
On the Scalable Learning of Stochastic Blockmodel

Bo Yang and Xuehua Zhao
School of Computer Science and Technology, Jilin University, Changchun, China

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, China
ybo@jlu.edu.cn

Abstract

Stochastic blockmodel (SBM) enables us to decompose
and analyze an exploratory network without a priori
knowledge about its intrinsic structure. However, the
task of effectively and efficiently learning a SBM from
a large-scale network is still challenging due to the high
computational cost of its model selection and parame-
ter estimation. To address this issue, we present a novel
SBM learning algorithm referred to as BLOS (BLOck-
wise Sbm learning). Distinct from the literature, the
model selection and parameter estimation of SBM are
concurrently, rather than alternately, executed in BLOS
by embedding the minimum message length criterion
into a block-wise EM algorithm, which greatly reduces
the time complexity of SBM learning without losing
learning accuracy and modeling flexibility. Its effective-
ness and efficiency have been tested through rigorous
comparisons with the state-of-the-art methods on both
synthetic and real-world networks.

Introduction
Formally, a standard SBM is defined as a triple (K,Π,Ω).
K is the number of blocks. Π is a K ×K matrix, in which
πql denotes the probability that a link from one node in block
q connects to another node in block l. Ω is a K-dimension
vector, in which ωk denotes the probability that a randomly
chosen node falls in block k.

SBM is often used as a generative model to decompose
real-world networks or synthesize artificial networks, which
contain either assortative communities, disassortative multi-
partites, or arbitrary mixtures of them. Moreover, SBM can
be used as a prediction model for link prediction. Being a
powerful tool of network analysis, SBM has attracted more
and more attentions (Newman and Leicht 2007; Airoldi et al.
2009; Latouche et al. 2011; Karrer and Newman 2011; Yang
et al. 2011; Yang, Liu, and Liu 2012) since it was originally
proposed (Holland and Leinhardt 1981).

Although SBM has superiority in structure analysis, how-
ever, SBM learning is computationally intractable, which
limits it to a narrow range of applications just involving very
small networks. For the current algorithms, given the num-
ber of blocksK, i.e. we do not consider model selection, the

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time of learning is at least O(K2n2). Otherwise, it quickly
goes up to O(n5) in that the process of determining “true”
block numbers is very time-consuming. In another word, if
we use a conventional PC to run current algorithms, the net-
works we can efficiently handle contain at most hundreds of
nodes, far from the scales faced in practice.

The learning of SBM consists of two main sub-tasks: to
determine block numberK and to estimate parameter Π and
Ω, corresponding to model selection and parameter estima-
tion, respectively. Model selection aims at selecting a model
having a good tradeoff between data fitting and model com-
plexity, in obtaining a better generalization ability. Since
the tradeoff can be measured by the quantity of its param-
eters, to select a “good” model for SBM means to deter-
mine a reasonable value of K in the sense that the parame-
ter number of SBM is actually a function of K. For exam-
ple, the parameter number of a standard SBM is equal to
K2 +K+ 1. Formally, for a given network N , the objective
of SBM learning can be stated as: arg minK,h C(N,K, h),
where h denotes model parameters (i.e. Π and Ω),C denotes
the cost function evaluating the tradeoff of parameterized
model (K,h). A widely used cost function is:C(N,K, h) =
− logL(N |K,h)+p(K,h), where logL(N |K,h) indicates
the data fitting in terms of the maximum log-likelihood ofN
given a model and its parameters, and p(K,h) is a regular-
ization item that penalizes models with high complexity.

In the literature, MCMC (Snijders and Nowicki 1997;
Yang et al. 2011; McDaid et al. 2013), EM (Newman and
Leicht 2007), variational EM (Latouche, Birmele, and Am-
broise 2012), and variational Bayes EM (Airoldi et al. 2009;
Latouche, Birmele, and Ambroise 2012; Gopalan et al.
2012) have been adopted to estimate the parameters of SBM.
Currently, the model selection methods used by SBM learn-
ing are either cross validation (Airoldi et al. 2009), or MDL
(Yang, Liu, and Liu 2012), or different approximations of
Bayesian model evidence, mainly including BIC (Airoldi et
al. 2009), ICL(Daudin, Picard, and Robin 2008), and Vari-
ation based approximate evidence (Hofman and Wiggins
2008; Latouche, Birmele, and Ambroise 2012).

