
Inferring Same-as Facts from Linked Data:
An Iterative Import-by-Query Approach

Mustafa Al-Bakri,1,2 Manuel Atencia,1,2,3 Steffen Lalande,4 and Marie-Christine Rousset1,2,5
1 Univ. Grenoble Alpes, LIG, 38000, Grenoble, France

2 CNRS, LIG, 38000, Grenoble, France
3 Inria, 38330, Montbonnot-Saint-Martin, France

4 Institut National de l’Audiovisuel, 94366, Bry-sur-Marne, France
5 Institut Universitaire de France, 75005, Paris, France

Mustafa.Al-Bakri@imag.fr, Manuel.Atencia@inria.fr, slalande@ina.fr, Marie-Christine.Rousset@imag.fr

Abstract

In this paper we model the problem of data linkage in
Linked Data as a reasoning problem on possibly decen-
tralized data. We describe a novel import-by-query al-
gorithm that alternates steps of sub-query rewriting and
of tailored querying the Linked Data cloud in order to
import data as specific as possible for inferring or con-
tradicting given target same-as facts. Experiments con-
ducted on a real-world dataset have demonstrated the
feasibility of this approach and its usefulness in prac-
tice for data linkage and disambiguation.

1 Introduction

Linked Data promotes exposing, sharing and connecting
data and knowledge in the Semantic Web (Bizer, Heath, and
Berners-Lee 2009). Data linkage is a crucial task in Linked
Data. In particular, it is very important to correctly decide
whether two URIs refer to the same real-world entity. Most
existing approaches are based on numerical methods that re-
turn weighted owl:sameAs links, among which those with
higher weights are likely (but not guaranteed) to be correct.

In contrast, like a few other works (Saı̈s, Pernelle, and
Rousset 2009; Hogan et al. 2012), we propose a rule-based
approach equipped with full reasoning to infer all certain
same-as facts that are logically entailed from a given set
of domain constraints and facts. Our main contribution is
a novel algorithm, called Import-by-Query, that enables the
scalable deployment of such an approach in the decentral-
ized setting of Linked Data. The main challenge is to iden-
tify the data, possibly distributed over several datasets, use-
ful for inferring owl:sameAs and owl:differentFrom facts of
interest. Compared to the approach reported in (Hogan et al.
2012), relying on a global import obtained by a breadth-first
crawl of the Linked Data cloud, we perform a selective im-
port while guaranteeing completeness for the inference of
the targeted owl:sameAs and owl:differentFrom facts.

For doing so, the import-by-query algorithm that we
have designed alternates steps of sub-query rewriting and

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of tailored querying of the Linked Data cloud to im-
port data as specific as possible to infer owl:sameAs and
owl:differentFrom facts. It is an extension of the well-known
query-subquery algorithm for answering Datalog queries
over deductive databases. Experiments conducted on a real-
world dataset have demonstrated the feasibility of this ap-
proach and its usefulness in practice for data linkage and
disambiguation.

Section 2 illustrates our approach by example, while Sec-
tion 3 positions it w.r.t. existing work. In Section 4 the prob-
lem that we consider is formally stated. Our import-by-query
algorithm is described in Section 5. Then Section 6 reports
on experimental results, and Section 7 concludes the paper.

2 Illustrative Scenario

We describe here a simplified scenario inspired by the task
of disambiguation of named entities in a large real-world
RDF documentary catalog produced by the French National
Audiovisual Institute (INA), and that we have used in our
experiments (Section 6).

Figure 1 shows an extract of the INA vocabulary and a
sample of RDF triples from the INA dataset.1 Any person
entity is an instance of the class ina:PhysicalPerson, which
has two subclasses: ina:Person and ina:VideoPerson. The
class ina:Person is used for representing French personalities
while ina:VideoPerson is used for identifying person entities
that play a role in a video. INA experts want to disambiguate
individuals within ina:Person, and link these individuals to
the ones of ina:VideoPerson.

Three homonymous persons are described in Figure 1, all
named “Jacques Martin”: ina:per1, ina:per2 and ina:per3. It
is unknown if these entities represent the same or different
persons, but some additional information is given: ina:per1
is known to be the presenter of a program recorded in the
video ina:vid1 whose title is “Le Petit Rapporteur”, whereas
ina:per2 and ina:per3 have dates of birth “1933-06-22” and
“1921-09-25”, respectively.

