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Abstract

This paper addresses a new problem concerning the
evolution of influence relationships between commu-
nities in dynamic social networks. A weighted tempo-
ral multigraph is employed to represent the dynamics
of the social networks and analyze the influence rela-
tionships between communities over time. To ensure the
interpretability of the knowledge discovered, evolution
of the influence relationships is assessed by introducing
the Granger causality. Through extensive experiments,
we empirically demonstrate the suitability of our model
for studying the evolution of influence between commu-
nities. Moreover, we empirically show how our model is
able to accurately predict the influence of communities
over time using random forest regression.

Introduction
Users in real-world social networks are organized into com-
munities that are distinguished by number of users, prefer-
ences and interests, social influence, etc. (Zhang et al. 2013).
Discovering and estimating social influence, with the aim of
understanding how users affect each other, is an important
research issue that has received considerable attention from
the AI research community (Belák, Lam, and Hayes 2012;
Mehmood et al. 2013; Zhang et al. 2013). In fact, detecting
influential users in social networks and assessing their influ-
ence makes it possible to study information propagation in
the network, which is very helpful in developing online ad-
vertisements, marketing campaigns and recommender sys-
tems (Barbieri and Bonchi 2014; Ye, Liu, and Lee 2012).

Much research has been conducted recently on detect-
ing communities and studying influence in social networks
(Chen, Wang, and Yang 2009; Leskovec, Lang, and Ma-
honey 2010). Detecting communities provides insight into
the structure of the social network, whereas detecting in-
fluential users allows us to understand information dynam-
ics and propagation and network evolution. Different types
of influence have been proposed, such as pairwise influ-
ence (Goyal, Bonchi, and Lakshmanan 2010; Yin and Zhang
2012), social influence locality (Zhang et al. 2013), commu-
nity influence (Belák, Lam, and Hayes 2012; Mehmood et
al. 2013), topic influence (Liu et al. 2012; 2010; Tang et al.
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2009), indirect influence (Kim, Newth, and Christen 2013;
Shuai et al. 2012), and external influence (Myers, Zhu, and
Leskovec 2012). However, these influence measures have
been proposed for the purpose of detecting influential users
and are not intended for assessing the influence between
communities. Moreover, none of these measures studies the
evolution of influence over time. With the rapid growth of
social networks, detecting communities without assessing
their overall influence in the network is now considered in-
sufficient. This in turn suggests the need to study how com-
munities influence each other and how this influence evolves
over time. Finally, studying influence at the community level
may reveal many more interesting patterns than merely look-
ing at pairwise influence between users. These points consti-
tute the major rationale for the work reported here.

In this paper, we propose an effective model for analyzing
influence evolution in dynamic social networks. A weighted
temporal multigraph is employed in order to represent the
dynamics of social networks. The evolution of influence be-
tween communities is then assessed by incorporating the
Granger causality (Granger 1969). Our model also makes it
possible to predict the influence between communities using
random forest regression. The combination of these methods
yields an integrated framework for studying and predicting
influence evolution. The major contributions of this paper
can be summarized as follows:

1. Proposing an effective model for influence evolution us-
ing the Granger causality.

2. Combining weighted temporal multigraphs and the
Granger causality for representing dynamic social net-
works and studying the evolution of inter-community in-
fluence.

3. Predicting the influence between communities over time
using random forest regression.

The rest of the paper is organized as follows. First, we give
an overview of related work in Section 2. Section 3 de-
scribes the proposed model in terms of weighted tempo-
ral multigraph representation, influence evolution and pre-
diction. The results of our experiments on real social net-
work datasets are presented in Section 4. Finally, Section 5
presents our conclusions.
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Related work
In this section we discuss related work in the area of in-
fluence detection and assessment. We will focus mainly on
influence between communities and its evolution over time.

Much research has been done in the social network field
over the last decade. One of the most important areas of re-
search in social networks concerns community detection and
influential user extraction (Belák, Lam, and Hayes 2012;
Liu et al. 2012; Mehmood et al. 2013; Chen, Wang, and
Yang 2009; Zhang et al. 2013). Community detection al-
lows one to pinpoint groups of users with common interests,
tastes or goals (Dietz 2009), while influential user extrac-
tion allows one to locate those individuals that play a central
role in the social network. Such users are those having high
values of centrality or betweenness centrality (Kazuya, Wei,
and Xiang-yang 2008).