Current SBM learning algorithms adopt a model-wise
learning mechanism to integrate the aforementioned meth-
ods of parameter estimation and model selection. That is,
they parameterize and then evaluate all candidates in a
model space one by one. Finally, the parameterized model

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

360



with the best evaluation is selected. Let [Kmin,Kmax] de-
note a model space, the pseudo codes of model-wise learn-
ing mechanism can be described as follows:

FOR K = Kmin : Kmax : 1
estimate h for a given K;
compute C(N,K, h);

(K,h)∗ = arg minK,h C(N,K, h).

For an exploratory network we usually have no idea about
its true block number, hence a complete model space [1, n]
should be exhaustively searched in order to safely find out
it. As a result, an extremely expensive computational cost
will be resulted by such a model-wise learning. For example,
if h is estimated by an EM-like algorithm, such as SILvb
(Latouche, Birmele, and Ambroise 2012), the entire time of
model-wise learning will be O(n5).

So far, how to significantly improve the scalability of
SBM learning while retaining its learning accuracy and
modeling flexibility, in order to properly handle large-scale
exploratory networks, is still an open problem. In this work,
we will address this problem from two new perspectives, and
accordingly our main contributions are twofold.

(1) To reduce the time complexity of parameter estimation
by presenting a new SBM model.

Note that, if one adopts EM-like algorithms to estimate
parameters, the calculation of Π is the most expensive and
dominates the entire time of parameter estimation. In view
of this, an indirect rather than direct way is suggested to per-
form the calculation of Π. In doing so, we first present a
new SBM model, referred to as fine-gained SBM (fg-SBM
for short), in which Π, a block-to-block connection matrix,
is replaced with Θ, a newly introduced block-to-node con-
nection matrix, so that Θ is readily calculated with a much
fewer time while ensuring Π can be exactly represented in
terms of Θ together with other parameters. In this way, it
is expected to reduce the time of parameter estimation while
preserving the flexibility of block modeling. It is also impor-
tant that, the posterior distribution of Z (the laten variable of
SBM) can be analytically derived from Θ, and thereby one
can directly calculate it by an exact EM instead of estimating
an approximate posterior via variational techniques. In what
follows, one will see how this feature enables us to derive a
much more efficient mechanism to learn SBM.

(2) To reduce the time complexity of model selection by
presenting a block-wise learning mechanism.

As mentioned above, current SBM learning algorithms
adopt a model-wise learning mechanism to integrate param-
eter estimation and model selection, in which the processes
of parameterizing and evaluating respective candidate mod-
els are completely independent of each other. Accordingly,
much of the information that could be shared with each
other has to be recalculated for each candidate, leading to a
very high computational cost. In view of this, we propose a
bock-wise learning algorithm named as BLOS (BLock-wise
Sbm learning) to efficiently learn the proposed fg-SBM. In-
stead of the “serial” learning mechanism adopted by current
SBMs, the proposed BLOS ingeniously integrates the mini-
mum message length (MML) criterion into a block-wise EM
algorithm to achieve a “parallel” learning process, in which

the model selection and parameter estimation are executed
concurrently in the scale of blocks. In this way, it is expected
to greatly reduce the time complexity of SBM learning while
preserving its accuracy, which enables BLOS to efficiently
and effectively handel much larger networks. To the best of
our knowledge, this is the first effort in the literature to pro-
pose a block-wise SBM learning algorithm.

Model and Method
The reparameterization of stochastic blockmodel
Let An×n be the adjacency matrix of a binary network
N containing n nodes. The fine-gained SBM (fg-SBM for
short) is defined as a triple X=(K,Θ,Ω). K is the num-
ber of blocks. Θ is a K × n block-node coupling matrix,
in which θkj depicts the probability of a node from block k
connecting to node j. Ω is still the prior of block assignment.
In addition, from N one can deduce a latent block indica-
tor Z, a n × K matrix, indicating the relationship between
node and block assignment. zik = 1 if node i is assigned to
block k, otherwise zik = 0. It is easy to proof, in terms of
the reparameterized Θ, the block-block coupling matrix Π
in the standard SBM can be represented as Π = ΘZD−1,
where D=block-diag{nω−1

1 , · · · , nω−1
K }.