1We have slightly modified the INA vocabulary (e.g. translating
French terms into English terms) for the sake of readability.

9



Figure 1: An extract of INA vocabulary and RDF facts.

Our approach to disambiguating the person entities
ina:per1, ina:per2 and ina:per3 consists in exploiting domain
knowledge and constraints, as well as general properties of
owl:sameAs and owl:differentFrom, all this knowledge be-
ing expressed in a uniform way by rules. Table 1 shows rules
which, for the purpose of this simplified scenario, we can
assume they have been validated by INA experts. R1-R3
are domain-specific rules. R1 expresses that ina:birthdate
is functional. This rule can be used to infer that ina:per2
and ina:per3 are different because they have different dates
of birth. R2 expresses that ina:name and ina:birthdate form
a key (within the INA dataset), and R3 the fact that two
persons who have the same name and presented programs
recorded in videos with the same title must be the same. R2
and R3 indeed could be useful for deciding if ina:per1 refers
to the same person as ina:per2 or ina:per3, but some infor-
mation is missing: the date of birth of ina:per1 is not known,
or whether ina:per2 or ina:per3 are presenters and of which
programs.

The above missing information can be completed thanks
to external data coming from DBpedia. In Figure 2, we
show DBpedia facts describing the DBpedia person entity
db:per1, and an extract of the DBpedia vocabulary. Rules
R4 and R5 in Table 1 translate mappings from the INA and
DBpedia vocabularies. Specifically, these mappings state
that ina:name and ina:birthdate are equivalent to foaf:name
and foaf:birthdate, respectively, and that the composition of
ina:presenter and ina:title is equivalent to db:presenter. Let
us assume that rules R4 and R5 have been validated by INA
experts too. With these rules it can be inferred that db:per1
is the same as ina:per1 because they have the same name
and they have presented a program with the same title; and
that db:per1 is the same as ina:per2 since they have the
same name and birthdate. Therefore, by transitivity of same-
as (rule R6 in Table 1), it can be inferred that ina:per1 is
the same as ina:per2, and, since ina:per2 is different from

ina:per3 then (due to R7) ina:per1 is different from ina:per3
too.

Figure 2: An extract of DBpedia vocabulary and RDF facts.

To avoid downloading the complete DBpedia, and, more
generally, the whole Linked Open Data (something that is
not practical), our import-by-query approach generates, for
each targeted owl:sameAs fact, a sequence of external sub-
queries as specific as possible to obtain just the missing
facts. The external sub-queries generated by our algorithm
for the particular query 〈ina:per1, owl:sameAs, ina:per2〉 in
our example are shown in Figure 3.

Figure 3: The resultant external sub-queries submitted to
DBpedia and their returned answers.

3 Related work

There exists a considerable number of systems that
(semi)automatically perform data linkage (Ferrara, Nikolov,
and Scharffe 2011). Most of these approaches define or learn
metrics to compare entities based on similarities between the
values of all or some of their properties. What distinguishes
our approach from the majority of these systems is that they
are not declarative, with the inherent limitation to be difficult
to extend or adapt to new settings with new properties.

There are few existing declarative approaches, in which
the comparison methods can be specified by users in the
form of (XML) specifications, like in Silk (Volz et al. 2009),
or rules, like in LN2R (Saı̈s, Pernelle, and Rousset 2009) and
Hogan et al. (Hogan et al. 2012). Silk specifications can be
seen as logical rules along with built-in functions for com-
puting and aggregating similarity degrees between property
values. However, these rules are not fully exploited in Silk.
More specifically, the possible chaining between rules is not
handled by Silk, which makes it incomplete for the task of

