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Abstract

In this paper, we propose a novel collaborative filtering ap-
proach for predicting the unobserved links in a network (or
graph) with both topological and node features. Our ap-
proach improves the well-known compressed sensing based
matrix completion method by introducing a new multiple-
independent-Bernoulli-distribution model as the data sam-
pling mask. It makes better link predictions since the model
is more general and better matches the data distributions in
many real-world networks, such as social networks like Face-
book. As a result, a satisfying stability of the prediction can
be guaranteed. To obtain an accurate multiple-independent-
Bernoulli-distribution model of the topological feature space,
our approach adjusts the sampling of the adjacency matrix
of the network (or graph) using the clustering information
in the node feature space. This yields a better performance
than those methods which simply combine the two types of
features. Experimental results on several benchmark datasets
suggest that our approach outperforms the best existing link
prediction methods.

1 Introduction
Over the last few years, there is a rapidly growing interest
in predicting the potential or absent links between nodes
in large, complex networks. The link information represents
the interactions, relationships, or influences between differ-
ent nodes. Thus, predicting the likelihood of the unknown
links is essential to forecasting the future or determining the
hidden relationships between the nodes. For instance, with
the surge of social networks in our daily life, link predic-
tion has been widely applied in friendship recommendation
and social network marketing (Liben-Nowell and Kleinberg
2003). In this paper, we focus on predicting unknown links
in a partially observed network. The observed information
can be classified into two categories. One is the set of topo-
logical features, such as edges or links, and the other is the
set of node features, such as a user’s name, gender, loca-
tion, school, and other profile elements in some networks
like Facebook.
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1.1 Previous Work
A number of methods have been developed to predict the
absent links, using either one or both types of features. A
straightforward way of link prediction is to first compute the
similarity between each pair of nodes and then use it to de-
termine the likelihood of their possible link. Two types of
similarity between a pair of nodes are frequently used. One
is based on node attributes such as the number of common
features shared by them (Lin 1998), and the other is based
on graph-topological features such as the paths or neigh-
bors connecting them (Leicht, Holme, and Newman 2006;
Lü, Jin, and Zhou 2009). A major challenge encountered by
such methods is that the node features are often treated inde-
pendently of the topological features, and therefore it lacks
a consistent and appropriate way to define similarity using
the two types of correlated features. As a result, the per-
formance of such methods could vary significantly among
different types of similarities. To overcome this obstacle,
several Bayesian probabilistic models have been proposed
to make predictions by learning a link probability distri-
bution model from the observed network (Wang, Satuluri,
and Parthasarathy 2007; Miller, Griffiths, and Jordan 2009;
Sarkar, Chakrabarti, and Jordan 2012). In such models, the
node features and topological features are represented as
random variables, and their relations are estimated via some
assumed latent structure from the Bayesian method.

Another approach for link prediction is to formulate it as
an adjacency matrix recovery problem, and use some sparse
matrix recovery methods or collaborative filtering methods
to solve it (Menon and Elkan 2011; Koren, Bell, and Volin-
sky 2009; Singh and Gordon 2008; Agrawal, Garg, and
Narayanam 2013; Ye et al. 2013). Comparing to the sta-
tistical models, the matrix recovery approach has a promi-
nent advantage, that is, its stability and accuracy of solutions
can be theoretically ensured by the well-developed sparse
recovery theory (Zhou et al. 2010; Candès and Plan 2009;
Wang and Xu 2012). However, it also suffers from two lim-
itations. One limitation is that the matrix recovery approach
uses matrix norm as its measure and thus mainly focuses
on the topological features. The other limitation is that the
matrix recovery approach searches the missing links along
the norm-minimizing direction (Menon and Elkan 2011;
Chen 2008) (e.g., similar to the least square problem), and
the resulting matrix may not always reflect the real structure
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of the network.
Thus it is desirable to combine the advantages of the two

approaches, and avoid their respective limitations. This mo-
tivates us to propose a new model to predict links by learning
the original structure from both node and topological fea-
tures and guarantee the stability of the solutions.