According to fg-SBM, one can generate a synthetic net
with a block structure by: 1) assigning a node to block k ac-
cording to ωk; 2) generating a link from node i to j accord-
ing to the Bernoulli distribution with a parameter θkj , where
k indicates the block to which node i belongs. Accordingly,
the log-likelihood of a network to be generated is:

log p(N |X) =
n∑
i=1

log
K∑
k=1

(
n∏
j=1

f(θkj , aij))ωk (1)

where f(x, y) = xy(1− x)(1−y) is a Bernoulli distribution.
Considering Z as a latent variable, then the log-likelihood

of complete data given a fg-SBM is:

logp(N,Z|X)=

n∑
i=1

K∑
k=1

zik(

n∑
j=1

logf(θkj,aij)+logωk) (2)

A block-wise SBM learning algorithm
In contrast to the model-wise mechanism adopted by current
SBM learning, we provide a block-wise learning mechanism
to concurrently perform parameter estimation and model se-
lection, described as follows:

Initialize block candidate set: B = {b1, · · · , bKmax};
REPEAT

FOR ∀b ∈ B DO
evaluate block b;
IF b is good enough

parameterize b ;
ELSE
B ← B − {b};

compute C(N,B, h), the cost of current model;
UNTIL C is convergent or ‖B‖ < Kmin;

In the framework, candidates in the scale of blocks, rather
than in the scale of full models, are parameterized and evalu-
ated in turn. The processes of handling respective candidate

361



blocks are dependent. The information obtained from the pa-
rameterization and evaluation of one block can be instantly
used for handling next blocks, which will avoid a great deal
of duplicated calculations in the whole process of learning.
Moreover, during the course of block-wise learning, only the
blocks that are evaluated as good enough will be further con-
sidered to estimate their parameters. Otherwise, they will be
removed from candidate set and not considered anymore.

To implement the framework, we integrate MML into a
block-wise EM algorithm to evaluate and parameterize each
block, respectively. We choose MML as an evaluation cri-
terion mainly because MML sufficiently considers the prior
of models, and more importantly as we can see next, such a
prior enables MML to be readily integrated into the above
block-wise learning framework.

The derivation of cost function Given N , we expect to
select an optimal X from its model space to properly fit
and to precisely predict the behaviors of the network. Ac-
cording to the MAP principle (maximum a posteriori), the
optimal X given network N will be the one with the maxi-
mum posterior probability. Moreover, we have: p(X|N) ∝
p(N |X)p(X), where p(X|N), p(N |X) and p(X) denote
the posteriori of X given N , the likelihood of N given X ,
and the prior of X , respectively. Next, we will derive the
form of log p(X|N), i.e. the cost function C(N,X), from
an integration of MML, standard SBM and fg-SBM.

MML selects models by minimizing the code-length of
both data and model. Formally, the cost function of MML is
(Lanterman 2001; Figueiredo and Jain 2002):

C(N,X) = − log p(N |X)− log p(X)

+
1

2
log |I(X)|+ d

2
(1 + log κd)

(3)

where d is dimension of X (i.e. the number of parameters
of X), I(X) ≡ −E[D2

X log p(N |X)] is the Fisher infor-
mation matrix and |I(X)| denotes its determinant, and κd
approaches (2πe)−1 as d grows.

We start our derivation from a standard SBM, denoted as
XS = (K,Π,Ω). Since it is not easy to analytically get
I(XS), we turn to the Fisher information matrix of com-
plete data likelihood, Ic(XS) ≡ −E[D2

XS
log p(N,Z|XS)],

which is the upper-bound of I(XS) (Titterington et al.
1985). The log-likelihood of complete data given a XS is:

log p(N,Z|XS) =
n∑
i=1

K∑
k=1

zik logωk

+
n∑
i=1

n∑
j=1

K∑
q=1

K∑
l=1

ziqzil log π
aij
ql (1− πql)1−aij

From the log-likelihood, Ic(XS) is derived as:

Ic(XS) = block-diag{nω−1
1 , . . . , nω−1

K ,

n2ω1ω1

π11(1− π11)
, . . . ,

n2ω1ωK
π1K(1− π1K)

, . . . ,

n2ωKω1

πK1(1− πK1)
, . . . ,

n2ωKωK
πKK(1− πKK)

}

Accordingly, we have:

|Ic(XS)| = n2K2+K
K∏
k=1

ω−1
k

K∏
q=1

K∏
l=1

ωqωl
πql(1− πql)

(4)

We use a noninformative prior to depict the lack of
knowledge about model parameters, in which the prior
of Ω and Π are independent and the priori of respective
πql are also independent. Specifically, we have: p(XS) =

p(ω1, ..., ωk)
K∏
q=1

K∏
l=1

p(πql), p(ω1, ..., ωk) ∝
√
|I(Ω)| =

(
K∏
k=1

ωk)−
1
2 and p(πql) ∝

√
|I(πql)| = (πql(1− πql))−

1
2 .