Despite the considerable body of research on community
detection, little work has been reported on assessing the in-
fluence between communities. Mehmood et al. (Mehmood et
al. 2013) propose a community-level social influence mea-
sure for assessing the strength of influence between two dif-
ferent communities in directed social networks. Belák et al.
(Belák, Lam, and Hayes 2012) propose a framework for
cross-community influence analysis in discussion fora. The
authors use the in-degree measure to assess the influence.
Liu et al. (Liu et al. 2010) propose a topic-level influence
in social networks. The authors also propose a method for
calculating direct and indirect influence in social networks.
Dietz et al. (Dietz, Bickel, and Scheffer 2007) propose an
unsupervised prediction of citation influence in publication
repositories. However, their model deals with the influence
between papers and does not study the influence between
communities.

Although existing models study influence between users
or communities, none of them provides effective solutions
to understand and predict the evolution of influence between
communities in dynamic social networks. In this paper, we
propose an effective model for studying the evolution of
inter-community influence over time. Moreover, we build a
method in our model to predict the influence between com-
munities.

Our proposed model
In order to study the evolution of inter-community influence,
our model needs a structure capable of representing the dy-
namics of the social network and displaying its state at each
time instant. We resort to a multigraph formalism represen-
tation as a means to address this need and facilitate the as-
sessment of influence evolution.

Weighted Temporal Multigraph
With the rapid evolution of social networks and their dynam-
ics, basic graphs are unable to show the different aspects of
the network dynamics. For this reason, we adapt the multi-
graph formalism in order to represent the dynamics of social
networks. A multigraph is a graph in which multiple edges
are permitted between two nodes. The rationale for using the

Figure 1: Example of a weighted temporal multigraph show-
ing citation relationships between two communities, AAAI
and IJCAI, in the DBLP dataset. Each edge here is marked
by the time instant and its weight, the latter being calculated
by Equation 1.

multigraph representation is twofold: 1) it allows us to rep-
resent the temporal progression of the social network; and
2) it is a good visualization tool for the social network dy-
namics. In addition, in our model, a node represents a com-
munity as a whole and not an individual user, which is an
extremely information-rich representation compared to clas-
sical graphs. As a result, our model deals with multigraphs
of communities, which constitutes a new method of assess-
ing influence evolution.

Given that influence between communities can be quan-
tified and measured, we resort to the weighted temporal
multigraph (WTMG) to represent the social network dy-
namics. A WTMG is a multigraph in which a weight (typ-
ically a real number) has been assigned to every edge at a
time instant. Formally, we define a weighted temporal multi-
graph as G = (V,E, T,W ), where V is the set of nodes,
E ⊆ V × T × V ×W denotes a set of edges, T is a finite
set of time instants, and W is a real-value function from E
to the real numbers R+. A weighted temporal edge e in G
is defined as an ordered quadruple e = (u, v, t, w), where
u, v ∈ V , with u possibly equal to v, are the origin and des-
tination nodes, t is the time instant for the node u, and w is
the weight of the edge e, which can be written asw = W (e).

Figure 1 shows an example of a weighted multigraph,
where the nodes represent two communities of the artificial
intelligence discipline, the AAAI and IJCAI conferences.

As shown in Figure 1, the multigraph is a compact repre-
sentation of graphs evolving over time. A node in a weighted
temporal multigraph will have a matrix of influence values
between itself and the other nodes at each time instant. The
matrix of influence can be reduced to a vector of influence
by accumulating and normalizing the influence values with
respect to a time instant. As a consequence, each community
u ∈ G can be presented as a chronologically ordered series
of influence vectors over time. To illustrate this point, with-
out loss of generality, let the AAAI and IJCAI conferences
be two artificial intelligence communities in the graph G of
the DBLP dataset. Let the functionW () be the number of ci-
tations of the papers of one conference by the papers of the
other conference for each year. If no citation is reported be-
tween the two conferences at a particular time instant, then
the edge weight will simply be zero. The Figure 2 illustrates
citation relationships between the AAAI and IJCAI commu-
nities at different time instants in the DBLP and Arnet Miner
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Figure 2: Citation relationships between the two communi-
ties AAAI and IJCAI in the DBLP and Arnet Miner datasets.