1.2 Main Ideas
A key assumption of our approach is that the two types of
features are correlated and the topological feature is a reflec-
tion of some correlated node features. Thus, our approach
tries to make use of the node features to help determining
the unknown topological features. Particularly, our approach
adopts the following main ideas.

Firstly, to ensure stability of predication, our approach
adopts the framework of the reliable matrix completion ap-
proach. The predication can be treated as recovering the
(partially unknown) original link matrix from the observed
(i.e., sampled) matrix M with Mij = 1 indicating a link be-
tween nodes Ni and Nj . An effective strategy of sampling
is proposed, in this paper, to guarantee the recovered matrix
obeying the real structure of the original network (i.e., the
network containing both the observed and unknown links).
The newly recovered links are the predications.

Secondly, for each node Nj , our approach views its ob-
served neighbors as a cluster in the node feature space. A
node Ni has a link to Nj if it belongs to the cluster of Nj in
the node feature space. Thus, the j-th columnMj of the link
matrix can be viewed as a vector generated by a Bernoulli
distribution model in which the probability Pj is calculated
by Nj’s cluster. That is, we have Mij = 1 with probabil-
ity Pj (if Ni is inside the cluster of Nj) and Mij = 0
with probability 1 − Pj (if Ni is outside the cluster). A
major advantage of such a model is that it allows us to ex-
tend the well-known matrix completion framework (Candès
and Tao 2005; Candès and Recht 2009; Zhou et al. 2010;
Gross 2011) and prove the stability of our approach. In the
original matrix completion framework, the stability is shown
based on the assumption that every entry of the matrix is
sampled by the same Bernoulli distribution. In our approach,
the stability is analyzed under a more practical model in
which the columns of the matrix are generated by multiple
independent Bernoulli distributions and the probability of
each entry depends on the actual relations between the cor-
responding node and its neighbors. There are also some ex-
isting non-uniform sampling models. A representative one is
the local coherences model introduced by Chen et al. (Chen
et al. 2014), in which each entry is sampled based on its own
row and column coherence coefficient. Comparing to our
model, these methods still depend only on the topological
features (i.e., without using the node feature information).
Furthermore, computing the local coherences could be quite
expensive, which needs to perform Singular Value Decom-
position on a large-scale adjacency matrix.

Thirdly, our approach adopts an adaptive calibration strat-
egy to obtain the Bernoulli model generating each column
Mj . Hence the partially unknown network structure can
be more accurately estimated. It consists of two calibration
phases. In the first phase, our approach calculates a unique

weight vector for each node Nj . This gives us the tightest
cluster after filtering out those node features irrelevant to the
cluster. In the second phase, the sampling probability of each
column is adjusted based on the obtained clustering infor-
mation, which serves as a bridge between the node feature
space and the topological feature space. This allows us to use
the relevant node features to help predicting the topological
features.

1.3 Our Contributions
Our proposed approach has the following main contribu-
tions.

(1) A matrix completion model based on multiple indepen-
dent Bernoulli distributions: We extend the original matrix
completion model for the reconstruction of a partially ob-
served network by using a new data distribution model. A
theoretical analysis on the stability is provided to ensure the
performance of this model.

(2) An adaptive calibration strategy based on feature sub-
space: We introduce a new way to bridge the node feature
space and the topological feature space, which allows us to
use relevant node features to predict topological features.

The rest of the paper is organized as follows. In the sec-
ond section, we present our new model for link prediction.
A stability analysis of this model is given in the third sec-
tion. Experimental results are shown in the fourth section.
Conclusion remarks are given in the last section.

2 Proposed Model for Link Prediction
Let G be a directed graph representing the considered net-
work, and N be the set of n nodes of G with Ni being the
i-th node of G. Let M ∈ Rn×n be the observed adjacency
matrix of the network, and Mj be its j-th column. Mij = 1
if a link from Ni to Nj is observed, and Mij = 0 other-
wise. Denote Ω the set of indices of all non-zero entries in
M . Then predicting unknown links is equivalent to recover
the unobserved links in M based on Ω. Let M̃ be the result-
ing (or recovered) adjacency matrix. The predicted links are
stored in M̃ −M .