Based on above analysis, overall we have:

C(N,XS) = − log p(N |XS) +
1

2

K∑
q=1

K∑
l=1

logωqωl

+
2K2 +K

2
log n+

K2 +K

2
(1 + log κd)

(5)

Now let us connect two SBMs, i.e., XS and X . Note that:
1) Π can be represented as ΘZD−1; and 2) Z is independent
on Π and Θ given K and Ω, respectively. So, we have:
log p(N |XS) = log

∑
Z p(N,Z|K,Π,Ω)

= log
∑
Z p(N |Z,K,Π,Ω)p(Z|K,Ω)

= log
∑
Z p(N |Z,K,ΘZD−1,Ω)p(Z|K,Ω)

= log
∑
Z p(N,Z|K,Θ,Ω)

= log p(N |K,Θ,Ω) = log p(N |X).
In addition, we have: 1) K and Ω in XS and X are the

same, and 2) the parameters of zero-probability block (i.e.
ωk = 0) will not make any contribution to total code-length.
Let Kg ≤ K be the number of greater-than-zero probability
blocks, then Eq. 5 becomes:

C(N,X) = − log p(N |X) +
1

2

∑
ωq>0

∑
ωl>0

logωqωl

+
2K2

g +Kg

2
log n+

K2
g +Kg

2
(1 + log κd)

(6)

Optimization method According to information theory,
the cost in terms of Eq. 6 is the sum of code-length of data,
denoted by the minus likelihood − log p(N |X), and code-
length of model, denoted by the remaining part. While, from
Bayesian point, the minus of Eq. 6 can be regarded as the
posteriori of X , log p(X|N), which is the sum of a log-
likelihood log p(N |X) and a priori − 1

2

∑
q

∑
l logωqωl −

2K2
g+Kg
2 log n− K2

g+Kg
2 (1 + log κd). It means to minimize

Eq. 6 is to maximize the posteriori. Next, we use a standard
EM to estimate an optimal X by maximizing log p(X|N).
Its E-step and M-step are designed respectively as follows.

E-step: Given N , K, and h(t−1), where h and t respec-
tively denote the parameters (Θ,Ω) and the current itera-
tion, to compute the conditional expectation of complete
log-likelihood, i.e., the Q-function.

Q(h,h(t−1))=
n∑
i=1

K∑
k=1

γik(
n∑
j=1

logf(θkj,aij)+logωk) (7)

362



where γik = E[zik;h(t−1)] denotes the posteriori probabil-
ity of node i belonging to block k given h(t−1). We have:

γik =
ω

(t−1)
k

∏n
j=1 f(θ

(t−1)
kj , aij)∑K

k=1 ω
(t−1)
k

∏n
j=1 f(θ

(t−1)
kj , aij)

(8)

M-step: To maximize Q(h, h(t−1))+ log p(h), where

log p(h) = − 1
2

∑
ωq>0

∑
ωl>0

logωqωl −
2K2

g+Kg
2 log n −

K2
g+Kg

2 (1+log κd). By solving this optimization with a con-
straint

∑K
k=1 ωk = 1, we have:

ω
(t)
k =

max{0,∑n
i=1 γik−Kg}

K∑
j=1

max{0,∑n
i=1 γij−Kg}

θ
(t)
kj =

∑n
i=1 aijγik∑n
i=1 γik

(9)

Note that, the parameter Π of standard SBM can also be
iteratively computed in terms of γ, as follows:

πpl =

∑
i

∑
j γipγjlaij∑

i

∑
j γipγjl

(10)

It is easy to verify, the complexity of calculating Θ of fg-
SBM according to Eq.9 is O(Kn2), yet the time of calculat-
ing Π according to Eq.10 is O(K2n2).

Since the prior of block assignment Ω characterizes the
normalized distribution of block size, the calculation of ωk
in Eq.9 partially reflect the process of block-wise model se-
lection, in which blocks being not sufficiently supported by
data will be annihilated timely. More specifically, for each
individual block k, ωk will become and thereafter keep zero
if its expectation size at present, i.e.

∑n
i=1 γik, is less than

the number of existing blocks.
If one considers such a model selection as a voting game,

Eq.9 actually implies a new mechanism design particularly
for SBM learning according to MML, in which candidates
will be disqualified and then timely excluded from the cur-
rent playoff of the game if the votes they have won from all
nodes are less than the total number of existing candidate
blocks. Note that, the threshold for qualifying individual
blocks, i.e. Kg , is not fixed but self-adjusted during whole
learning process. That is to say, the regulations of thresh-
old at different stages will be self-adaptive to the block pa-
rameterization (in terms of the calculation of Θ and Γ) and
block evaluation (in terms of the calculation of Ω) of both
previous and current playoffs. The self-adaption of evalu-
ating criterion is one of main features of block-wise SBM
learning. In addition, the criterions at different stages will
be evolving from strict to loose with the gradual reduction
of candidates during playoffs, implying many trivial blocks
will be removed as early as possible and thereby consider-
able computational cost of corresponding parameterization
will be saved in this way.

