
Trust Models for RDF Data: Semantics and Complexity∗

Valeria Fionda and Gianluigi Greco
Department of Mathematics and Computer Science,

University of Calabria, Italy
{fionda,ggreco}@mat.unical.it

Abstract

Due to the openness and decentralization of the Web, mech-
anisms to represent and reason about the reliability of RDF
data become essential. This paper embarks on a formal anal-
ysis of RDF data enriched with trust information by focusing
on the characterization of its model-theoretic semantics and
on the study of relevant reasoning problems. The impact of
trust values on the computational complexity of well-known
concepts related to the entailment of RDF graphs is studied.
In particular, islands of tractability are identified for classes of
acyclic and nearly-acyclic graphs. Moreover, an implementa-
tion of the framework and an experimental evaluation on real
data are discussed.

1 Introduction
The Resource Description Framework (RDF) is the basic
representation language for the Semantic Web, where data
is exposed as a set of triples expressing the properties that
hold among a given universe of resources, identified by
URIs (Hayes and Patel-Schneider 2014). In fact, RDF is
not suited, in its basic form, to represent meta-information.
Therefore, efforts have been made to define extensions for
dealing with time (Gutierrez, Hurtado, and Vaisman 2007),
provenance (Dividino et al. 2009), fuzzy (Straccia 2009),
and trust (Hartig 2009; Tomaszuk, Pak, and Rybinski 2013).
These ad-hoc extensions come in the form of annotations
over the triples and general frameworks for annotated Se-
mantic Web data have been proposed, too (Udrea, Recupero,
and Subrahmanian 2010; Zimmermann et al. 2012).

In this paper, we consider RDF data enriched with trust
information, and we study specific reasoning problems that
arise within this setting. Indeed, RDF links between re-
sources can be unilaterally set and be part of any data source
as in the spirit of Tim Berners Lee’s words: “Anyone can say
anything about any topic and publish it anywhere”. How-
ever, the lack of central control on the publishing of RDF
data on the Web can have an impact on their accuracy, and
it therefore becomes essential to associate trust information
∗V. Fionda’s work was supported by the European Commission,

the European Social Fund and the Calabria region. G. Greco’s work
was also supported by a Kurt Gödel Research Fellowship, awarded
by the Kurt Gödel Society.
Copyright © 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to data and being able to reason about them. To this end,
the starting point of our analysis is the trust model proposed
by (Hartig 2009), who firstly advocated the need of a uni-
form way to rate the trustworthiness of RDF data and of
mechanisms to access and use these ratings. In fact, the anal-
ysis of (Hartig 2009) has been mainly carried out from the
conceptual viewpoint, so that a number of the properties of
the trust model, related to semantic and complexity issues,
remain unexplored. In this paper we fill the gap.

In more detail, we first propose a model-theoretic seman-
tics for the trust model by (Hartig 2009). The semantics is
based on the concept of trust aggregation functions, which
are functions designed to aggregate trust values coming from
different RDF triples (Section 3.1). We then analyze the
computational properties exhibited by the proposed frame-
work (Section 3.2), and it turns out that:
I Even simple reasoning problems, such as checking

whether there is a model for a given RDF graph, become
intractable, formally NP-hard, in presence of trust infor-
mation for general trust aggregation functions.
Motivated by the above bad news, we focus on specific

classes of trust aggregation functions computable via binary
trust operators, in the spirit of the general framework for
annotated RDF data by (Zimmermann et al. 2012) and some
proposals in relational (Karvounarakis and Green 2012) and
RDF databases (Buneman and Kostylev 2010) where com-
mutative semirings are considered. Within these classes, we
analyze the concepts of entailment, equivalence, and core
as suitable adaptations of corresponding concepts for RDF
data (Gutierrez et al. 2011) and we study their intrinsic com-
putational complexity (Section 4). It turns out that:
I The syntactic restriction introduced by trust operators is a

key for the tractability of the reasoning problems in pres-
ence of trust information.

I While entailment, equivalence, and core are grounded on
the semantics of the representation language, tight syntac-
tic characterizations can be exhibited for them.

I Islands of tractability for these concepts can be singled
out based on the structural properties of the interactions
among the data. In particular, tractability can be estab-
lished for acyclic or nearly-acyclic RDF graphs.
Finally, we point out that the trust framework and all the

algorithms proposed in the paper have been implemented

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

95

and are made available in a prototype system.1 We con-
ducted experiments on real data in order to assess the ap-
plicability of the approach and the effectiveness of the algo-
rithmic solutions. Implementation issues and experimental
results are also discussed in the paper (Section 5).

2 Preliminaries
RDF Graphs. Let U and B be two disjoint infinite sets of
URI references and blank node identifiers, respectively. An
RDF triple has the form (s, p, o), where s ∈ U ∪ B is the
subject, p ∈ U is the property (also called predicate), and
o ∈ U ∪ B is the object.2 The intuitive meaning is that
the property p holds between the subject s and the object o
(Hayes and Patel-Schneider 2014). A set G of RDF triples
is usually called an RDF graph. Indeed, an RDF triple can
be viewed as a directed edge, from the subject to the object
nodes, labeled with the corresponding property (i.e., URI
reference). In the paper, we deal with simple RDF graphs
only, i.e., we do not specify any ad-hoc semantics for the
properties occurring in the triples of G.