2.1 Problem Description and Preliminary
We now formulate the link prediction problem in the matrix
completion framework (Candès and Recht 2009) as follows.

min ||M̃ ||∗
subject to PΩ(M̃) = PΩ(M),

(1)

where ||M̃ ||∗ denotes the nuclear norm of M̃ , which is
a good convex relaxation of matrix rank, and PΩ is the
sampling projector determined by our multiple independent
Bernoulli distribution model. The definition of PΩ will be
introduced later. The observed links in M are treated as the
links sampled from the unknown original adjacency matrix
of G by PΩ. In matrix completion theory, the quality of
recovery depends on sampling. Hence, our model focuses
on constructing PΩ(M) so that it closely reflects the struc-
ture of G. In the following subsections, we explain how to
achieve this.
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To be consistent with the framework in (Candès and Recht
2009; Gross 2011), below we introduce some necessary def-
initions and assumptions required by the matrix completion
framework.

Let M =
∑r
k=1 δkukv

>
k be the SVD form of Mand r

be the rank of M . Let U and V be the spaces spanned by
{uk}rk=1 and {vk}rk=1, respectively. Assume thatM has low
rank and satisfies the following coherence condition intro-
duced in (Gross 2011).

Definition 1 The n× n matrix M has the coherence µ with
respect to basis {ωij}n

2

ij if

max
ij
||PT (ωij)||2F ≤

µr

n
, (2)

max
ij
〈ωij , sgn(UV >)〉 ≤ µr

n2
, (3)

where sgn(UV >) is the sign function of UV > (denoted by
sgn). Let ||M ||2 be the spectral norm of a matrix M , and
||M ||F be its Frobenius norm.

Below we discuss our model.

2.2 Node Clusters
A key assumption used in the original matrix completion
framework is that elements in PΩ(M) are generated by a se-
quence of independent identically distributed 0/1 Bernoulli
random variables. Below, we introduce a new probabilistic
model for PΩ based on the correlation between the topolog-
ical features M and the node features F .

For each node, we assume that all its possible linking
nodes aggregate as a cluster. Let {Mij}ki=1 be the set of non-
zero entries of vectorMj , and {Ni}ki=1 be the corresponding
nodes which have a link to node Nj in M . {Ni}ki=1 forms
a neighborhood of Nj (this is based on a commonly used
belief that two nodes sharing a link have certain similarity).
By our assumption that topological features are reflections
of node features, this means that {Ni}ki=1 aggregates in the
f -dimensional node feature space or its subspace, where f
is the number of node features in the network. To measure
the quality of the aggregation, we can find a weight vector
Wj ∈ Rf to make {Ni}ki=1 become the smallest weighted
cluster of Nj . More specifically, let F ∈ Rf×k denote the
feature matrix of the k nodes with the i-th column Fi being
the feature vector of Ni; the cluster of Nj is estimated by
the following

δj = min
Wj

1

k

k∑
i=1

||Wj ⊗ Fi − Fj ||, (4)

where δj is the radius of cluster of each Nj , and ⊗ is an
element-by-element multiplication.1 Using Wj and δj , we
can determine whether any other node Ni is inside the clus-
ter.

1That is, the result of Wj ⊗ Fi is still a f dimensional vector
with its q-th entry equaling to the product of the two q-th entries in
Wj and Fi respectively.

2.3 Multiple Independent Bernoulli Distribution
Model

With the above ideas, we can define the multiple indepen-
dent Bernoulli distribution model in the following way. Let
{mij}1≤i≤n,1≤j≤n be a sequence of random variables inde-
pendently sampled from 0/1 Bernoulli’s distribution with

mij =

{
1 if Ni is inside Nj’s cluster
0 if Ni is outside Nj’s cluster (5)

with the probability

P(mij = 1) = Pj , (6)

where Pj is decided only by the cluster of Nj (i.e. Wj and
δj). Then the operator PΩ in Eq(1) is defined as

PΩ(M) =
∑
i,j∈Ω

1

Pj
ωij〈ωij ,M〉, (7)

where ωij = {eiej}ni,j and {ei}ni=1 is the standard ba-
sis; 〈, 〉 is the matrix inner product defined as 〈M1,M2〉 =
tr(M>1 M2) for two matrices M1 and M2. After defining
PΩ, we now need to calculate the probability Pj .

