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Abstract

With the rapid development of signed social networks
in which the relationships between two nodes can be
either positive (indicating relations such as like) or neg-
ative (indicating relations such as dislike), producing a
personalized ranking list with positive links on the top
and negative links at the bottom is becoming an increas-
ingly important task. To accomplish it, we propose a
generalized AUC (GAUC) to quantify the ranking per-
formance of potential links (including positive, nega-
tive, and unknown status links) in partially observed
signed social networks. In addition, we develop a novel
link recommendation algorithm by directly optimizing
the GAUC loss. We conduct experimental studies based
upon Wikipedia, MovieLens, and Slashdot; our results
demonstrate the effectiveness and the efficiency of the
proposed approach.

Introduction
Signed social networks, in which the relationship between
two nodes can be either positive (indicating relations such as
trust) or negative (indicating relations such as distrust), are
increasingly common in recent years. For instance, Slashdot
(Lampe, Johnston, and Resnick 2007; Brzozowski, Hogg,
and Szabo 2008; Kunegis, Lommatzsch, and Bauckhage
2009) is a social website of technology related news; in
Slashdot Zoo, users can tag each other as friends (like) or
foes (dislike) based upon their comments on different arti-
cles. Another example is Epinions (Guha et al. 2004), which
is a product review website with an active user community.
Users can express whether they trust or distrust other users
based upon their reviews. Unlike traditional unsigned social
networks which can be represented as binary adjacency ma-
trices (with 1 indicating the existence of a link and 0 indicat-
ing the unknown status of a link), a signed network can be
modeled as an adjacency matrix in which an entry is 1 (or
−1) if the relationship is positive (or negative) and 0 if the
relationship is unknown.

One fundamental problem in signed social networks is
link recommendation. In unsigned social networks, link rec-
ommendation aims to suggest to each user a list of people
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(items) to whom the user probably will create new connec-
tions. In signed social networks, however, given a user, the
aim could be to rank people (items) this user is interested in
(i.e., positive links) on the top and people (items) this user
is not interested in (i.e., negative links) at the bottom. To
achieve this goal, it is important to quantify effectively how
good such a ranking list is.

In the past few years, the area under the receiver operat-
ing characteristic (ROC) curve (AUC) (Hanley and Mcneil
1982) has shown its effectiveness for measuring the per-
formance of binary classification or ranking. For instance,
Cortes and Mohri (2004) showed that the average AUC
is monotonically increasing as a function of the classifica-
tion accuracy, while the standard deviation for uneven dis-
tributions and higher error rates was observed; Clauset et
al. (2008) as well as Menon and Elkan (2011) used AUC
to measure the effectiveness of link prediction; Rendle et
al. (2009) utilized AUC to quantify personalized ranking
performance within social networks.

The AUC, however, is not an appropriate way to quantify
the ranking performance in signed networks because it only
applies to the binary case, rather than to the triplet (posi-
tive, negative, and unknown) that we consider. In particular,
given a signed social network, if AUC treats positive links
as positive samples and the other links as negative samples,
it will be impossible to quantify the ranking quality of nega-
tive links since unknown status links can either be positive or
negative. Similarly, if AUC treats negative links as negative
samples and the other links as positive samples, it will not
measure the ranking performance of positive links correctly.

A plausible model for user behavior in signed social net-
works is that more extreme positive and negative relation-
ships will be revealed before less extreme ones. Such a
model implies that a personalized ranking list of poten-
tial links should place positive links at the top, negative
links at the bottom, and unknown status links in the mid-
dle. Therefore, we propose a novel criterion—a general-
ized AUC (GAUC)—to quantify the ranking performance in
signed social networks, and develop a new algorithm to per-
form link recommendation. The contributions of our work
include:

• we propose a generalized AUC which will be maximized
only if all positive links are ranked on top, all negative
links are ranked at the bottom, and all unknown status
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links are in the middle.

• we develop a link recommendation approach by directly
minimizing the loss of the proposed GAUC; the pro-
posed model enjoys both low computational complexity
and high memory efficiency.

• we conduct experimental studies based upon three real
world datasets, i.e., Wikipedia, MovieLens, and Slash-
dot; the results demonstrate the effectiveness of the gen-
eralized AUC for quantifying link recommendation in
signed social networks; the results also demonstrate the
efficiency and the effectiveness of the proposed approach.