datasets.
As shown in Figure 2, each pair of nodes will have two

chronologically ordered series of influence values over time.
For example, at each time instant ti, a community u ∈ G
will have a certain number of citations {N(j → u, ti)|j ∈
v} of another community v ∈ G. Each community is com-
posed of a certain number of papers. Therefore, a normal-
ized citation weight is computed to represent the citation in-
fluence (CI) (Dietz, Bickel, and Scheffer 2007) between the
two communities at a particular time instant ti. Note that
the citation influences u → v and v → u are different and
should both be computed using the following formula:

CI(u→ v, ti) =

∑
j∈v N(j → u, ti)

Mv,ti

, (1)

where N(j → u, ti) represents the number of citations of
community u by a paper j ∈ v at time instant ti, and Mv,ti
represents the number of all citations made by community
v from the other communities in graph G at time instant ti.
The citation influence values obtained at each time instant
will be used to study the influence evolution, as described in
the next section. Table 1 shows the citation influence values
computed between the AAAI and IJCAI communities using
Equation 1 at different time instants. The labels in Table 1
reflect the year in which an article from one community was
published, assuming that article cited the other community
articles published in any year (current or previous).

Table 1: CI(AAAI → IJCAI) and CI(IJCAI →
AAAI) values computed using Equation 1.

1991 1993 1997 1999 2005 2011
AAAI→IJCAI 0.854 0.947 0.698 0.401 0.055 0.666
IJCAI→AAAI 0.032 0.142 0.416 0.787 0.471 0.335

As shown in Table 1, the value (0.854) of the citation in-
fluence AAAI→ IJCAI obtained during 1991 can be inter-
preted as indicating that 85.4 % of the citations made by the
IJCAI community are from the AAAI community. Similarly,
only 3.2 % of the citations made by the AAAI community
are from the IJCAI community.

Influence Evolution Analysis
Influence between communities is a challenging research is-
sue and little work has been reported on detecting the influ-
ence between communities. Moreover, studying the evolu-

tion of influence in dynamic social networks is a new prob-
lem. We propose an effective method for studying the evolu-
tion of influence between communities. Our method is based
on the use of the Granger causality (Granger 1969) to infer
influence evolution.

The rationale for incorporating the Granger causality in
assessing influence evolution is twofold. First, it helps de-
velop a more effective model for discovering hidden knowl-
edge from the data. Secondly, it makes the discovered
knowledge more interpretable from both the statistical and
the semantic standpoints. The Granger causality has gained
tremendous success across many domains due to its simplic-
ity, robustness, extendability and it involves no hypothesis
about the data (Ioannis, David, and Wan 2000). The Granger
causality was initially developed for analyzing the effect of
one time series on another. Formally, suppose we have two
stationary time series CI(u → v) = {CI(u → v)(t)t∈T }
and CI(v → u) = {CI(v → u)(t)t∈T } and we intend to
study whether one influences (Granger causes) the other or
not. The regression formulation of Granger causality states
that CI(u → v) influences (Granger causes) CI(v → u)
if the past values of CI(u → v) are helpful in predicting
the future values of CI(v → u). If there is no influence be-
tween the two time series, the null hypothesis holds. The two
regression formulas are presented below:

H0 : CI(v → u)(t) =

L∑
l=1

alCI(v → u)(t− l) + ε1 (2)

H1 : CI(v → u)(t) =
L∑
l=1

alCI(v → u)(t− l)+

L∑
l=1

blCI(u→ v)(t− l) + ε2, (3)

where L is the maximal time lag, al and bl are the regression
variable coefficients, and ε1 and ε2 are the residual terms,
which are independent and identically distributed according
to a standard Gaussian N(0;σ2). If Equation 3 is a signifi-
cantly better model than Equation 2, we conclude that time
series CI(u → v) Granger causes time series CI(v → u).
Among other techniques, the models above can be tested us-
ing the Granger Sargent test (Granger 1969), defined as fol-
lows:

F =
(RSSε1 −RSSε2)/L

(RSSε2)/(n− 2L)
∼ F (L, n− 2L), (4)

where RSSε1 is the ”restricted” residual sum of squares un-
derH0 ,RSSε2 is the ”unrestricted” residual sum of squares
underH1, and n is the number of observations. The Granger
causality is assessed for the two time series CI(u → v)
and CI(v → u) in both directions in order to discover
whether the influence between them is bi-directional or uni-
directional. Thus, by using the Granger causality principle,
we will be able to assess the evolution of the influence be-
tween communities at each time instant.
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Influence Prediction
Predicting the influence between communities over time in-
volves evaluating the influence that one community might
exert on the other at a specific time instant. For instance,
what is the predicted value of the influence that commu-
nity AAAI might exert on community IJCAI during the year
2015? Computing the predicted influence value is challeng-
ing. We use a random-forest-based regression method to
predict the influence between two communities. Random-
forest-based regression has been proved to be effective in
terms of prediction accuracy (Khan 2014). Our method uti-
lizes the weighted temporal multigraph state at time t in or-
der to predict the state at t + 1. It proceeds by first learning
the evolution of inter-community influence values and then
predicting the future influence between communities using
the learned model.

Formally, a random forest is a predictor consisting of
a collection of tree-structured predictors {h(x,Θk), k =
1, 2, ...,K}, where x represents the observed input vector
of length p with associated random vector X and Θk are
independent and identically distributed (iid) random vec-
tors. Each tree h(x,Θk) is constructed employing a different
bootstrap sample of the training dataset, using the algorithm
in (Breiman 2001). As we mentioned above, since our goal
is to predict the influence between two communities, we fo-
cus on the regression aspect for which we have a numerical
output, Y (Segal 2004).

A random forest for regression is an unweighted average
over the collection h̄(x) = (1/K)

∑K
k=1 h(x,Θk). Accord-

ing to (Segal 2004), as k → ∞, the law of large numbers
ensures that the following holds:

EX,Y (Y − h̄(X))2 → EX,Y (Y − EΘh(X,Θ))2 (5)

The quantity EX,Y (Y − EΘh(X,Θ))2 is the prediction
error of the random forest, designated as PE∗f . The average
prediction error for an individual tree h(X,Θ) can be com-
puted as follows:

PE∗tree = EΘEX,Y (Y − h(X,Θ))2 (6)

Validation
This section presents the datasets used and discusses the re-
sults obtained for the evolution and prediction of influence
between communities.

Dataset
To validate our proposed model, we used the DBLP dataset,
which contains information about articles, authors, confer-
ences, and dates. However, it does not provide informa-
tion about citation relationships between papers. We there-
fore augmented the DBLP dataset with paper citation infor-
mation by incorporating the Arnet Miner citation network
dataset. We merged the two datasets based on the article title
to form one complete, rich network dataset. Table 2 shows
the details of each dataset.

In our work, we selected well-known research disciplines
such as Artificial Intelligence (AI), Data Mining (DM) and
Human Computer Interaction (HCI) to validate our proposed

Table 2: Datasets used for validation

Number of papers Citations Date
DBLP 2 712 770 No citations 08-08-2014
Arnet Miner 2 244 021 4 354 534 25-05-2014

model. In each discipline, top-ranked conferences, accord-
ing to the Microsoft conference ranking system, have been
selected as the communities for which influence evolution
and prediction are evaluated.

Influence Evolution
Influence evolution is assessed between each pair of con-
ferences in each discipline. Before assessing the influence
evolution using the Granger causality, we computed all of
the citation influences between all conferences at each time
instant using formula 1. The values computed for citation
influence between communities provide the basis on which
the evolution of that influence is assessed using the Granger
causality. Figure 3 on the next page shows a graphical rep-
resentation of the distribution of citations between all com-
munities in the AI and DM disciplines.