2.4 Adaptive Calibration
To obtain the sampling probability Pj for the jth column,
we use a two-phase adaptive calibration strategy.

The first phase is only for the purpose of estimating the
structure of the original network. In this phase, we use a uni-
form Bernoulli distribution to sample at least O(µnr log n)
entries in Ω, which means that for each column we can sam-
ple at least O(µr log n) entries. Then, for each j, we obtain
the radius δj and the feature weight Wj using Eq(4). With
these, we can calculate the distances between node Nj and
each of its neighbors Nk by the following equation.

δkj = ||Wj ⊗ Fk − Fj ||. (8)

Note that we only need the feature information of each node,
which is already available.

In the second phase, we first set the sampling probabil-
ity Pj using the clustering information computed in the first
phase, and then calculate PΩ(M) by Eq(7). More specifi-
cally, we first compare δkj with δj to obtain the total num-
ber Dj of nodes inside the cluster of Nj , and then set the
sampling probability of the jth column as

Pj = max

(
Dj

n
,
µr log n

n

)
. (9)

With this calibration, the stability of the recovery only de-
pends on Pj . As a result, it guarantees that our recovery can
preserve the main structure of the original network structure.
We analyze the recovery stability in the next section.

3 Stability Analysis
In this section, we show stability of our prediction approach
by analyzing the stability of the equivalent matrix comple-
tion approach under the multiple independent Bernoulli dis-
tribution model.
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Theorem 1 Let M be an n × n matrix of rank r sampled
from the multiple independent Bernoulli distributions. If Ω is
generated by a sequence of independent 0/1 Bernoulli ran-
dom variables {mij} with probability P(mij = 1) = Pj ≥
µr logn

n , then there exist numerical constants C0 and β, such
that the minimizer to the problem (1) is unique and equal to
M with probability at least 1− C0n

−β .

To prove this theorem, we first recall how stability is
shown in the original matrix completion model (Candès and
Recht 2009; Gross 2011). Let T be the linear space spanned
by both {uk}rk=1 and {vk}rk=1. Define the orthogonal pro-
jector PT onto T as

PT (M) = PUM + PVM − PUMPV . (10)

Denote by PT c the orthogonal projector onto the orthogonal
compliment subspace of T .

Our proof strategy follows the architecture of (Candès and
Recht 2009; Gross 2011), that is, we need to construct a dual
certificate matrix Y ∈ range(PΩ) satisfying the following
Lemma.

Lemma 1 There exists a matrix M of rank r which is the
solution of the problem (1), if the following two conditions
hold:

1. PΩ restricted to elements in T is injective.

2. There exists a dual certificate Y ∈ range(PΩ) obeys

||PT (Y )− sgn||F ≤
1

CRn3
, CR > 1. (11)

||PT c(Y )||2 < 1. (12)

Below we show that the two conditions indeed hold.

3.1 The Injectivity

To prove the injectivity, a key step is to show the operator
PTPΩPT has a small spectral norm with a large probability.

Lemma 2 Let Ω be the set of indices sampled using the mul-
tiple independent Bernoulli distribution model, there exists
a numerical constants C1 such that for all t < 1,

||PTPΩPT − PT ||2 ≤ t (13)

with probability at least 1− 2n−C1t
2

, if minPj ≥ µr logn
n .

Proof: Firstly, for any matrix X , we have

[PTPΩPT − PT ](X)

=
∑
j

[∑
i

(
mij

Pj
− 1)〈ωij ,PT (X)〉PT (ωij)

]
.(14)

Define a new family of operators as Zij(X) = (
mij

Pj
−

1)〈ωij ,PT (X)〉PT (ωij). Then

||
∑
ij

EZij(X)2||2

= ||
∑
ij

(
mij

Pj
− 1)〈ωij ,PT (ωij)〉Zij(X)||2

≤ (
1

minPj
− 1)||PT (ωij)||2F ||

∑
ij

EZij(X)||F

≤ 1−minPj
minPj

||PT (ωij)||2F ||
∑
ij

EPTPΩijPT (X)||F

≤ (
1

minPj
− 1)||PT (ωij)||2F ||PT (X)||F , (15)

where 〈ωij ,PT (ωij)〉 = ||PT (ωij)||2F . Then, based on
Eq(2), we have

||
∑
ij

EZ2
ij ||2 ≤ (

1

minPj
− 1)