Related Work
In the past few years, various approaches (Heider 1946; Dor-
eian and Mrvar 2009; Leskovec, Huttenlocher, and Klein-
berg 2010a; 2010b; Dong et al. 2012; Yang et al. 2012;
Ye et al. 2013; Song and Meyer 2014) have been devel-
oped to investigate signed social networks. Among these
approaches, while most of them concentrate on edge sign
prediction and community detection, few have focussed on
link recommendation. Although the link recommendation
problem in signed social networks is more difficult than in
conventional unsigned social networks, we review related
work in the conventional setting to motivate our proposed
approach. In general, there are two types of link recommen-
dation approaches in unsigned social networks. One uses
network topology and another is model-based.

Network topological approaches recommend links based
upon the network topological structure. For instance, Liben-
Nowell and Kleinberg (2007) showed that common neigh-
bors, Jaccard’s coefficient, and Adamic/Adar (Adamic and
Adar 2003) can be used for link prediction and recommenda-
tion; Katz (1953), which measures the ensemble of all paths,
also demonstrated its effectiveness for link prediction and
recommendation. These approaches, however, cannot per-
form link recommendation effectively when little network
topological information is available, which often happens in
real world sparse social networks.

To tackle this issue, model-based approaches have been
developed. Specifically, there are two types of model-based
methods. One is pointwise approaches, such as singular
value decomposition (SVD), non-negative matrix factoriza-
tion (NMF) (Lee and Seung 1999; Song, Meyer, and Min
2014), probabilistic matrix factorization (Salakhutdinov and
Mnih 2007), and matrix factorization (MF) (Koren, Bell,
and Volinsky 2009), which aim to reconstruct the network
adjacency matrix with a low rank approximation. Another
is pairwise approaches, such as maximum margin matrix
factorization (Weimer, Karatzoglou, and Smola 2008) and
Bayesian personalized ranking (BPR) (Rendle et al. 2009),
which aim to provide a personalized ranking list based upon
pairwise comparisons.

Although most of these approaches can be applied di-
rectly for link recommendation in signed social networks,
they may not perform well because their objectives are in-
consistent with that of link recommendation in signed net-
works. Therefore, we introduce a generalized AUC (GAUC)
to quantify the personalized ranking performance in signed

networks and develop a model to perform link recommen-
dation by directly minimizing the loss of GAUC.

A Generalized AUC
In this section, we first introduce the area under the ROC
curve (AUC) and then present a generalized AUC to measure
the ranking performance in signed networks.

AUC
Given a binary classifier f and a training set (ai, bi)ni=1 with
ai ∈ Rd and bi ∈ {−1, 1}, let P = {ai | bi = 1} be the
set of positive samples and N = {ai | bi = −1} the set of
negative samples. Then the AUC is defined by:

AUC =
1

|P||N |
∑
ai∈P

∑
aj∈N

I
(
f(ai) > f(aj)

)
(1)

where I(·) is an indicator function which is 1 if the condi-
tion in the parenthesis is satisfied and 0 otherwise; |P| and
|N | are the numbers of positive samples and negative sam-
ples, respectively. AUC is the value of the Wilcoxon-Mann-
Whitney statistic (Hanley and Mcneil 1982) which is essen-
tially the probability that a random element of one set f(ai)
is larger than a random element of another f(aj). With an
ideal ranking list, AUC should be 1 representing each pos-
itive sample is ranked higher than all the negative samples.
For a random ranking, AUC will be 0.5.

A Generalized AUC
Given a signed social network which contains positive, neg-
ative, and unknown status links, an ideal personalized rank-
ing list tends to rank positive links (indicating a relationship
such as trust) on the top, negative links (indicating a rela-
tionship such as distrust) at the bottom, and unknown sta-
tus links in the middle. Traditional AUC, however, cannot
quantify such a ranking list appropriately because it consid-
ers only the binary case. For instance, if AUC treats positive
links as positive examples and the other links as negative
examples, it cannot quantify the ranking quality of negative
links since unknown status links could be either positive or
negative. Similarly, if AUC treats negative links as negative
samples and the others as positive samples, it cannot mea-
sure the ranking quality of positive links.

Note that although mean average precision (MAP) and
normalized discounted cumulative gain (NDCG) can be
used to measure ranking performance in signed networks,
they may not perform well because they tend to overestimate
the positive links on the top and cannot quantify the negative
links appropriately, because we aim to rank them at the bot-
tom of the ranking list and there are much more unknown
status links than negative links in real world applications.