(a) AI

(b) DM

Figure 3: Citation values of communities at each time instant
for each discipline.

To assess the influence evolution, we performed two types
of validation: 1) a validation using all the citation influence
values computed for all time instants, and 2) a validation us-
ing citation influence values computed for intervals between
time instants to track the influence evolution.

Influence Evolution Using All Time Instants In this val-
idation, we used the citation influence values computed be-
tween communities for all time instants. The influence evo-
lution is assessed between each pair of communities. For ex-
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ample, to assess the influence evolution between communi-
ties AAAI and IJCAI, we computed the citation influence
values using formula 1 for the AAAI community by tak-
ing the AAAI Cites→ IJCAI citations for all time instants (i.e.,
from 1969 to 2013). Similarly, we computed the citation in-
fluence values for the IJCAI community by taking the IJCAI
Cites→ AAAI citations for all time instants.

Once the citation influence vectors have been computed,
the Granger causality can be assessed. We computed the F-
statistic and P-values in order to assess the Granger causal-
ity. Then, based on these results, the direction of influence
between each pair of communities is established. Tables 3,
4 and 5 show the influence relationships obtained between
each pair of communities for each discipline.

Table 3: Influence relationships obtained for the AI disci-
pline.

F-value P-value Influence direction

AAAICites→ ICML 0.1729 0.6800

ICMLCites→ AAAI 5.4735 0.0251 AAAI7−→ICML
AAAICites→ IJCAI 7.0334 0.0010 IJCAI7−→AAAI
IJCAICites→ AAAI 0.0511 0.9843

ICMLCites→ UAI 4.0914 0.0154 UAI7−→ICML
UAICites→ ICML 3.1663 0.0392

UAICites→ IJCAI 5.4709 0.0251 IJCAI7−→UAI
IJCAICites→ UAI 4.1302 0.0497

UMCites→ IJCAI 49.4017 1.6462e-10 IJCAI7−→UM
IJCAICites→ UM 2.4947 9.8434e-02

Table 4: Influence relationships obtained for the DM disci-
pline.

F-value P-value Influence direction

CIKMCites→ DAWAK 18.4613 0.0001 DAWAK7−→ CIKM
DAWAKCites→ CIKM 0.2210 0.8046

CIKMCites→ ICDE 5.4344 0.0177 ICDE7−→ CIKM
ICDECites→ CIKM 0.7044 0.5708

DMKDCites→ ICDE 51.6178 2.1726e-06 ICDE7−→ DMKD
ICDECites→ DMKD 0.0455 8.3364e-01

DMKDCites→ KDD 6.5576 0.0209 KDD7−→ DMKD
KDDCites→ DMKD 1.7726 0.2017

DMKDCites→ PKDD 11.1662 0.0015 PKDD7−→ DMKD
PKDDCites→ DMKD 0.1078 0.8985

KDDCites→ DASFAA 3.9801 0.0448 DASFAA7−→ KDD
DASFAACites→ KDD 0.6789 0.5242

PAKDDCites→ CIKM 5.3874 0.0182 CIKM7−→ PAKDD
CIKMCites→ PAKDD 1.7249 0.2247

PAKDDCites→ ICDE 7.8417 0.0058 ICDE7−→PAKDD
ICDECites→ PAKDD 0.0764 0.9268

PAKDDCites→ PKDD 19.4611 0.0004 PKDD7−→ PAKDD
PKDDCites→ PAKDD 0.0227 0.8819

SDMCites→ KDD 81.9723 2.4255e-07 KDD7−→ SDM
KDDCites→ SDM 0.1208 9.4570e-01

As shown in tables 3, 4 and 5, our model is able to
determine which community of a pair of communities is
more influential. For example, in the AI discipline, the re-

Table 5: Influence relationships obtained for the HCI disci-
pline.