The mechanism of block-wise SBM learning Based on
the above analysis, Table 1 summarizes the detailed mech-
anism of block-wise SBM learning. Corresponding to the
aforementioned framework, the evaluation, selection, pa-
rameterization and annihilation of blocks are performed in
a block-wise mode within a FOR-loop.

Table 1: The implementation of block-wise SBM learning

Algorithm BLOS
Input:N ,Kmin,Kmax
Output:X and Z
01 Initial:B = {b1, ..., bKmax}; t← 0;Kg ← Kmax; ε; Θ(0);
02 Ω(0); u(0)

ik ←
∏n
j=1 f(θ

(0)
kj , aij), for i = 1, ..., n and ∀bk ∈ B;

03 REPEAT
04 t← t+ 1;
05 FOR ∀bk ∈ B DO

06 γ
(t)
ik ←

ω
(t−1)
k

u
(t−1)
ik∑

bj∈B ω
(t−1)
j

u
(t−1)
ij

, for i = 1, ..., n;

07 ω
(t)
k ←

max{0,
∑n
i=1 γ

(t)
ik
−Kg}∑

bj∈B max{0,
∑n
i=1

γ
(t)
ij
−Kg}

;

08 S ←
∑
bj∈B

ω
(t)
j ;

09 ω
(t)
j ← ω

(t)
j S−1, ∀bj ∈ B;

10 IF ω(t)
k > 0 THEN

11 θ
(t)
ki ←

∑n
i=1 aijγ

(t)
ik∑n

i=1
γ
(t)
ik

, for i = 1, ..., n;

12 u
(t)
ik ←

∏n
j=1 f(θ

(t)
kj , aij), for i = 1, ..., n;

13 ELSE
14 Kg ← Kg − 1;
15 B ← B − {bk};
16 ENDIF
17 ENDFOR
18 X(t) ← {Kg,Θ(t),Ω(t)};
19 compute C(N,X(t)) by Eq. 6;
20 UNTIL |C(N,X(t−1))− C(N,X(t))| < ε orKg < Kmin;
21 X ← X(t);

Time complexity analysis The nested REPEAT and FOR
loops are the most time-consuming in BLOS, which dom-
inate the whole time of learning. In the body of FOR-
loop, it takes O(nKg) time to calculate γ·k in line 06 and
ωk in line 07, respectively, and takes O(n2) time to cal-
culate θk· in line 11 and u·k in line 12, respectively. Ac-
cordingly, the FOR-loop takes O(nK

(t)
g K

(t)
g + n2K

(t+1)
g )

time, where K
(t)
g denotes the size of set B at the t-th

iteration of REPEAT-loop. Cost computation in line 19
takes O(n2K

(t+1)
g + (K

(t+1)
g )2) time. So, it will take

O(nK
(t)
g K

(t)
g +n2K

(t+1)
g +(K

(t+1)
g )2) < O(n2K

(t)
g ) time

to perform the t-th REPEAT-loop. Thus, the complexity of
REPEAT-loop is O(

∑T
t=1 n

2K
(t)
g ), where T is number of

total iterations. Note that, the initialization of all u(0)
ik takes

O(n2Kmax) time, so the total time complexity of BLOS is
O(

∑T
t=1 n

2K
(t)
g + n2Kmax). Since K(t)

g ≤ Kmax, in the
worst case, the time of BLOS is bounded by O(Tn2Kmax).
If the real number of blocks (say K) is known, the worst
time of BLOS isO(Tn2K) by initializingKmax = K. Oth-
erwise, it will be O(Tn3) by initializing Kmax = O(n).

Validations
Next, we design experiments oriented toward evaluating the
accuracy, the scalability, and the tradeoff between accuracy
and scalability of BLOS. In order to sufficiently demonstrate
the superiority of BLOS, Four state-of-the-art SBM learning
methods, VBMOD (Hofman and Wiggins 2008), GSMDL

363



(Yang, Liu, and Liu 2012), SICL (Daudin, Picard, and Robin
2008) and SILvb (Latouche, Birmele, and Ambroise 2012),
are selected as comparative methods, whose rationale and
time complexity are summarized in Table 2. All experiments
are performed on a conventional personal computer with a
2GH CPU and a 4GB RAM.