To resolve these issues, we develop a novel criterion,
named generalized AUC (GAUC), to measure the ranking
performance in signed networks based upon the assump-
tion that more extreme positive and negative relationships
will be revealed before less extreme ones. Specifically, sup-
pose we are given a classifier f and a training set (ai, bi)ni=1

with ai ∈ Rd the ith sample, bi ∈ {−1, 0, 1} its label.
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Let P = {ai | bi = 1} be the set of positive samples,
N = {ai | bi = −1} be the set of negative samples, and
O = {ai | bi = 0}. Then GAUC can be defined as:

GAUC =
η

|P|(|O|+ |N |)
∑
ai∈P

∑
as∈O

⋃
N

I
(
f(ai) > f(as)

)
+

1− η
|N |(|O|+ |P|)

∑
at∈O

⋃
P

∑
aj∈N

I
(
f(aj) < f(at)

)
(2)

where |P| denotes the number of positive samples, |N | rep-
resents the number of negative samples, and |O| is the num-
ber of unknown status samples. The first and second terms
quantify the ranking performance of positive links and neg-
ative links, respectively. 0 ≤ η ≤ 1 is a parameter which
controls the tradeoff between these two terms. In this work,
we set η = |P|

|P|+|N | , i.e., the tradeoff is controlled by the
relative fraction of the number of positive links and that of
negative links. After substituting η in Eqn. (2), we can obtain

GAUC =
1

(|P|+ |N |)

( 1

(|O|+ |N |)
∑
ai∈P

∑
as∈O

⋃
N

I
(
f(ai)

> f(as)
)
+

1

(|O|+ |P|)
∑

aj∈N

∑
at∈O

⋃
P

I
(
f(aj) < f(at)

))
.

(3)
Like the AUC, GAUC will be 1 if we have a perfect rank-
ing list and will be 0.5 if we have a random ranking list.
The main difference between them is that GAUC can jointly
quantify the ranking quality over positive links and negative
links, in the presence of unknown links. We are aware that
different variants of AUC (Nakas and Yiannoutsos 2004;
Li 2009) have been developed in the past. GAUC differs
from these variants by focusing on the head and tail of a
ranking list.

Optimizing the Generalized AUC
In this section, we first state the problem we aim to study.
Then, we propose a novel model for link recommendation by
directly minimizing the loss of GAUC. Finally, we introduce
an optimization procedure for our proposed approach.

Problem Statement
Suppose we are given a partially observed signed network
X ∈ Rn×n with Xij ∈ {1,−1, 0, ?}, where 1 denotes a
positive link,−1 represents a negative link, 0 is an unknown
status link, and ? denotes a potential positive or negative
link. In the training stage, we treat both 0 and ? as zero
(i.e., potential links) and study the underlying mechanism
for ranking observed positive links on the top and negative
links at the bottom. In the test phase, we evaluate how these
potential links are ranked based upon the relative positions
of potential positive and negative links.

We aim to learn a mapping function f such that a ranking
score for the link at i-th row and j-th column of X can be
produced as

f(i, j,X) = X̂ij . (4)
Since many real world signed social networks are sparse

graphs with low rank structure, a low rank model which

is memory efficient can be employed to obtain the ranking
score as follows:

f(i, j, U, V ) = f(Ui, Vj) = UTi Vj (5)

where Ui ∈ Rr, Vj ∈ Rr, and r is the rank (r � n).

Link Recommendation Model
Since GAUC is a reasonable way to quantify the ranking
performance in signed social networks, an ideal link recom-
mendation model would be expected to optimize GAUC di-
rectly. Based upon the low rank model in Eqn. (5), the loss
of GAUC can be defined as:

1− GAUC(U, V ) =

1

(|P|+ |N |)

( 1

(|O|+ |N |)
∑

Xij∈P

∑
Xis∈O

⋃
N

I(U
T
i Vj

≤ UT
i Vs) +

1

(|O|+ |P|)
∑

Xij∈N

∑
Xis∈O

⋃
P

I(U
T
i Vj ≥ UT

i Vs)
)
.