10



R1 : 〈?x1, ina:birthdate, ?b1〉, 〈?x2, ina:birthdate, ?b2〉, 〈?b1, notEqualTo, ?b2〉 ⇒ 〈?x1, owl:differentFrom, ?x2〉
R2 : 〈?x1, ina:name, ?n〉, 〈?x2, ina:name, ?n〉, 〈?x2, ina:birthdate, ?b〉, 〈?x1, ina:birthdate, ?b〉 ⇒ 〈?x1, owl:sameAs, ?x2〉
R3 : 〈?x1, ina:name, ?n〉, 〈?x2, ina:name, ?n〉, 〈?x1, ina:presenter, ?v1〉, 〈?x2, ina:presenter, ?v2〉, 〈?v1, ina:title, ?t〉, 〈?v2, ina:title, ?t〉 ⇒ 〈?x1, owl:sameAs, ?x2〉
R4 : 〈?x1, ina:name, ?n〉, 〈?x2, foaf:name, ?n〉, 〈?x1, ina:presenter, ?v〉, 〈?v, ina:title, ?t〉, 〈?x2, db:presenter, ?t〉 ⇒ 〈?x1, owl:sameAs, ?x2〉
R5 : 〈?x1, ina:name, ?n〉, 〈?x2, foaf:name, ?n〉, 〈?x1, ina:birthdate, ?b〉, 〈?x2, foaf:birthdate, ?b〉 ⇒ 〈?x1, owl:sameAs, ?x2〉
R6 : 〈?x1, owl:sameAs, ?x2〉, 〈?x2, owl:sameAs, ?x3〉 ⇒ 〈?x1, owl:sameAs, ?x3〉
R7 : 〈?x1, owl:sameAs, ?x2〉, 〈?x2, owl:differentFrom, ?x3〉 ⇒ 〈?x1, owl:differentFrom, ?x3〉
R8 : 〈?x1, ina:name, ?n1〉, 〈?x2, foaf:name, ?n2〉, 〈?n1, built-in:name-similar, ?n2〉, 〈?x1, ina:birthdate, ?b〉, 〈?x2, foaf:birthdate, ?b〉 ⇒ 〈?x1, owl:sameAs, ?x2〉

Table 1: Rules in the INA illustrative scenario.

discovering all the same-as facts that can be logically in-
ferred. As a result, neither Silk nor LIMES (Ngomo and
Auer 2011) (similar to Silk in its principles) would discover
that ina:p1 is the same as ina:p2 in our illustrative scenario.

LN2R (Saı̈s, Pernelle, and Rousset 2009) and Hogan et al.
(Hogan et al. 2012) come with a complete forward-reasoner
and thus guarantee to infer all the same-as facts (and all
the different-from facts for LN2R) that can be logically en-
tailed from the rules and facts given as input. Except LN2R,
these systems consider using remote data sources to discover
links. Unlike our approach, though, the external RDF facts
that are loaded to complete local data are obtained either by a
global import (of the whole RDF graph of a reference dataset
such as DBpedia) or as an incoming data stream produced by
a Linked Data crawler. This raises scalability issues that are
bypassed either by light-weight incomplete reasoning like in
Silk, or by using intensive computational resources requir-
ing clusters of machines like in (Hogan et al. 2012). Instead,
our import-by-query algorithm builds iteratively SPARQL
queries for importing from external sources in Linked Data
the necessary and sufficient data for resolving the link query.

4 Problem statement

We first recall the ingredients of Linked Data and then we
define what we call a deductive RDF dataset to capture sev-
eral ontological constraints expressing data semantics.

RDF datasets in Linked Data

An RDF dataset in Linked Data is defined by a URL u and
a set F of RDF facts that are accessible as URL through a
query endpoint. We will denote by ds(u) the set F of RDF
facts that can be queried at the URL u.

An RDF fact is a triple t = 〈s, p, o〉 where the subject s is
either a URI or a blank node, the predicate p is a URI, and
the object o may be either a URI, a blank node or a literal.
We will denote the vocabulary used in ds(u) by voc(u) , i.e.,
the names of predicates used to declare triples in the dataset
accessible at the URL u.

Queries over RDF datasets in Linked Data

Queries over Linked Data are SPARQL conjunctive queries
entered through a given query endpoint accessible at a
given URL. In this paper, we use a simplified notation for
SPARQL queries, and, without loss of generality, we con-
sider that all variables are distinguished.