Semantics of RDF graphs. An interpretation I over U
is a tuple 〈Res,Prop,PVal , Int〉 where: (i) Res is a non-
empty set of resources; (ii) Prop is a non-empty set of
property names, not necessarily disjoint from Res; (iii)
PVal : Prop → 2Res×Res is a function that assigns a sub-
set of Res × Res to each property name in Prop; and (iv)
Int : U → Res ∪ Prop is an interpretation mapping that
assigns a resource or property name to each element of U .
I is a model of an RDF graph G if there is a blank node

assignment A : B → Res , in the following referred to as
the witness of I, such that: for each triple (s, p, o) ∈ G,
Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈ PVal(Int(p)),
where IntA(x) = Int(x) if x ∈ U , and IntA(x) = A(x)
if x ∈ B. Note that blank nodes are interpreted existentially
via the underlying witness A.

3 Trust Framework
In this section, we illustrate the trust framework to enrich
standard RDF graphs with trust values, inspired by the ap-
proach proposed by (Hartig 2009). We also define its model-
theoretic semantics and study its complexity. In the follow-
ing, if h is a function, we denote by dom(h) its domain and,
by slightly abusing notation, for each element z 6∈dom(h), we
write h(z)=φ, where φ is a distinguished symbol acting as
a neutral element. If 〈z1, .., zm〉 is a tuple of values, then
〈h(z1), .., h(zm)〉 is shortened to h(〈z1, ..., zm〉).

3.1 Syntax and Semantics of t-Graphs
The trustworthiness of an RDF triple t = (s, p, o) is a value
indicating to what extent t is believed or disbelieved to be
true. A trust-enriched RDF graph (short: t-graph) is a pair
〈G, w〉where G is an RDF graph, andw is a real-valued trust
function such that:

1See http://trdfreasoner.wordpress.com
2Literals are not considered, as they do not play a role in the

formal analysis at the given abstraction level (Gutierrez et al. 2011).

author

_:b1

author
genre

genre

0.8

0.7

John_Grisham A_Time_To_Kill

Legal_thriller

author

_:b2

author
genre0.9

John_Grisham A_Time_To_Kill

Legal_thriller
-0.2

1

Figure 1: Examples of t-graphs.

• dom(w) is a set of RDF triples; here, the symbol φ associ-
ated with any triple outside the domain is meant to denote
that the trust value of t is unknown;
• for each t ∈ dom(w), −1≤w(t)≤1 holds. Intuitively, the

value 1 (resp., −1) represents the maximum belief (resp.,
disbelief) in the information encoded by the triple. A
value of 0 represents absolute uncertainty on the reliabil-
ity of the corresponding triple.

Note that dom(w)⊇G is not enforced to hold. So, a tuple t∈G
might have no associated trust value. In particular, w(t) = φ
is different from w(t) = 0, as discussed by (Hartig 2009).

Example 1 Two t-graphs are illustrated in Figure 1. For in-
stance, in 〈G1, w1〉 we have that w1((A Time To Kill,
author,John Grisham))=0.8 and dom(w1) = G1 \
{(A Time To Kill,genre,Legal thriller)}. �

In many cases, we need to aggregate the trust values that
come from different RDF triples, even possibly from the en-
tire RDF graph. To this end, we consider trust aggregation
functions, i.e., functions taking as input a multiset (i.e., a set
where repetitions are allowed) of elements in [−1, 1] ∪ {φ}
and producing an aggregate value in [−1, 1]∪{φ}. The spe-
cific choice of the trust aggregation function f depends on
the requirements of the application at hand. However, as φ is
a neutral element with respect to f , we consistently assume
that f(S) = f(S ∪ {φ}) holds, for each S.3

As a concrete choice, we might aggregate values by taking
the minimum one, if a cautious function fmin is used where
the trust value of a set of triples is equal to the trust value
of the least trusted triple. The brave perspective is instead
given by the function fmax taking the maximum value.

Example 2 Consider again 〈G1, w1〉 in Figure 1. According
to the cautious perspective, we have fmin({w1(t) | t∈G1})=
min{w1(t) | t∈G1}=-0.2. According to the brave perspec-
tive, fmax({w1(t) | t∈G1})= max{w1(t) | t∈G1}=0.8. �

The trust framework illustrated so far is essentially
taken from (Hartig 2009), where however a formal model-
theoretic semantics is not proposed. Our first contribution is
to extend the concept of model to t-graphs in a way that it is
parametric w.r.t. the trust aggregation function f .

Definition 1 (f -models) Let I = 〈Res,Prop,PVal , Int〉
be an interpretation, and let σ̄ = σy|y∈Prop be a family of
real-valued functions with dom(σy) ⊆ PVal(y), for each
y ∈ Prop, i.e., σy assigns trust values to pairs (s, o) ∈
PVal(y). The pair 〈I, σ̄〉 is an f -model of a t-graph 〈G, w〉
if there is a blank node assignment A : B → Res such that:

3Operations over sets are hereinafter transparently applied to
multisets, by taking multiplicity of elements into account.