µr

n
. (16)

Next, we have

||Zij ||2 ≤ 1

Pj
||PTPΩijPT ||2

≤ 1

minPj
||PT (ωij)||2F

≤ µr

(minPj)n
. (17)

Since EZij = 0, by the Matrix Berstein Inequality (Tropp
2012) (i.e., Theorem 2), we have the following inequality for
any t ≤ 1/2

Pr(||PTPΩPT − PT ||2 ≥ t) ≤ 2n−C1t
2

(18)

if minPj ≥ µr logn
n , where C1 > 0 is a constant coefficient.

�

3.2 The Dual Certificate
To construct the dual certificate Y , we use the strategy of
golfing scheme (Gross 2011) introdued by Gross. The golf-
ing scheme first partitions Ω into l non-overlapping groups,
i.e., Ω = ∪

1≤k≤l
Ωk, then set Y0 = 0 and

Yk = Yk−1 + PΩk
PT (sgn− Yk−1), (19)

where PΩk
has a parameter Pr(m(k)

ij = 1) = P
(k)
j , and sgn

stands for the sign function of M . This series {Yk}lk=1 will
converge to the expected dual certificate Yl.

Let Z0 = sgn. Then we have

Zk = PT (sgn− Yk−1), (20)

Yk =
k∑
i=1

PΩiZi−1. (21)

The following two lemmas are key components for prov-
ing the conditions (i.e., Eq(11) and Eq(12)) for the dual cer-
tificate Y in Lemma 1.
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Lemma 3 Suppose Z ∈ T , then

Pr(||(1− PTPΩ′PT )Z||∞ > α||Z||∞) ≤ 2n−C2α
2

, (22)

with α,C2 > 0, if minP ′j ≥
rµ logn

n .

The proof is shown below. By a similar argument given in
(Gross 2011), we also know that the series {Yk}lk=1 con-
verges to the expected dual certificate Yl from this lemma.
Proof: For any Z ∈ T , we have PTPΩ′PTZ = PTPΩ′Z.
Then we know that

Z−PTPΩ′PTZ =
∑
i

∑
j

(1−
m′ij
P ′j

)〈ωij , Z〉PTωij . (23)

For any pair of {i′, j′} ∈ Ω′, let

Xij = 〈(1−
m′ij
P ′j

)〈ωij , Z〉PTωij , ωi′j′〉

= (1−
m′ij
P ′j

)〈ωij , Z〉〈PTωij , ωi′j′〉. (24)

Then, we have |Z − PTPΩ′PTZ|i′j′ =
∑
ij Xij and∑

ij

EX2
ij

≤ (
1

minP ′j
− 1)

∑
ij

|〈ωij , Z〉|2|〈PTωij , ωi′j′〉|2

≤ (
1

minP ′j
− 1)||Z||2∞||PTωi′j′ ||2F

≤ (
1

minP ′j
− 1)

µr

n
||Z||2∞. (25)

Also, we know that

|Xij | ≤ (
1

minP ′j
− 1)||Z||∞|〈PTωij , ωi′j′〉|

≤ (
1

minP ′j
− 1)

µr

n
||Z||∞. (26)

Thus, if minP ′j ≥
rµ logn

n , by Bernstein’s inequality, we
know that there exists a constant C2 > 0 such that

Pr(||(1− PTPΩ′PT )Z||∞ > α||Z||∞)

≤ 2 exp

(
−C2

α2nminP ′j
µr

)
. (27)

This completes the proof of the lemma.
�

Next lemma is similar to Lemma 9 of (Gross 2011), it
states as follows.