F-value P-value Influence direction

CHICites→ HCI 0.2581 0.6160

HCICites→ CHI 7.3180 0.0123 CHI7−→ HCI
CHICites→ HUC 1.4453 0.2410

HUCCites→ CHI 5.3463 0.0296 CHI7−→ HUC
CSCWCites→ IUI 1.4379 0.2421

IUICites→ CSCW 9.3921 0.0053 CSCW 7−→ IUI
CSCWCites→ UIST 1.1675 0.2906

UISTCites→ CSCW 7.2489 0.0127 CSCW 7−→ UIST
ECSCWCites→ HUC 4.0247 0.0331 HUC 7−→ ECSCW
HUCCites→ ECSCW 0.2218 0.8028

HCICites→ HUC 0.1673 0.6860

HUCCites→ HCI 13.8550 0.0010 HCI7−→ HUC
HUCCites→ IUI 1.5109 0.2437

IUICites→ HUC 5.6946 0.0105 HUC 7−→ IUI
HUCCites→ UIST 5.9564 0.0089 UIST 7−→ HUC
UISTCites→ HUC 0.2873 0.7531

ISWCCites→ IUI 4.9097 0.0178 IUI7−→ ISWC
IUICites→ ISWC 0.2254 0.8000

sults show that the AAAI community significantly influ-
ences the ICML community, based on the F-values (5.4735
> 0.1729) and P-values (0.0251 < 0.6800) computed for
ICMLCites→ AAAI and AAAICites→ ICML respectively. There-
fore, the AAAI community can be considered as an influ-
ential community in the AI discipline. Consequently, one of
the potentials of our model is the ability to detect influen-
tial communities using the Granger causality tests. To this
end, we propose the following definition for an influential
community:

Definition 1 Let CI(u → v) and CI(v → u) be two cita-
tion influence vectors. Community u is influential ifCI(u→
v) Granger causes CI(v → u), and the P-value ≤ ε

For example, if ε = 0.03, the communities IJCAI, AAAI
and UAI can be considered as influential communities in the
AI discipline. The same observations can be generalized for
the DM and HCI disciplines. We choose ε = 0.03 to indi-
cate that the results are highly significant. The communities
KDD, ICDE, DAWAK, PKDD and CIKM are thus the in-
fluential communities in the DM discipline. Similarly, the
communities CHI, HCI, CSCW, HUC, UIST and IUI are the
influential communities in the HCI discipline.

Influence Evolution Using Time Intervals The purpose
of this validation is to show how the influence between com-
munities evolves over time. To this end, we computed the
Granger causality between each pair of communities for dif-
ferent time intervals. For example, for the AI discipline, we
computed the Granger causality for the intervals 1969 to
2009 and 1969 to 2010 (the influence results for the time
interval 1969 to 2011 are presented in Table 3). The results
obtained allow us to understand how the influence between
communities evolves from the first time interval to the last.
Tables 6 and 7 show the results obtained for the influence
between each pair of communities in the AI discipline for
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each time interval.

Table 6: Influence results obtained for the AI discipline for
the time interval 1969 to 2009.

F-value P-value Influence direction

AAAICites→ ICML 0.2402 0.6272

ICMLCites→ AAAI 4.5101 0.0412 AAAI7−→ICML
AAAICites→ IJCAI 7.9633 0.0016 IJCAI7−→AAAI
IJCAICites→ AAAI 0.0711 0.9315

ICMLCites→ UAI 0.2567 6.1576e-01

UAICites→ ICML 29.7501 4.8242e-06 ICML7−→UAI
UAICites→ IJCAI 5.9411 0.0203 IJCAI7−→UAI
IJCAICites→ UAI 4.3208 0.0454

UMCites→ IJCAI 57.9152 5.0014e-11 IJCAI7−→UM
IJCAICites→ UM 5.0955 1.2441e-02

AAAICites→ UAI 1.3887 0.2675

UAICites→ AAAI 3.4245 0.0312 AAAI7−→UAI

Table 7: Influence results obtained for the AI discipline for
the time interval 1969 to 2010.