96

(1) I is a model of G, with A being the associated witness;
(2) for each (s, p, o) ∈ G, σInt(p)(IntA(s), IntA(o)) =
f({σInt(p)(IntA(s), IntA(o))} ∪ S), where

S =
⋃

(s′, p′, o′) ∈ G such that
IntA((s, p, o)) = IntA((s′, p′, o′))

{w((s′, p′, o′))}.

2

Note that, according to our approach, standard interpre-
tations are equipped with real-valued functions that provide
an interpretation to trust values. Indeed, condition (1) is the
standard definition of model for RDF graphs, while condi-
tion (2) is specific for trust values. In order to get an intu-
ition, observe that, for the maximization function, condition
(2) prescribes that the value assigned via σ̄ to each “inter-
preted” triple in any model has to be an upper bound for the
trust values of the RDF triples that are mapped into it.
Example 3 Consider again 〈G1, w1〉 in Figure 1. Let
〈I, σ̄〉 be the pair such that: σp(s, o) = w1((s, p, o)),
∀(s, p, o)∈dom(w1); σp(s, o)=0, ∀(s, p, o) ∈ G1 \ dom(w1);
and where I = 〈Res, Prop, PVal , Int〉 is an interpretation
whose resources and property names directly correspond to
URI references and properties, respectively:
• Res={John Grisham,author,A Time To Kill,
Legal thriller,genre};

• Prop={author,genre},
• PVal(author)={(A Time To Kill, John Grisham)},

PVal(genre)= {(A Time To Kill, Legal thriller)};
• Int is the identity function;

Note that 〈I, σ̄〉 is an fmax-model of the t-graph 〈G1, w1〉
in Figure 1, whose witness is the blank node assign-
ment A with A(:b1)=A Time To Kill. Instead, observe
that 〈I, σ̄〉 is not an fmin-model. Indeed, we have that
σgenre(A Time To Kill,Legal thriller)=0 and since A
is the only possible blank node assignment, we ob-
tain that min{σgenre(A Time To Kill,Legal thriller),
w1(A Time To Kill,genre,Legal thriller), w1(:b1,
genre,Legal thriller)}=min{0, φ,-0.2}= -0.2 6= 0 �

3.2 Complexity Analysis
The framework illustrated so far is general enough to fit a
number of application domains. However, there is a price
to be paid for this generality, which comes in the form
of the intrinsic complexity of the basic reasoning problem
arising with the concept of f -model. In fact, it is well-
known and easy to see that, given an interpretation I and
an RDF graph G, deciding whether I is a model of G is NP-
complete in general, but it is feasible in polynomial time if
G is acyclic. Opposed to this goods news, it turns out that
deciding whether 〈I, σ̄〉 is an f -model of 〈G, w〉 (according
to Definition 1) is intractable even over acyclic graphs.

Formally, let CHECKf,C be the problem receiving as input
a pair 〈I, σ̄〉 and a t-graph 〈G, w〉 with G belonging to the
class C of RDF graphs, and asking to decide whether 〈I, σ̄〉
is an f -model of 〈G, w〉. Then, the following holds.
Theorem 1 Assume that f is a polynomial-time computable
function. Then, CHECKf,C is NP-complete. Hardness holds
even if C is the class of all acyclic RDF t-graphs.

.
.

b

c

: b1

: bn

a

p
p
p

p

�m/2
m

�m/2
m

s1

m

sn

m

Res = {a, b, c}
Prop = {p}
PV al(p) = {(a, b), (a, c)}
Int(x) = x, x 2 {(a, b, c, p)}
� = {�p(x) = 0, x 2 {(a, b), (a, c)}}

.

.

Figure 2: Example construction in the proof of Theorem 1.

Proof Sketch. NP-hardness can be shown via a reduction
from the PARTITION problem of deciding whether there is
a way to partition a multiset S = {s1, s2, . . . , sn} of inte-
gers into two multisets S1 and S2 such that the sum of the
numbers in S1 equals the sum of the numbers in S2.

Based on S, we build the f -model checking instance
(〈I, σ〉, 〈G, w〉) reported in Figure 2 with f being the aver-
age function, where blank nodes :bi ∈ G are in one-to-one
correspondence with the numbers si ∈ S, and where the
trust values (normalized by the factor m =

∑
si∈S si) are

given by the weights associated with the edges. Eventually,
one can check that 〈I, σ〉 is an f -model of 〈G, w〉 if, and
only if, the answer to the PARTITION instance is positive.
Indeed, 〈I, σ〉 is a model if, and only if, blank nodes (hence
numbers) can be partitioned in two groups, mapped to nodes
b and c, respectively, whose trust values sum up to 1/2. 2

4 Trust Aggregation Operators
In order to circumvent the above intractability, we have to
focus on specific kinds of trust aggregation functions. Our
choice is to consider functions that can be built on top of bi-
nary operators, enjoying algebraic properties which are very
often considered in the literature.
Definition 2 (trust operator) A trust (aggregation) opera-
tor ⊕ is a binary operator defined over [−1, 1] ∪ {φ} and
satisfying the following axioms:

1. ⊕ is a binary closed operator, i.e., ⊕ : [−1, 1] ∪ {φ} ×
[−1, 1] ∪ {φ} 7→ [−1, 1] ∪ {φ};

2. ⊕ is associative, i.e., ∀v, v′, v′′ ∈ [−1, 1]∪{φ}, the equa-
tion (v ⊕ v′)⊕ v′′ = v ⊕ (v′ ⊕ v′′) holds;

3. φ is the identity element, i.e., ∀v ∈ [−1, 1] ∪ {φ}, the
equation v ⊕ φ = φ⊕ v = v holds.

4. �, defined as v � v′ if, and only if, v ⊕ v′ = v, is a
partial order over ([−1, 1] ∪ {φ},⊕) that is compatible
with ⊕, i.e., if v � v′ then v⊕ v′′ � v′⊕ v′′, ∀v, v′, v′′ ∈
[−1, 1] ∪ {φ};

Therefore, ([−1, 1]∪{φ},⊕,�) is an Ordered Monoid with
the partial order �. Moreover, we require that the following
two additional axioms are satisfied:
5. ⊕ is idempotent, i.e., ∀v ∈ [−1, 1] ∪ {φ}, v ⊕ v = v (in

fact, this means that � is reflexive);
6. ⊕ is commutative, i.e., ∀v, v′ ∈ [−1, 1] ∪ {φ}, the equa-

tion v ⊕ v′ = v′ ⊕ v holds. 2

In the following, the symbol “⊕” will always refer to a
trust operator. A derived property of “⊕” is stated below.

97

Proposition 1 (decomposability) Let v, v′, v′′ be in
[−1, 1] ∪ {φ}. Then, v � v′ ⊕ v′′⇔ v � v′ and v � v′′.
Proof. (⇒) Observe that v�v′⊕v′′ implies v = v⊕v′⊕v′′.
Since � is compatible with ⊕, we have v ⊕ v′ � v ⊕ v′⊕
v′′ ⊕ v′, which implies v ⊕ v′ = v ⊕ v′ ⊕ v ⊕ v′ ⊕ v′′ ⊕ v′.
By commutativity and idempotence, we obtain v ⊕ v′ =
v ⊕ v′ ⊕ v′′, that is, v ⊕ v′=v and thus v�v′. A similar
reasoning applies to show that v�v′′.

(⇐) Since� is compatible with⊕, v � v′ (resp., v � v′′)
implies v ⊕ v′′ � v′ ⊕ v′′ (resp., v ⊕ v � v′′ ⊕ v). By com-
mutativity and idempotence, we obtain v = v⊕ v � v⊕ v′′.
Then, by transitivity, we derive v � v′ ⊕ v′′. 2

A trust operator ⊕ naturally induces the trust aggregation
function f⊕ such that, for each multiset S of elements in
[−1, 1] ∪ {φ}, f⊕(S) = ⊕v∈S v. Note that this is well-
defined, as ⊕ is commutative and associative (so the order
is immaterial). Moreover, note that min and max are trust
operators. Hence, the notation fmin and fmax used in the
previous section is consistent. Now, we claim that, by deal-
ing with trust operators, no unexpected complexity blow up
occurs. The result is a simple adaptation of a stronger tech-
nical result discussed in Theorem 6. Here, we just stress
that the average aggregation function is not expressible via
binary operators, so that the result below does not apply to
it—indeed, we already know from the proof of Theorem 1
that this operator quickly leads to intractability.

Theorem 2 If A is a class of acyclic RDF graphs, then
CHECKf⊕,A is feasible in polynomial time.

Now that trust operators have been shown to be computa-
tionally well-designed, we proceed to analyze their proper-
ties. In particular, we shall next focus on concepts playing
a relevant role in the analysis of RDF redundancies. Before
doing so, we point out that the specialization of Definition 1
to a function f⊕, for any given trust operator ⊕, nicely fits
the concept of model designed by (Zimmermann et al. 2012)
for the framework of annotated RDF graphs–in its turn in-
spired by (Kifer and Subrahmanian 1992). In fact, it can
be checked that our results smoothly apply to that general
framework for annotated RDF graphs, too.

More abstractly, our framework is also related to a number
of works where commutative semirings are used to record
the provenance of query results when dealing with anno-
tated data (Karvounarakis and Green 2012; Buneman and
Kostylev 2010). With this respect, note that semirings have
two different kinds of operations: (i) the addition operation
(corresponding to our aggregation function) that is used to
combine annotations (in our case, trust values) referring to
the same tuple; (ii) the product operation that is used to join
annotations of different tuples in the context of query an-
swering (more generally, reasoning about RDF schema). As
we do not care about querying mechanisms (or RDF schema
reasoning) in the paper, it is enough to focus on the addition
operation only. In fact, entailment check and core computa-
tion on RDF data with annotated triples has been not consid-
ered in such related works, and our results smoothly apply
to the semiring-based models, too.