(6)

Since the indicator function I(·) is non-convex, hinge loss
can be used as a convex surrogate in Eqn. (6). Therefore, an
upper bound of GAUC loss can be derived based upon the
following two inequalities (as shown in Figure 1):

I(UT
i Vj ≤ UT

i Vs) ≤ max
(
0, UT

i (Vs − Vj) + 1)
)
, (7)

and

I(UT
i Vj ≥ UT

i Vs) ≤ max
(
0, UT

i (Vj − Vs) + 1)
)
. (8)

Assuming |O| � |P| and |O| � |N | which holds for real
world sparse signed graphs, the upper bound of GAUC loss
can be written as the following objective:

Q(U, V ) =

n∑
i=1

n∑
j=1

n∑
s=1

max
(
0, UT

i (Vs − Vj) + 1)
)
·

I(Xij = 1, Xis 6= 1) + λU

∑
i

UT
i Ui+

n∑
i=1

n∑
j=1

n∑
s=1

max
(
0, UT

i (Vj − Vs) + 1)
)
·

I(Xij = −1, Xis 6= −1) + λV

∑
j

V T
j Vj

(9)

where the second and fourth terms are regularization terms
used for preventing over-fitting. λU and λV are two hyper-
parameters for controlling the scale of regularization terms.

Optimization
Although Q(U, V ) is non-convex and non-smooth with re-
spect to U and V , a sub-gradient method can be employed
to minimize the objective over U and V alternately. Specifi-
cally, the partial derivative of Q(U, V ) given Ui is:

∂Q(U, V )

∂Ui

=

∑n
j=1

∑n
s=1(Vs − Vj) + λUUi, ifXij = 1, Xis 6= 1,

and UT
i (Vs − Vj) > −1;∑n

j=1

∑n
s=1(Vj − Vs) + λUUi, ifXij = −1, Xis 6= −1,

and UT
i (Vj − Vs) > −1;

λUUi, otherwise
(10)
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Algorithm 1 Optimization of Q(U, V )

Input: X , U , V , α, number of batches b, number of iterations t,
threshold ς , maximum iteration T .
Initialize: set t = 0, initialize U0 and V0 randomly
repeat
t = t+ 1;
Calculate ∂Q(Ut,Vt)

∂Ut
based upon Eqn. (10);

Ut+1 = Ut − α ∂Q(Ut,Vt)
∂Ut

;

Calculate ∂Q(Ut,Vt)
∂Vt

based upon Eqn. (11) and Eqn. (12);

Vt+1 = Vt − α ∂Q(Ut,Vt)
∂Vt

;
until |Q(Ut+1, Vt+1)−Q(Ut, Vt)| < ς or t > T

Figure 1: Convex surrogate
loss of I(z ≥ 0).

Figure 2: The efficiency
of the proposed approach.

the partial derivative of Q(U, V ) given Vj is:

∂Q(U, V )

∂Vj
=

−
∑n

i=1

∑n
s=1 Ui + λV Vj , if Xij = 1, Xis 6= 1,

and UT
i (Vs − Vj) > −1;∑n

i=1

∑n
s=1 Ui + λV Vj , if Xij = −1, Xis 6= −1,

and UT
i (Vj − Vs) > −1;

λV Vj , otherwise
(11)

and the partial derivative of Q(U, V ) given Vs is:

∂Q(U, V )

∂Vs
=

∑n
i=1

∑n
j=1 Ui + λV Vs, if Xij = 1, Xis 6= 1,

and UT
i (Vs − Vj) > −1;

−
∑n

i=1

∑n
j=1 Ui + λV Vs, if Xij = −1, Xis 6= −1,

and UT
i (Vj − Vs) > −1;

λV Vs, otherwise.
(12)

For practical applications, the size (or the number of the non-
zero entries) of sparse signed networks maybe too large to
handle. In this case, stochastic sub-gradient descent can be
employed. In particular, assuming |O| � |P| and |O| �
|N |, let q = |P|+ |N | and b be the number of batches. The
computational complexity of ∂Q(U,V )

∂U (or ∂Q(U,V )
∂V ) will be

O(n(q+r)b ). The specific optimization procedure is shown in
Algorithm 1.

Experiment
Datasets
We consider two well-known signed directed social net-
works, i.e., Wikipedia (Burke and Kraul 2008) and Slash-

Table 1: The statistics of two datasets.