Table 2: Time complexity of SBM learning algorithms
Algorithm Parameter

estimation
Model

selection
Learning
strategy

K N/K

BLOS BEM MML B O(TKn2) O(Tn3)
VBMOD VBEM VAE M O(TKn2) O(Tn4)
GSMDL EM MDL M O(TK2n2)O(Tn5)
SICL VEM ICL M O(TK2n2)O(Tn5)
SILvb VBEM VAE M O(TK2n2)O(Tn5)

In Table 2, K is the real number of blocks and T is the re-
quired iterations. “BEM”, “VBEM”, “VEM” mean “block-
wise EM”, “variational Bayes EM”, “variational EM”, re-
spectively. “B” and “M” mean “block-wise” and “model-
wise”, respectively. “VAE” is the abbreviation of variational
based approximate evidence. “K” and “N/K” indicate “K is
known ” and “K is unknown”, respectively. In both cases,
we list the worst time complexity of respective algorithms.

Validation on accuracy We first generate three types of
synthetic networks according to specific SBMs, which re-
spectively contain a community structure, a hub structure,
and a hybrid structure of community and multipartite. Each
type of networks is further divided into five groups accord-
ing to the true block number they contain, i.e., Ktrue = 3,
4, 5, 6 or 7. Each group has 100 networks and each network
contains 50 nodes. The parameters of three types of SBMs
are given as follows:

Type I, containing a community structure: πij = 0.9 ×
I(i = j) + 0.1× I(i 6= j) and ∀k : ωk = 1/Ktrue.

Type II, containing a hub structure: πij = 0.9× I(i = j
or i = 1 or j = 1) + 0.1 × I(i 6= j and i, j 6= 1) and
∀k : ωk = 1/Ktrue.

Type III, containing a hybrid structure of community and
multipartite: ∀k, ωk = 1/Ktrue and block matrix Π takes
following form:

Π =



p1 ppp2 ·
. . . · ppp2

ppp2 p1 ·
· · · · · · ·

· p2 ppp1

ppp2 ·
. . .

· ppp1 p2



}
k1

}
k2

where k1 and k2 denote the number of communities and
multipartite components, respectively. We have k1 + k2 =
Ktrue. When Ktrue takes 3, 4, 5, 6 and 7 in turn, k1 takes
1, 2, 3, 3 and 3, accordingly. In this experiment, we set
p1 = 0.9 and p2 = 0.1.

For each type of block structure, we calculate the av-
erage NMI(normalized mutual information) over 100 syn-
thetic networks for each algorithm; results are given in Table

3, in which the numbers in brackets on the right hand side
show the ranks in terms of decreasing average NMI, indicat-
ing the accuracy rank of tested algorithms on average. For
networks of Type I, SILvb and VBMOD perform slightly
better than other algorithms. For networks of Type II and
III, SILvb and BLOS perform better than others. VBMOD
is stable for community detection, but it fails to handle net-
works containing beyond community structures.

Validation on computational scalability Next, we use
synthetic networks with various scales to test the comput-
ing cost of different algorithms. Here, synthetic networks to
be used are also generated according to the SBM of Type III.
Specifically, its parameters are: Ktrue = 8, k1 = 3, k2 = 5
and ∀k : ωk = 0.125. n alternatively takes 200, 400, 600,
800, 1000, 2000, 5000, 10000, and 15000. In the case of
n < 5000, we set p1 = 0.5 and p2 = 0.01. Otherwise, we
set p1 = 0.1 and p2 = 0.0001. Correspondingly, we gener-
ate nine groups of networks with different scales and each
group contains 50 randomly generated networks.

For all five algorithms, we set the same model space to
search and the same convergence threshold, i.e., Kmin = 1,
Kmax = 20 and ε = 10−4. Fig. 1 shows the actual running
time on average of five algorithms. Table 4 shows the NMI of
detected block structures for these networks, in which “−”
denotes “not available due to out of memory”.

Figure 1: Running time in terms of network scale.

Overall, we have following observations: 1) BLOS runs
the most efficient and its actual running time is signifi-
cantly fewer than its competitors. 2) It is computationally in-
tractable for model-wise methods such as SILvb and SICL to
process large networks. Note that, SILvb needs to take 5834
seconds to handle 1000 nodes, and the time will sharply in-
crease to 100,788 seconds (28 hours) when handling 2000
nodes. Comparatively, BLOS runs much faster and is able to
handle 2000 nodes within 12 seconds, gaining a 8400-fold
speedup of SILvb. SICL spends 216,893 seconds (60 hours)
to handle 5000 nodes; BLOS only takes 46 seconds to han-
dle the same network, gaining a 4700-fold speedup. 3) VB-
MOD adopts a model-wise scheme to learn SBM as well,
while it runs much faster than SILvb, SICL and GSMDL.
But VBMOD achieves its scalability by greatly simplifying
SBM to be learned, i.e. compressing original K ×K matrix
Π into two scalar variables, at the price of losing the flexibil-
ity of modeling heterogeneous structures. 4) From Fig. 1 and
Table 4, one can observe the best tradeoff between accuracy