4.1 Entailment for t-Graphs
We start the analysis by presenting a generalization of the
concept of entailment for t-graphs.

Definition 3 (⊕-entailment) Let 〈G1, w1〉 and 〈G2, w2〉 be
two t-graphs. Then, 〈G1, w1〉 ⊕-entails 〈G2, w2〉 (denoted
by 〈G1, w1〉 |= 〈G2, w2〉, if ⊕ is understood) if every f⊕-
model of 〈G1, w1〉 is also a f⊕-model of 〈G2, w2〉. 2

Entailment has been studied for RDF graphs (without
trust functions) and syntactic characterizations are known
for it (Gutierrez et al. 2011). So, it is natural to look for
similar characterizations in our context. To this end, we say
that a function µ : U ∪B → U ∪B is a URI preserving map-
ping if µ(u) = u, for each u ∈ U as defined in (Gutierrez et
al. 2011). For an RDF graph G, let µ(G) be the set of triples
{µ(t) | t ∈ G} resulting from the application of µ. By ex-
ploiting the results of (Gutierrez et al. 2011) in our context,
the following can be obtained.

Theorem 3 Let wφ be the function such that dom(wφ) = ∅.
Then, 〈G1, wφ〉 |= 〈G2, wφ〉 if, and only if, there is a URI
preserving mapping µ with µ(G2) ⊆ G1.

Proof Sketch. Let 〈I, σ̄〉 be an interpretation and G an RDF
graph. If 〈I, σ̄〉 is an f⊕-model of 〈G, wφ〉, then for each
triple (s, p, o)∈G, σInt(p)(IntA(s), IntA(o))�φ must hold,
being φ the identity element. Thus, Definition 1 reduces to
the standard concept of model for RDF graphs, i.e., ⊕ plays
no role. The result then follows by (Gutierrez et al. 2011). 2

To extend the result to arbitrary trust functions, we need to
introduce some restrictions on the allowed mappings, which
are meant to recast Definition 1 in purely syntactic terms.

Definition 4 (⊕-preserving mappings) Let 〈G1, w1〉 and
〈G2, w2〉 be two t-graphs. A mapping µ : U ∪ B → U ∪ B
is ⊕-preserving for 〈G1, w1〉 w.r.t. 〈G2, w2〉 if µ is URI pre-
serving, µ(G2)⊆G1 and, for each t∈G2, w1(µ(t))�w2(t). 2

Example 4 Consider again the two t-graphs in Figure 1. If
µ is a URI preserving mapping such that µ(:b2) = :b1
or µ(:b2) = A Time To Kill, then µ is min-preserving
for 〈G1, w1〉 w.r.t. 〈G2, w2〉. �

We next show that the entailment for t-graphs is intimately
related with the existence of ⊕-preserving mappings.

Theorem 4 〈G1, w1〉⊕-entails 〈G2, w2〉 if, and only if, there
is a ⊕-preserving mapping for 〈G1, w1〉 w.r.t. 〈G2, w2〉.
Proof Sketch. Assume that 〈G1, w1〉 |= 〈G2, w2〉, and
consider the Herbrand interpretation (Hayes and Patel-
Schneider 2014) 〈H=〈Res,Prop,PVal , Int〉, σ̄〉 of G1,
such that for each (s, p, o)∈G1, σp(s, o)=w1((s, p, o)). By
construction, 〈H, σ̄〉 is an f⊕-model of 〈G1, w1〉 with the
identity function AH as witness. Since 〈G1, w1〉|=〈G2, w2〉,
〈H, σ̄〉 is an f⊕-model of 〈G2, w2〉, for some witnessA′. Let
µ be the mapping such that µ(x)=IntA′(x). All the triples
of G2 are interpreted through µ as triples of G1 and, thus,
µ(G2)⊆G1. Moreover, one can check that µ is⊕-preserving,
due to the decomposability property (cf. Proposition 1).

Let now µ be a ⊕-preserving mapping and let 〈I, σ̄〉 be
an f⊕-model of 〈G1, w1〉, whose witness is A. The blank

98

author

_:b1

author
genre

genre

0.8

0.7

John_Grisham

Legal_thriller
-0.2

_:b3 {John_Grisham,_:b3,Legal_thriller}

{John_Grisham,_:b1,Legal_thriller}

Figure 3: Structures in Example 6.

node assignment B(x)=A(µ(x)) is a witness for 〈I, σ̄〉
being an f⊕-model of 〈G2, w2〉. 2

Example 5 Recall from Example 4 that a min-preserving
mapping exists for the t-graphs in Figure 1. Moreover,
we claim that 〈G1, w1〉 |= 〈G2, w2〉 holds. Indeed, what-
ever fmin-model 〈I, σ̄〉 of 〈G1, w1〉 must be such that
min{σInt(author)(A Time To Kill,John Grisham),
w1((A Time To Kill, author, John Grisham))} ≤0.8.
So, 〈I, σ̄〉 is also an fmin-model of 〈G2, w2〉with witness the
blank node assignment A(:b2)=A Time To Kill. �

Note that Theorem 4 generalizes the syntactic character-
ization of entailment defined for RDF graphs (Gutierrez et
al. 2011) in presence of trust information. Besides its own
conceptual relevance, the result plays an important role for
a deeper analysis of the complexity of the setting.