Datasets Wikipedia MovieLens Slashdot
Nodes 7,118 6040/3952 82,144
Edges 103,747 739,012 549,202
+edges 78.78% 77.84% 77.4%
−edges 21.21% 22.16% 22.6%
Density 0.0020 0.0309 0.000081

dot (Lampe, Johnston, and Resnick 2007) 1. The Wikipedia
data comprise a voting network for promoting candidates to
the role of admin. Slashdot is a social website focusing on
technology related news. In Slashdot Zoo, users can tag each
other as friends (like) or foes (dislike) based upon comments
on articles.

We also consider Movielens 1M dataset2 which contains
6040 users as well as 3952 items. Although this dataset is
mainly used for collaborative filtering, we preprocess it so
that ratings of 4 and 5 are treated as positive links, ratings
of 1 and 2 are treated as negative links, and other ones are
treated as unknown status links.

The detailed statistics of these three datasets are provided
in Table 1.

Evaluation Metrics
Given a fully observed signed social network X ∈ Rn×n
with Xij ∈ {1,−1, 0}, we randomly remove a fraction
(80%, 60% and 40%) of positive and negative links and use
the rest to form a partially observed network for training (as
XTrain). The zero entries in XTrain are called potential links
because they could either be positive or negative in the fu-
ture. The removed links form a test set XTest.

To evaluate the effectiveness of the proposed model for
link recommendation, we utilize GAUC (over 1, −1, and 0)
in Eqn. (3), AUC (over 1 and−1) in Eqn. (1), and mean aver-
age precision (MAP) (over 1 and −1) to quantify the rank-
ing performance over XTest. To evaluate the effectiveness
of top-k link recommendation, we also report its associated
average Recall@k and average Precision@k for reference.
Specifically, Recall@k is defined as:

Recall@k =
#positive links in the top k

#positive links
,

and Precision@k is given as

Precision@k =
#positive links in the top k

#positive links and negative links in the top k
.

Parameter Setting
There are three hyper-parameters in our model, i.e., λU ,
λV , and k. We set λU = λV for simplicity and search
over the grid of {1, 5, 10, 20, 50, 100, 200} to find the op-
timal setting for λU and λV . We also search over the grid of
{10, 30, 50, 70, 90} to find the optimal setting for k. Specif-
ically, we conduct 5 fold cross-validation on Xtrain and

1These datasets are available online at
http://snap.stanford.edu/data/.

2This dataset is available online at
http://grouplens.org/datasets/movielens/.
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(a) GAUC on Wikipedia. (b) GAUC on MovieLens. (c) GAUC on Slashdot

Figure 3: GAUC on Wikipedia, MovieLens, and Slashdot. Error bars represent the standard deviations of uncertainty.

(a) AUC on Wikipedia. (b) AUC on MovieLens (c) AUC on Slashdot

Figure 4: AUC on Wikipedia, MovieLens, and Slashdot. Error bars represent the standard deviations of uncertainty.

(a) MAP on Wikipedia. (b) MAP on MovieLens. (c) MAP on Slashdot

Figure 5: MAP on Wikipedia, MovieLens, and Slashdot. Error bars represent the standard deviations of uncertainty.

the parameter combination which achieves the best average
GAUC is employed for test.

Results
Baslines: We compare the proposed approach
(OPT+GAUC) with various baseline approaches to
demonstrate its effectiveness. Among these baselines,
common neighbor (CN) (Liben-Nowell and Kleinberg
2007) and Katz (Katz 1953) are obtained based upon
the network topological structure; singular value decom-
position (SVD) and matrix factorization (MF) (Koren,
Bell, and Volinsky 2009) are two representative pointwise
approaches for collaborative filtering; maximum margin
matrix factorization (MMMF) (Weimer, Karatzoglou, and
Smola 2008) and Bayesian personalized ranking based
upon matrix factorization (BPR+MF) (Rendle et al. 2009)
are two popular pairwise approaches for personalized
ranking. For fair comparison, β in Katz is set as 0.005
because it achieves the best performance; we select the
hyper-parameters of MF, MMMF, and BRP+MF in a similar
way as we do for OPT+GAUC. To ensure our results are
reliable, we conduct each experiment 5 times; the aver-
age GAUC/AUC/MAP/Recall@k/Precision@k and their