364



Table 3: Accuracy of detected block structures in three types of networks
Networks of Type I Networks of Type II Networks of Type III

Methods Ktrue Ktrue Ktrue

3 4 5 6 7 Average 3 4 5 6 7 Average 3 4 5 6 7 Average
BLOS 1 1 1 0.951 0.877 0.966(3) 0.997 1 1 0.950 0.868 0.963(2) 1 1 1 0.978 0.878 0.971(2)
GSMDL 0.998 1 1 0.894 0.783 0.935(5) 0.985 0.994 1 0.889 0.788 0.931(4) 0.989 1 1 0.946 0.851 0.957(4)
VBMOD 1 1 1 1 0.861 0.972(2) 0.592 0.771 0.851 0.850 0.837 0.780(5) 0.764 0.863 0.742 0.811 0.780 0.792(5)
SICL 1 1 1 0.940 0.837 0.955(4) 1 1 1 0.944 0.855 0.960(3) 1 1 1 0.981 0.850 0.966(3)
SILvb 1 1 1 0.999 0.947 0.989(1) 1 1 1 0.999 0.951 0.990(1) 1 1 1 1 0.941 0.988(1)

and scalability demonstrated by BLOS. That is, compared
with state-of-the-art algorithms, BLOS is able to effectively
and efficiently handle much larger networks while preserv-
ing rather good learning precision.

Table 4: NMI of detections by five algorithms
Number of nodes BLOS GSMDL VBMOD SICL SILvb

200 1 0.996 0.890 1 1
400 1 0.989 0.890 1 1
600 1 0.937 0.890 1 1
800 1 0.933 0.890 1 1
1000 1 0.924 0.890 1 1
2000 1 0.913 0.890 1 1
5000 1 0.890 0.890 1 –

10000 0.955 – 0.890 – –
15000 0.940 – 0.890 – –

Validation on real-world networks Now we test the per-
formance of algorithms with real-world networks. Total 9
real-world networks are selected, which are widely used as
benchmarks to validate the performance of block structure
detection or scalability. The structural features of these net-
works are summarized in Table 5. Some have ground truth
block structures. “–” means ground truth is not available.

Table 5: Structural features of 12 real-world networks
Network Type # of

node
# of
edge

Clustering
coefficient

Average
degree

Structure

Karate Undirected 34 78 0.57 4.59 community
Dolphins Undirected 62 159 0.26 5.13 community
Foodweb Undirected 75 113 0.33 3.01 hybrid
Polbooks Undirected 105 441 0.49 8.40 community
Adjnoun Undirected 112 425 0.17 7.59 bipartite
Football Undirected 115 613 0.40 10.7 community
Email Undirected 1133 5451 0.22 9.62 –
Polblogs Directed 1222 16714 0.32 27.4 –
Yeast Undirected 2224 6609 0.13 5.94 –

For each algorithm, we fix Kmin = 1 and set Kmax ac-
cording to Table 6. One can see the running time of BLOS is
significantly lower than others, particularly for larger net-
works. For networks having ground truth, the true block
numbers are listed below ”Ktrue” in Table 7, and the de-
tected numbers by algorithms are listed behind “/”. We adopt
NMI to measure the distance between ground truth and de-
tections of algorithms. The last line gives the ranks of re-
spective algorithms in terms of average NMI. BLOS per-
forms the best when processing such real-world networks.

Table 6: Actual running time in real-world networks (s)
Networks Kmax BLOS GSMDL VBMOD SICL SILvb
Karate n/2 0.13 0.23 0.19 0.34 0.42
Dolphins n/2 0.32 1.55 0.45 4.08 2.03
Foodweb n/2 0.33 1.60 0.53 4.92 2.31
Polbooks n/2 0.96 8.06 2.02 36.80 12.76
Adjnoun n/2 1.10 8.09 2.12 40.08 16.34
Football n/2 1.20 8.11 2.20 42.14 18.11
Email 100 41.09 18575 389 35288 78597
Polblogs 100 43.82 26031 618 44834 106034
Yeast 100 104 >48h 1677 >48h >48h