Lemma 4 Suppose Z ∈ T , then

Pr(||PT cPΩZ||2 > t) ≤ 2 exp

(
− t2nminPj
C3 max ||Z||22µ

)
,

(28)
for t ≤ max ||Z||2

4
√
r

Proof: Let Xij = PT c
mij

Pj
〈ωij , Z〉ωij . Then PT cPΩZ =∑

ij Xij and EXij = 0.
By the fact that

||PT cωij ||2F = sup
ψ∈T c ||ψ||2=1

〈ωij , ψ〉, (29)

and Lemma 8 of (Gross 2011), we have∑
ij

Var(Xij) ≤
∑
ij

1

minPj
|〈ωij , Z〉|2||PT cωij ||2F

≤ 1

minPj
sup
ψ

∑
ij

|〈ωij , Z〉|2〈ψ, ω2
ijψ〉

≤ µmax ||Z||22
nminPj

. (30)

Also, we know that

|Xij | ≤
1

minPj
|〈ωij , Z〉|||PT cωij ||F ≤

µmax ||Z||2
nminPj

.

(31)
By Bernstein’s inequality, the lemma follows. �

3.3 Matrix Berstein Inequality
Theorem 2 (Matrix Berstein Inequality (Tropp 2012)) Let
(Yk)k≥1 be independent matrices in Rm×n satisfying

EYk = 0 and ||Yk||2 ≤ R. (32)

Define the variance parameter δ as

δ2 = max(||
∑
k

EYkY
>
k ||2, ||

∑
k

EY >k Yk||2). (33)

Then, for all t ≥ 0

Pr(||
∑
k

Yk||2 ≥ t) ≤ (m+ n) exp

(
−t2

3δ2 + 2Rt

)
. (34)

3.4 Proof of Lemma 1
Now we show that the constructed dual certificate Yl satisfies
the two conditions Eq(11) and Eq(12) in Lemma 1.
Proof: (a) Let Zk = (1−PTPΩ′PT )Zk−1, then by Lemma
3, we have

||Zk||∞ ≤ α||Zk−1||∞, (35)

with large probability.
Then we have

||Zk||∞ ≤ αk||sgn||∞. (36)

It follows that

||Zk||F ≤ αk||sgn||F = αk
√
r. (37)

Set α = 1/2 and l = dlog2(2n3
√
r)e, we get

||PT (Yl)− sgn||F =
l∑

k=1

(
1

2
)k−1 ≤ 1

CRn3
, (38)

with CR > 1.
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(b) By Lemma 4, and setting max ||Zk||2 =
√
r

2k (by
Eq(37)), we have

||PT cPΩZk||2 ≤
1

4
2−k. (39)

It follows that

||PT cPΩYl||2 ≤
1

4

l∑
k=1

(
1

2
)k−1 <

1

2
. (40)

This means that Yl satisfies both conditions. �
Now with max ||Zk||2 =

√
r

2k as above and minPj ≥
µr logn

n , we can bound the probabilities in Lemmas 2,3,4 by

1− C0n
−β , (41)

where C0, β > 0 are some constant coefficients. Thus The-
orem 1 follows. This indicates that our prediction model has
guaranteed performance with |Ω| ≥ O(µrn log2 n).

4 Experiments
To evaluate the performance of our proposed approach,
we implement our clustering-based collaborative filtering
method (CBCF) and compare it with some existing link
prediction methods. Experimental results are reported as
the area under the ROC curve (AUC). The regularization
parameters of our model are selected following the same
rules in (Goldfarb and Ma 2011). In our experiments, we
use the proximal gradient algorithm (APG) in (Cai, Candès,
and Shen 2010; Shen, Toh, and Yun 2011; Goldfarb and
Ma 2011) as the numerical solver. As for the running time,
the first phase of the adaptive calibration procedure takes
O(fµrn log n) time, and the second phase takes O(fn2)
time, where f is the number of node features and is in gen-
eral much smaller than n. Since APG needs to perform SVD
on matrix M , which will dominate the time of the adaptive
calibration, our model thus has asymptotically the same time
complexity as APG. The readers are referred to the reference
of APG for more details.