Let ⊕-ENTAILMENT be the problem receiving as input a
pair 〈G1, w1〉 and 〈G2, w2〉 and asking whether 〈G1, w1〉 ⊕-
entails 〈G2, w2〉. Since the size of⊕-preserving mappings is
polynomially bounded, the following is easily seen to hold,4
with the hardness trivially deriving from the corresponding
one over RDF graphs (Gutierrez et al. 2011).

Theorem 5 ⊕-ENTAILMENT is NP-complete.

Note that Theorem 5 tells us that trust operators provide
a method to deal with trust values without representing a
source of additional complexity w.r.t. the basic RDF setting.

However, the fact that even the basic setting of RDF
graphs without trust values is intractable is clearly not satis-
fying in general, and motivates the analysis of special classes
of RDF and t-graphs. In particular, as often done in the lit-
erature, we next focus on nearly-acyclic graphs as they can
be formalized via the concept of tree decomposition.

Definition 5 A tree decomposition of an RDF graph G is a
pair 〈T, χ〉, where T = (V,E) is a tree and χ is a labeling
function associating each vertex v ∈ V with a set of nodes
of G such that for each triple (s, p, o) ∈ G \ {(s, p, o) ∈ G |
{s, p, o} ⊆ U}, i.e., for each triple involving blank nodes,
the following properties hold:

• there is a vertex v ∈ V such that χ(v) ⊇ {s, o}; and
• the sets of vertices {v ∈ V | s ∈ χ(v)} and {v ∈ V | o ∈
χ(v)} induce two connected subtrees over T .

The width of 〈T, χ〉 is the value minv∈V |χ(v)| − 1. The
treewidth of an RDF graph G, denoted by tw(G), is the min-
imum width over all its possible tree decompositions. 2

4In the results, we assume the usual computation model with
unit costs for all operations involving numbers (in particular, for
their manipulation via the ⊕ operator).

Note that edge orientation is immaterial in the above no-
tion. Moreover, triples that do not contain blank nodes do
not play any role no matter of their interconnections. As
an example, the two graphs in Figure 1 have both treewidth
1, i.e., they are acyclic, while the undirected version of G1
(including the triples without blank nodes) contains a cycle.

Example 6 Consider the graph G′1 shown on the left of Fig-
ure 3, which is obtained from G1 by just replacing the re-
source A Time To Kill with a blank node. The (undi-
rected version of the) graph contains a cycle over edges in-
cluding blank nodes. Indeed, its treewidth is 2, as it is wit-
nessed by the tree decomposition shown on the right. �

Let ⊕-ENTAILMENTC be the restriction of the problem
⊕-ENTAILMENT where G2 (but not necessarily G1) belongs
to a given class C. We next show that this problem is
tractable over classes of bounded treewidth, hence gener-
alizing the tractability of RDF graphs (without trust values)
having bounded treewidth (Pichler et al. 2008). Hereinafter,
Tk is the class of RDF graphs whose treewidth is k at most.

Theorem 6 Let k > 0 be a fixed natural number. Then,
⊕-ENTAILMENTTk is computable in polynomial time.

Proof Sketch. Given two t-graphs 〈G1, w1〉 and 〈G2, w2〉
such that tw(G2)=k, 〈G1, w1〉|=〈G2, w2〉 can be checked
in polynomial time with an adaptation of the algorithm
presented in (Pichler et al. 2008). Let 〈T, χ〉 be one of the
tree decompositions of 〈G2, w2〉 with width k. T is visited
according to a post-order depth-first traversal, i.e., from
the leaves to the root, by associating to each node v the set
of ⊕-preserving mappings µ such that µ(Gv)⊆G1, where
Gv⊆G2 contains all the triples of G2 whose subject or object
belong to χ(v). The sets are propagated from the children
to the parent via left semi joins. At the end, if the root has a
non empty set of mappings, then 〈G1, w1〉|=〈G2, w2〉. 2

As a specialization of the above result, we get that ⊕-
ENTAILMENTC is tractable on any class C of graphs that
do not involve at all blank nodes—so that the notion of
treewidth trivializes because G \ {(s, p, o) ∈ G | {s, p, o} ⊆
U} = ∅, for each G ∈ C. Note that, unlike the standard set-
ting of RDF graphs, even this basic result is not immediate
in our setting because of the presence of trust functions.

4.2 Cores of t-Graphs
Another concept we would like to explore is the core. In-
deed, when reasoning about RDF data redundancy, it plays
a fundamental role by providing a “normal form” for graphs.
Before introducing the concept of core of a t-graph, let us in-
troduce a related notion.

Definition 6 A t-graph 〈G, w〉 is ⊕-lean if there is no ⊕-
preserving mapping for 〈G′, w〉 w.r.t. 〈G, w〉, ∀G′ ⊂ G. 2

We are now ready to define the concept of ⊕-core.