Table 7: NMI of detections by five algorithms
NetworksKtrue BLOS GSMDL VBMOD SICL SILvb
Karate 2 0.839/3 0.754/4 0.837/2 0.792/4 0.770/4
Dolphins 2 0.660/3 0.551/4 0.628/4 0.368/3 0.387/3
Foodweb 5 0.269/4 0.185/5 0.023/2 0.199/2 0.201/2
Polbooks 3 0.585/4 0.469/6 0.512/6 0.458/5 0.455/5
Adjnoun 2 0.206/5 0.193/8 0.020/5 0.040/3 0.046/3
Football 12 0.884/10 0.824/10 0.862/9 0.910/10 0.910/10
avg(rank) 0.574(1) 0.496(2) 0.480(3) 0.461(5) 0.461(4)

Conclusion
Current SBMs face two main difficulties, which jointly make
their learning processes not scalable. (1) Some parameters
like Π cannot be estimated in an efficient way; (2) the poste-
rior of Z cannot be explicitly derived due to the dependency
of its components. Therefore, one has to assume an approx-
imate distribution of Z and then turn to variational tech-
niques. While, it is difficult to integrate variational methods
with current model evaluation criteria to analytically derive a
block-wise learning mechanism, enabling to perform param-
eter estimation and model selection concurrently. In view of
this, we raised a reparameterized SBM and then theoretically
derived a bock-wise learning algorithm, in which parameter
estimation and model selection are executed concurrently in
the scale of blocks. Validations show that BLOS achieves
the best tradeoff between effectiveness and efficiency. Par-
ticularly, compared to SILvb, a recently proposed method
with an excellent learning accuracy, BLOS achieves a n2-
fold speedup, reducing learning time from O(n5) to O(n3),
while preserving competitive enough learning accuracy.

Acknowledgements
This work was funded by the Program for New Century Ex-
cellent Talents in University under Grant NCET-11-0204,

365



and the National Science Foundation of China under Grants
61133011, 61373053, and 61300146.

References
Airoldi, E. M.; Blei, D. M.; Fienberg, S. E.; and Xing, E. P.
2009. Mixed membership stochastic blockmodels. In Ad-
vances in Neural Information Processing Systems, 33–40.
Daudin, J.-J.; Picard, F.; and Robin, S. 2008. A mix-
ture model for random graphs. Statistics and computing
18(2):173–183.
Figueiredo, M. A., and Jain, A. K. 2002. Unsupervised
learning of finite mixture models. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 24(3):381–396.
Gopalan, P.; Gerrish, S.; Freedman, M.; Blei, D. M.; and
Mimno, D. M. 2012. Scalable inference of overlapping
communities. In Advances in Neural Information Process-
ing Systems, 2249–2257.
Hofman, J. M., and Wiggins, C. H. 2008. Bayesian
approach to network modularity. Physical review letters
100(25):258701.
Holland, P. W., and Leinhardt, S. 1981. An exponential fam-
ily of probability distributions for directed graphs. Journal
of the american Statistical association 76(373):33–50.
Karrer, B., and Newman, M. E. 2011. Stochastic blockmod-
els and community structure in networks. Physical Review
E 83(1):016107.
Lanterman, A. D. 2001. Schwarz, wallace, and rissanen:
Intertwining themes in theories of model selection. Interna-
tional Statistical Review 69(2):185–212.
Latouche, P.; Birmelé, E.; Ambroise, C.; et al. 2011. Over-
lapping stochastic block models with application to the
french political blogosphere. The Annals of Applied Statis-
tics 5(1):309–336.
Latouche, P.; Birmele, E.; and Ambroise, C. 2012.
Variational bayesian inference and complexity control for
stochastic block models. Statistical Modelling 12(1):93–
115.
McDaid, A. F.; Murphy, T. B.; Friel, N.; and Hurley, N. J.
2013. Improved bayesian inference for the stochastic block
model with application to large networks. Computational
Statistics & Data Analysis 60:12–31.
Newman, M. E., and Leicht, E. A. 2007. Mixture models
and exploratory analysis in networks. Proceedings of the
National Academy of Sciences 104(23):9564–9569.
Snijders, T. A., and Nowicki, K. 1997. Estimation and
prediction for stochastic blockmodels for graphs with latent
block structure. Journal of classification 14(1):75–100.
Titterington, D. M.; Smith, A. F.; Makov, U. E.; et al. 1985.
Statistical analysis of finite mixture distributions, volume 7.
Wiley New York.
Yang, T.; Chi, Y.; Zhu, S.; Gong, Y.; and Jin, R. 2011. De-
tecting communities and their evolutions in dynamic social
networksa bayesian approach. Machine learning 82(2):157–
189.

Yang, B.; Liu, J.; and Liu, D. 2012. Characterizing and ex-
tracting multiplex patterns in complex networks. Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transac-
tions on 42(2):469–481.

366