F-value P-value Influence direction

AAAICites→ ICML 0.3087 0.5821

ICMLCites→ AAAI 5.0843 0.0306 AAAI7−→ICML
AAAICites→ IJCAI 8.2204 0.0013 IJCAI7−→AAAI
IJCAICites→ AAAI 0.0453 0.9557

ICMLCites→ UAI 23.4571 6.2522e-07 UAI7−→ICML
UAICites→ ICML 5.3754 9.9034e-03

UAICites→ IJCAI 5.4526 0.0255 IJCAI7−→UAI
IJCAICites→ UAI 3.9706 0.0543

UMCites→ IJCAI 59.9145 2.2366e-11 IJCAI7−→UM
IJCAICites→ UM 5.2113 1.1191e-02

The results reported in Tables 6 and 7 clearly show how
the influence values change between communities at each
time interval. For example, for ICMLCites→ AAAI, the F-
value increased from 4.5101 in 2009, to 5.0843 in 2010,
to 5.4735 in 2011. Similarly, the P-value decreased from
0.0412 in 2009, to 0.0306 in 2010, to 0.0251 in 2011.
This means that the community AAAI is gaining influence
for the ICML community. An important observation can
be made for UAICites→ ICML. Indeed, the F-value decreased
from 29.7501 in 2009 to 5.3754 in 2010. Similarly, the P-
value increased from 4.8242e−06 in 2009 to 9.9034e−03 in
2010. This variation indicates a change in the direction of the
influence between the two communities: i.e., in 2009, ICML
7−→ UAI, while in 2010, UAI 7−→ ICML. The influence
direction ICML 7−→ UAI established in 2009 has been re-
established again in 2011, as shown in Table 3. This example
clearly demonstrates that our model is able to study and ana-
lyze the evolution of influence between communities. Table
6 also shows that the AAAI community influences the UAI
community (AAAI7−→UAI) in 2009. However, this influ-
ence relationship no longer holds in 2010 (F-value = 0.5400,
P-value = 0.4674) and 2011 (F-value = 0.3067, P-value =
0.5831).

Influence Prediction

An influence prediction is calculated for each pair of com-
munities, and the results are averaged for each discipline. We
used ten-fold cross-validation for training and test. We com-
puted the Correlation Coefficient (CC), the Mean Absolute
Error (MAE) and the Root Mean Squared Error (RMSE) in
order to measure the accuracy of our model. For compari-
son purposes, we used two other regression models, the lin-
ear regression model and the multilayer perceptron model,
to highlight the suitability and performance of our random
forest regression model compared with the two other mod-
els. The rational of using these methods is that the linear
regression is considered as the reference regression model,
and the multilayer perceptron is the most commonly used
model for comparing regression methods given its perfor-
mance and reliability. Table 8 shows the results obtained for
the three models.

Table 8: Influence prediction results by discipline us-
ing RF(Random Forest), LR(Linear Regression) and
MP(Multilayer Perceptron).

AI DM HCI
CC MAE RMSE CC MAE RMSE CC MAE RMSE

RF 0.811 0.068 0.138 0.876 0.042 0.090 0.950 0.024 0.062
LR 0.618 0.107 0.188 0.816 0.055 0.107 0.927 0.0317 0.075
MP 0.712 0.127 0.180 0.799 0.061 0.116 0.906 0.051 0.089

As shown in Table 8, our model achieves the highest co-
efficient of correlation of the three models. Moreover, our
model results in lower prediction error than the others. This
demonstrates the efficiency of our model and its suitability
for predicting the influence between communities.

Conclusion

In this paper we have investigated a new problem concern-
ing the evolution of influence between communities in dy-
namic social networks. We have proposed a new model,
based on the Granger causality, for studying influence evolu-
tion. Our model utilizes a weighted temporal multigraph to
represent the dynamics of the social network. The evolution
of inter-community influence was studied by incorporating
the Granger causality and utilizing the influence values com-
puted between communities at each time instant. We have
also proposed a method based on random forest regression
to predict the influence between communities.

We have illustrated the effectiveness and suitability of our
model through extensive experiments on the DBLP dataset.
The experimental results demonstrate that our model is able
to study influence evolution over time and that it can accu-
rately predict the influence between communities by mini-
mizing the prediction error.

It will be interesting in the future to conduct more exper-
iments using other dynamic social networks such as Face-
book, Youtube and Twitter, and study the evolution of the
influence between online communities.
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