associated standard deviations are reported for comparison.
Efficiency: We study the efficiency of the proposed ap-
proach by employing stochastic sub-gradient descent over
20% of the Wikipedia dataset. In particular, we partition
XTrain into b batches and perform sub-gradient descent
over U and V iteratively. Figure 2 shows the efficiency of
the proposed approach with different numbers of batches
(b ∈ {5, 10, 30, 60}). We observe that when b varies from 5
to 60, the objective function of our proposed approach con-
verges faster. This is because the computational complexity
of the sub-gradients linearly depends on b. Moreover, we ob-
serve that the GAUC/AUC/MAP does not decay very much
while b is increasing.
Link recommendation: Figures 3, 4, and 5 show the
GAUC/AUC/MAP and their associated standard deviations
of various approaches on three datasets when the size of
training set varies from 20% to 60%. We observe that CN is
generally outperformed by other approaches because it only
considers the neighborhood structure of the network; since
Katz not only encodes neighborhood structure but also con-
siders the high-order relationships, it can outperform CN in
most cases. Note that CN and Katz cannot work on Movie-
Lens because it is a bipartite network. For GAUC in Fig-
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(a) Precision@k on Wikipedia. (b) Precision@k on MovieLens. (c) Precision@k on Slashdot
Figure 6: Precision@k for Wikipedia, MovieLens, and Slashdot. Error bars represent the standard deviations of uncertainty.

(a) Recall@k on Wikipedia. (b) Recall@k on MovieLens. (c) Recall@k on Slashdot

Figure 7: Recall@k for Wikipedia, MovieLens, and Slashdot. Error bars represent the standard deviations of uncertainty.

(a) GAUC on 20%Wikipedia. (b) AUC on 20%Wikipedia. (c) MAP on 20%Wikipedia.

Figure 8: Parameter sensitivity study for Wikipedia (20% training) with respect to GAUC, AUC, and MAP.

ure 3, we observe that, pairwise approaches, i.e., MMMF
and BPR+MF, outperform pointwise approaches (i.e., SVD
and MF) in most cases. This may be because SVD tends
to over-fit the data and MF only reconstructs the partially
observed network based upon observed positive as well
as negative links (it neglects unknown status links). For
AUC and MAP, SVD cannot perform as well as MF be-
cause SVD tends to over-fit the data (especially for smaller
datasets); MMMF and BPR+MF are outperformed by MF
as they do not directly model negative links. On the con-
trary, they treat both negative and unknown status links as 0.
OPT+GAUC generally outperforms all baseline algorithms
regarding GAUC/AUC/MAP, this is because OPT+GAUC
models the triplet in signed networks more reasonably than
other approaches.
Top-k link recommendation: We further investigate the
effectiveness of the proposed approach by comparing its
Precision@k and Recall@k with baseline methods (the size
of training set is 40% for Wikipedia, MovieLens, and Slash-
dot) in Figure 6 and 7, respectively. We observe that while
OPT+GAUC is among the best approaches for Recall@k
(except in Figure 7(b)), it consistently achieves the best
Precision@k in Figure 6(a) and 6(c). This indicates that
modeling unknown status links helps to increase the per-
formance of top-k link recommendation. We also observe

that while SVD achieves the best Recall@k in Figure 7(b),
it gets the worst Precision@k in Figure 6(b). This may be
due to over-fitting. Note that all the other approaches except
SVD achieve similar performance in Figure 6(b) and 7(b),
this may be because MovieLens is a relatively dense graph
and it contains sufficient observed links to estimate the rank-
ing of potential links.
Parameter sensitivity: We study the sensitivity of
OPT+GAUC with respect to the regularization param-
eters λU ∈ {1, 5, 10, 20, 50, 100, 200} and r ∈
{10, 30, 50, 70, 90}. When we vary the value of λU or
rank r, we keep the other parameters fixed. We plot the
GAUC/AUC/MAP with respect to λU and r in Figure 8. We
observe that OPT+GAUC is very stable as it achieves good
GAUC/AUC/MAP when λU varies from 10 to 100 and k
varies from 30 to 90. The results of other settings are similar
and are omitted here due to space limitations.

Conclusions
In this paper, we proposed a generalized AUC (GAUC) to
quantify the ranking performance in signed networks. Based
upon the GAUC loss, we derived a link recommendation
model by directly minimizing this loss and introduced an
optimization procedure. We conducted experimental stud-
ies based upon three real world networks, i.e., Wikipedia,
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MovieLens, and Slashdot. Our experiment results demon-
strated the effectiveness and efficiency of the proposed ap-
proach.
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