of Vertices Classi-
fied Correctly (FVCC)” and “Jaccard index”, to compare 
the planted community structures of a network and the 
ones delivered by the algorithms compared. Notice that LC 
does not appear here, because it often finds very small 
communities, and fails to detect the communities defined 
in this benchmark.  

 Following (Ball, Karrer, and Newman 2011), the para-
meter setting for this benchmark is given as follows. The 
networks have n = 10000 nodes each, divided into two 
overlapping (link) communities. We placed x nodes in the 
first community only, i.e., these nodes have connections 
exclusively within the community, y nodes in the second 
community only, and the remaining z=n−x−y nodes in both 
communities, with equal numbers of connections to nodes 
in these two communities on average. We set the expected 
degree of all nodes to a fixed value <k>. We also varied 
the parameters x, y, z, and <k> to generate networks with 
stark community structures or no structure at all, so as to 
vary the difficulty of the network instances posed to the 
algorithms. 
 We performed three sets of tests. In the first set of expe-
riments, we fixed the size of the overlap between the 
communities at z = 500, divided the remaining nodes even-
ly (i.e., x = y = 4750), and varied the value of <k> from 1 
to 15 with an increment of 1. For the second set of tests, 
we again set the overlap at z = 500 but fixed <k> = 10 and 
varied the ratio between x and y. Finally, for the third set of 
tests, we set <k> = 10, constrained x and y to be equal, and 
varied the amount of overlap z. 
 As BModel requires the number of communities to be 
given, we set the number of communities for BModel to 2, 
the actual number of communities. For fairness, the first 
bipartition result from LMBP was used for comparison 
with BModel. In Figure 2, we show the fraction of cor-
rected classified nodes by the two algorithms for each of 
the three sets of experiments. To be considered correctly 
classified, a node’s membership in both communities must 
be reported correctly by an algorithm. As shown in Figure 
2, LMBP outperforms BModel in terms of FVCC accuracy 
in all the three tests. This may be mainly due to our para-

meter ωz, which controls the size of each link community, 
and thus makes our model more flexible to describe link 
communities compared with Ball’s model. 
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 Furthermore, we adopted the Jaccard index to compare 

the two algorithms’ ability for identifying overlapping 
(link) communities using the same sets of network in-
stances. Let S be the set of truly overlapping nodes and V 
be the set of predicted overlapping nodes, the Jaccard in-
dex is J = |S∩V|/|S  V|. This index is a standard measure of 
similarity between sets that rewards accurate identification 
of the overlap while penalizes both false positives and false 
negatives. Figure 3 shows the result comparing the two 
algorithms. As shown, LMBP is also superior to BModel 
in all the three sets of experiments. This result is similar to 
the results in Figure 2, and they both confirm the validity 
of LMBP. 
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4.2  Real Networks 
As real-world networks may have some unique topological 
properties not present in synthetic ones, we considered 
some widely used real networks to compare these algo-

Figure 2: Comparison of LMBP 
and BModel in the three sets of 
synthetic networks, measured by 
the fraction of vertices classified 
correctly. (a) FVCC accuracy as 
a function of the expected degree 
<k> of all nodes. (b) FVCC as a 
function of the size of the larger 
community. (c) FVCC as a func-
tion of the amount of overlap 
between the two communities. 

Figure 3: Comparison of LMBP 
and BModel in the three sets of 
synthetic networks measured by 
the Jaccard index. (a) Jaccard 
index as a function of the ex-
pected degree <k>. (b) Jaccard 
index as a function of the size of 
the larger community. (c) Jac-
card index as a function of the 
amount of overlap. 
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rithms. All the networks we used here were obtained from 
Newman’s website (Newman, 2013), except that ‘protein-
protein interaction’ and ‘word association’ that were from 
(Palla et al. 2005). We adopted the partition density D 
(Ahn, Bagrow, and Lehmann 2010), discussed earlier, as 
the quality metric for comparison.  