Firstly, we compare our method with a matrix factoriza-
tion and bilinear regression model (FactBLR) proposed by
(Menon and Elkan 2011). The FactBLR extracts edge infor-
mation using matrix factorization and makes use of explicit
node information through bilinear regression. Its prediction
is made based on the linear combination of both types of in-
formation. Thus, it outperforms the popular link prediction
methods which used only one type of information. As com-
parisons with our approach, we perform these methods on
two datasets: the protein interaction dataset (Protein) from
(Tsuda and Noble 2004) and the metabolic pathway interac-
tion dataset (Metabolic) from (Yamanishi, Vert, and Kane-
hisa 2005). Protein dataset contains 2617 proteins and each
protein has a 76 dimensional feature. Metabolic dataset con-
tains 668 nodes and each node has a 325 dimensional fea-
ture. To be consistent with FactBLR experiments in (Menon
and Elkan 2011), we uniformly select 10% of the interac-
tions as training set for each dataset and repeat the whole
evaluation process 10 times. We use the popular unsuper-
vised scoring methods Katz and Shortest-Path (ShP) as the

Table 1: Mean AUC scores for Katz, Shortest Path, FactBLR
and CBCF

DATASET KATZ SHP FACTBLR CBCF
PROTEIN 0.727 0.726 0.813 0.831
METABOLIC 0.608 0.626 0.763 0.776

Table 2: Mean AUC scores for Katz, SPLR and CBCF with
different corruption fraction δ

δ KATZ SPLR CBCF
5% 0.9298 0.9293 0.9453
10% 0.9189 0.9221 0.9411
20% 0.8941 0.8997 0.9248

standard baseline (Menon and Elkan 2011). Results are re-
ported in Table 1. From the table, it is clear that (1) CBCF
significantly outperforms the methods which use only the
topological features or only the node features, since CBCF
scores a link depending on more information; (2) CBCF
still shows advantages compared to FactBLR, which linearly
combines the topological feature and node feature. This is
reasonable, since there could be different data types and
value systems between the topological feature space and the
node feature space. For example, the value of topological
feature is usually 1 or 0, but the value of node feature could
be either a very large number or a very small number. Thus a
score generated from a linear combination of these two fea-
ture spaces could be weighted unnecessarily more for one
feature.

Secondly, we compare CBCF with the sparse and
low rank matrices recovery method (SPLR) proposed by
(Savalle, Richard, and Vayatis 2012). Low rank and sparse-
ness are usually the characters of the social network dataset,
especially when the whole dataset is obtained by sampling.
SPLR has demonstrated its ability in processing such type
of datasets. SPLR is based on the original matrix completion
model which assumes that the observed data is sampled from
identical independent Bernoulli distributions. Following the
experiments of (Savalle, Richard, and Vayatis 2012), we use
the Facebook100 dataset proposed by (Traud, Mucha, and
Porter 2011), which contains the Facebook friendship re-
lations between students in one hundred universities. We
choose the same university dataset, which has 41554 users
and each user has a 7 dimensional feature. For consistency,
we first filter the data to retain only 10% of nodes which have
the highest number of friends. Then uniformly corrupt the
entries of the adjacency matrix with a fixed fraction δ. Also
Katz method is used as the baseline. Results are reported in
Table 2.The related ROC graph is shown in Figure1. From
this table, we can make two remarks. (1) This comparison
shows that our new matrix model performs better than the
original matrix completion model, which seems to suggest
that the multiple independent Bernoulli distribution model
is more suitable for social network data. (2) This experiment
shows that our approach can also be applied to low rank and
sparse datasets.

5 Conclusion
In this paper we proposed a link prediction approach based
on a new multiple independent Bernoulli matrix completion
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Figure 1: ROC graph for CBCF with different δ.

model. Our approach has a few advantages over the existing
ones. Firstly, it is more general and a better fit for predicting
unobserved links in many real-world networks such as social
networks. This is because in such networks, each node often
selects its linked nodes independently and follows only its
own interest. Secondly, it allows us to ensure the stability
of the solutions, which is given in the third section. Thirdly,
it builds a bridge between the topological feature space and
the node feature space through clustering, which allows us to
collaboratively achieve better solutions by utilizing the two
types of features and can deal with networks with insuffi-
cient node features.

Experimental results on several benchmark datasets sug-
gest that our approach outperforms the original matrix com-
pletion model as well as the matrix factorization and bilinear
regression method.
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