Definition 7 (⊕-core) Let 〈G, w〉 be a t-graph. A ⊕-core of
〈G, w〉 is a t-graph 〈G′, w〉 with G′ ⊆ G and such that: (i)
there is a ⊕-preserving mapping for 〈G′, w〉 w.r.t. 〈G, w〉;
and (ii) 〈G′, w〉 is ⊕-lean. 2

99

Figure 4: Distribution of RDF graphs in the dataset.

Figure 5: Running time of ⊕-entailment checking.

Note that the above definition reduces to the standard one
for RDF graphs (Hayes and Patel-Schneider 2014), by get-
ting rid of the functionw. In fact, it is well-known that every
RDF graph G has a core, that all its cores are equivalent (in
fact, isomorphic), and that any core of G is equivalent to G
itself. It is immediate to see that the latter property is pre-
served in presence of trust values.

Proposition 2 If 〈G′, w〉 is a ⊕-core of 〈G, w〉, then 〈G′, w〉
and 〈G, w〉 are ⊕-equivalent, i.e., ⊕-entail each other.

Proof. By Theorem 4, 〈G′, w〉 and 〈G, w〉 are ⊕-equivalent
if, and only if, there is a ⊕-preserving mapping µ for 〈G, w〉
w.r.t. 〈G′, w〉 and a ⊕-preserving mapping µ′ for 〈G′, w〉
w.r.t. 〈G, w〉. The existence of µ′ is guaranteed by point (i)
in Definition 7, whereas µ can be just the identity function.
2

In order to show that the other properties are preserved as
well, we need some elaborations.

Theorem 7 Every t-graph 〈G, w〉 has a ⊕-core. Moreover,
any two cores of 〈G, w〉 are ⊕-equivalent.

Proof Sketch. Let 〈G′, w〉 and 〈G′′, w〉 be two ⊕-cores
of 〈G, w〉 and µ′ (resp., µ′′) be the ⊕-preserving mapping
for 〈G′, w〉 (resp., 〈G′′, w〉) w.r.t. 〈G, w〉. Since ⊕ is
decomposable and G′⊆G, µ′′ is also ⊕-preserving for
〈G′′, w〉 w.r.t. 〈G′, w〉. Because of Theorem 4, we have
〈G′, w〉|=〈G′′, w〉. Symmetrically, we could derive that
〈G′′, w〉|=〈G′, w〉, hence the cores are ⊕-equivalent. As for
the existence, let µ1,..., µn be a maximal sequence such that
µi, for each i∈{1,..., n−1}, is ⊕-preserving for 〈Gi+1, w〉
w.r.t. 〈Gi, w〉, where Gi+1=µi(Gi)⊂Gi and G1=G. Such a
sequence is finite because it is a succession of contractions
of the original graph. It can be shown that the composition
◦ of two ⊕-preserving mappings is ⊕-preserving and thus,
the composition µ∗=µ1 ◦ ...◦µn is⊕-preserving for 〈Gn, w〉
w.r.t. 〈G, w〉, where Gn=µ∗(G) ⊆ G. By the maximality of

the sequence, 〈Gn, w〉 is lean, and hence it is a ⊕-core. 2

Note that the proof of the existence of a core is actually
constructive. This is the key to establish the following result.

Theorem 8 Let k be a fixed natural number. A ⊕-core of
any 〈G, w〉 with G∈Tk can be computed in polynomial time.

Proof Sketch. The ⊕-core can be computed via an adapta-
tion of the method in (Gottlob and Nash 2008) by iteratively
trying to contract G by removing one blank node and all the
triples involving it (thus obtaining a proper subgraph G′ of
G) and by checking in polynomial time (by Theorem 6) if
〈G, w〉 ⊕-entails 〈G′, w〉. After all blank nodes have been
checked, the last valid contraction 〈G′, w〉 is the ⊕-core. 2

5 Implementation and Evaluation
The trust framework has been implemented as an exten-
sion of the Jena API (http://jena.apache.org) and can be down-
loaded at http://trdfreasoner.wordpress.com. It provides classes
to represent and manage trust values associated to RDF
statements and implements some trust aggregation func-
tions. Both algorithms for ⊕-entailment checking and ⊕-
core computation have been implemented by relying on the
LibTW library (http://www.treewidth.com) to compute tree de-
compositions.
Evaluation. An empirical study on the usage of blank
nodes in RDF data on the Web has been recently carried out
by (Hogan et al. 2014) on the BTC dataset (Harth 2012), by
showing that the 44.9% of RDF graphs feature at least one
blank node and the majority of them contain acyclic (62.3%)
or nearly-acyclic (37.7% with treewidth equals to 2) struc-
tures on which Theorem 6 and Theorem 8 apply. In our
experiments, we have considered again the BTC dataset, by
focusing on the 10 top publishers of blank nodes as reported
in (Hogan et al. 2014) and by randomly sampling∼1K RDF
graphs from them. Figure 4 reports some statistics about the

100

resulting dataset D w.r.t. the number of triples, blank nodes
and treewidth as cumulative bar charts.