 Table 2 shows the result comparing our method LMBP 
with BModel and LC on these real-world networks. As 
shown, LMBP has the best performance on 13 of the 16 
networks in terms of partition density D, BModel performs 
the best on two networks, and LC performs the best on one 
network. This result shows the superior performance of our 
method over the others methods on real-world networks. 
Table 2: Comparison of three methods for detecting link com-
munities on real networks. Here, the greater a D-value, the better. 
In the table, ‘−’ denotes run time >48 hours or the program ran 
out of memory. 

Datasets n m c 
(Ours) 

partition density D 
LMBP BModel LC 

Zachary’s karate club 34 78 19 0.5405 0.4496 0.2847
Dolphin social network 62 160 29 0.3308 0.3199 0.3155
High school friendship 69 220 41 0.4932 0.4576 0.3600
Les Miserables 77 254 27 0.6772 0.5518 0.5765
Political books 105 441 90 0.5151 0.4958 0.2866
Word adjacencies 112 425 82 0.2863 0.2701 0.0632
American college football 115 613 98 0.5432 0.5508 0.5500
Jazz musicians collaborations 198 2,742 181 0.6234 0.6033 0.4155
C. Elegans neural 297 2,148 308 0.4067 0.3553 0.0823
E. coli metabolic 453 2,025 412 0.5626 0.5983 0.3333
E-mail network URV 1,133 5,451 910 0.3846 0.3186 0.1018
Political blogs 1,490 16,717 921 0.2690 0.1971 0.1204
Network science collaborations 1,589 2,742 518 0.8207 0.7517 0.6937
Power grid 4,941 6,594 58 0.0344 -3.1e-4 0.1370
Protein-protein interaction 2,640 6,600 917 0.2740 0.2217 0.1705
Word association 5,017 29,148 5,335 0.2687 − 0.0767

4.3  Application 
The large real network we considered as an application is 
the protein-protein interaction (PPI) network of budding 
yeast Saccharomyces cerevisiae (Palla et al. 2005; Xena-
rios et al. 2000). It contains 2,640 nodes (proteins) and 
6,600 links (physical interactions between pairs of pro-
teins). 

 We used the Gene Ontology (GO) terms (Ashburner et 
al. 2000), the most elaborate gene function annotations, as 
domain metadata for quality assessment. The GO terms 
include information on functions and cellular locations of a 
gene and biological pathways that a gene may be involved 
in. The biological significance of a community of genes 
(nodes) can be measured by the GO terms enriched in the 
genes in the community. Enrichment of GO terms can be 
evaluated by a hyper-geometric test (Altman 1991), pro-
viding a GO term a p-value to quantify the significance of 
the term. To quantify the biological significance of a com-
munity structure, we used as quality metric the average 
number of significantly enriched GO terms with p-values 
less than a given threshold for all communities. The larger 
this average number of significant GO terms, the more 
biologically significant the community structure is. 

 As shown in Figure 4, our method LMBP identified PPI 
community structures with many more significant GO 
terms than the LC method and with slightly more signifi-

cant GO terms than the BModel method under all 10 dif-
ferent p-value thresholds tested. It serves as an additional 
example of the consistent superior performance of our me-
thod over the competing methods compared. 
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Figure 4: Comparison of LMBP with BModel and LC on budding 
yeast PPI network. 

5. Conclusions 
We proposed a stochastic model, namely Link-Model or 
LM, to not only describe the structure of link communities 
but also deal with heterogeneous sizes of community struc-
tures. In our method, we learned the model parameters by a 
combination of likelihood optimization and expectation-
maximization. We extended the basic method by an itera-
tive bipartition to autonomously determine the number of 
communities. The new method, named as LMBP, is more 
suitable for large, real networks. We tested LMBP and 
compared it with two existing competing methods on syn-
thetic benchmark problems and real-world networks in-
cluding a large biological network. Experimental results 
demonstrated the superior performance of our method over 
the competing methods for the detection of link communi-
ties in large networks. 
 There are other quality metrics for link communities 
(e.g., the extended map equation (Kim and Jeong 2011)) 
which may be also suitable for our iterative bipartition pro-
cedure. We will include in our software an option for 
choosing different quality metrics to make our method 
more applicable to various problems. Besides, we will use 
our method to analyze multimedia and social networks, 
and try to unfold significant community structures in real 
life. 
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