For each RDF graph in D, we generated 5 t-graphs with
random trust values, computed the ⊕-core of each of them
and checked the ⊕-entailment between each pair. In addi-
tion, we computed the ⊕-core of each graph in D by con-
sidering all trust values equal to 1. Running times have
been compared with the (worst-case) theoretical estimates
that can be derived by analyzing the algorithms.5 Results
for ⊕-entailment checking are reported in logarithmic scale
in Figure 5 where they are compared with the theoretical
estimates—experiments have been executed on an PC In-
tel Core i7 2,8 GHz, 16GB RAM. Trends are almost iden-
tical for ⊕-core computation. Running times are reported
w.r.t. the number of triples (nt), number of blank nodes (nb)
and treewidth (tw). For each input configuration, we exe-
cuted 5 runs and computed the running time as the average
of the 3 running times obtained by excluding the lowest and
highest ones. For each parameter p∈{nt,nb,tw},D has been
partitioned such that all the graphs in the same partition have
the same value of p (e.g., as for tw, Gi and Gj belong to the
same partition if, and only if, tw(Gi)=tw(Gj)). For each
value of p, we computed the real and theoretical running
times as the average on all the graphs of the corresponding
partition. As can be noted both algorithms perform much
faster than the worst-case theoretical bounds.

6 Discussion and Conclusions
The use of RDF helps improving productivity and efficiency
in terms of data dissemination and integration, by automatiz-
ing processes with minimal human intervention. However,
the presence of incorrect and unreliable data can negatively
affect decision processes and cause economic damages. By
associating trust values to RDF data, some of these issues
can be mitigated. However, having trust values alone is not
enough. Indeed, since RDF is the backbone of the Seman-
tic Web, making reasoning problems tractable when dealing
with such a large volume of data is essential. This paper
contributed in this direction by defining a formal framework
(and a prototype system) for reasoning about trust values and
by singling out islands of tractability (for classes of acyclic
and nearly-acyclic graphs) for the most basic problems aris-
ing therein.

References
Buneman, P., and Kostylev, E. 2010. Annotation algebras
for RDFS. In The Second International Workshop on the role
of Semantic Web in Provenance Management (SWPM-10).
Dividino, R. Q.; Sizov, S.; Staab, S.; and Schueler, B. 2009.
Querying for provenance, trust, uncertainty and other meta
knowledge in RDF. J. Web Sem. 7(3):204–219.
Gottlob, G., and Nash, A. 2008. Efficient core computation
in data exchange. J. ACM 55(2).

5In fact, both algorithms are easily seen to be polynomial in the
size of the input graphs and exponential in the treewidth.

Gutierrez, C.; Hurtado, C. A.; Mendelzon, A. O.; and Prez,
J. 2011. Foundations of Semantic Web databases. J. Com-
put. Syst. Sci. 77(3):520–541.
Gutierrez, C.; Hurtado, C.; and Vaisman, A. 2007. Introduc-
ing time into RDF. IEEE Transactions on Knowledge and
Data Engineering 19(2):207–218.
Harth, A. 2012. Billion Triples Challenge data set. Down-
loaded from http://km.aifb.kit.edu/projects/btc-2012/.
Hartig, O. 2009. Querying Trust in RDF Data with
tSPARQL. In 6th Annual European Semantic Web Confer-
ence (ESWC2009), 5–20.
Hayes, P., and Patel-Schneider, P. 2014. RDF 1.1 Semantics.
W3C recommendation.
Hogan, A.; Arenas, M.; Mallea, A.; and Polleres, A. 2014.
Everything you always wanted to know about blank nodes.
Web Semantics: Science, Services and Agents on the World
Wide Web In press.
Karvounarakis, G., and Green, T. J. 2012. Semiring-
annotated data: queries and provenance? SIGMOD Record
41(3):5–14.
Kifer, M., and Subrahmanian, V. S. 1992. Theory of Gener-
alized Annotated Logic Programming and its Applications.
J. Log. Program. 12(3&4):335–367.
Pichler, R.; Polleres, A.; Wei, F.; and Woltran, S. 2008.
dRDF: Entailment for Domain-Restricted RDF. In ESWC,
volume 5021 of Lecture Notes in Computer Science, 200–
214. Springer.
Straccia, U. 2009. A Minimal Deductive System for Gen-
eral Fuzzy RDF. In Polleres, A., and Swift, T., eds., RR,
volume 5837 of Lecture Notes in Computer Science, 166–
181. Springer.
Tomaszuk, D.; Pak, K.; and Rybinski, H. 2013. Trust in
RDF Graphs. In Morzy, T.; Hrder, T.; and Wrembel, R.,
eds., ADBIS, volume 186 of Advances in Intelligent Systems
and Computing, 273–283. Springer.
Udrea, O.; Recupero, D. R.; and Subrahmanian, V. S. 2010.
Annotated RDF. ACM Trans. Comput. Log. 11(2).
Zimmermann, A.; Lopes, N.; Polleres, A.; and Straccia, U.
2012. A general framework for representing, reasoning and
querying with annotated Semantic Web data. Web Seman-
tics: Science, Services and Agents on the World Wide Web
11:72–95.

101