A query q(u) asked to an RDF dataset identified by (and
accessible at) the URL u is a conjunction of triple pat-
terns denoted by TP1(v1), . . . , TPk(vk) where each triple

pattern TPi(vi) is a triple 〈sv, pv, ov〉 in which the subject
sv , the predicate pv , or the object ov can be variables: vi is
the set of variables appearing in the triple pattern. Variables
are denoted by strings starting by ‘?’. TPi(vi) is a ground
triple pattern if its set of variables vi is empty (denoted by
TPi()). A ground triple pattern corresponds to a RDF fact.
A boolean query is a conjunction of ground triple patterns.
For instance, the second SPARQL query of Figure 3 in the
previous section become in this simplified notation:

q(http://dbpedia.fr):
〈 db:per1, db:presenter, “Le Petit Rapporteur” 〉.

The evaluation of a query q(u) : TP1(v1), . . . , TPk(vk)
over the dataset ds(u) consists in finding substitutions θ as-
signing the variables in

⋃
i∈[1..k] vi to constants (i.e., iden-

tifiers or literals) such that TP1(θ.v1), . . . , TPk(θ.vk) are
RDF facts in the dataset.

The corresponding answer is equally defined as the tu-
ple of constants assigned by θ to the variables or as the set
of corresponding RDF facts TP1(θ.v1), . . . , TPk(θ.vk) that
will be denoted by θ.q(u). In the remainder of the paper, we
will adopt the latter definition. The answer set of the query
q(u) against the dataset ds(u) = F is thus defined as:

Answer(q(u), F ) =
⋃

{θ|θ.q(u)⊆F}
{θ.q(u)}

For a boolean query q(u), either the answer set is not
empty and we will say that the query is evaluated to true, or
it is empty and we will say that it evaluated to false.

For a query q(u) to have a chance to get an answer when
evaluated over the dataset ds(u), it must be compatible with
the vocabulary used in this dataset, i.e., (a) the predicates
appearing in the triple patterns of q(u) must belong to the
set voc(u) of predicates known to occur in ds(u), (b) the
URIs appearing as constants in the triple patterns of q(u)
must have u as prefix.

In accordance with SPARQL queries allowing different
FROM clauses, a conjunctive query can in fact specify sev-
eral entry points u1, . . . , un of datasets over which the query
to be evaluated. We will denote such a query q(u1, . . . , un).
The above definitions of answers and compatibility can be
generalized appropriately by replacing the dataset ds(u) by
the union

⋃
i∈[1..n] ds(ui) of the specified datasets.

Deductive RDF datasets

In order to capture in a uniform way semantic constraints
that can be declared on top of a given RDF dataset, but
also possibly mappings between local predicates and exter-
nal predicates within the vocabulary of other datasets, and

11



domain knowledge provided by domain experts, we consider
that RDF datasets can be enriched with Datalog rules of the
form: Condr ⇒ Concr, in which the condition Condr is
a conjunction of triple patterns (i.e., a conjunctive query)
and the conclusion Concr is a triple pattern. We consider
safe rules, i.e., rules such that all the variables in the conclu-
sion are also in the condition. Datalog rules on top of RDFS
facts capture most of the OWL constraints used in practice,
while guaranteeing a polynomial data complexity for rea-
soning and query answering.

A deductive RDF dataset dds(u) accessible at the URL u
is thus a local knowledge base 〈F,R〉 made of a set of RDF
facts F and a set R of rules. The application of rules allows
to infer new facts that are logically entailed from F ∪ R. A
rule r can be applied to F if there exists a substitution θ such
that θ.Condr ⊆ F and the result of the rule application is
F ∪{θ.Concr}. These new facts can in turn trigger rules and
infer additional facts. From a finite set of facts F and a finite
set of safe rules R, the set of facts that can be inferred is finite
and can be computed as the least fixed point of immediate
consequence operator TR defined as follows:

TR(F ) = F ∪
⋃

r∈R

{θ.Concr|θ.Condr ⊆ F}

Let F0 = F , and for every i ≥ 0, let Fi+1 = TR(Fi).
There exists a unique least fixed point Fn (denote by
SAT (F,R)) such that for every k ≥ n Fk = TR(Fn), i.e.,
there exists a step in the iterative application of the immedi-
ate consequence operator for which no new fact is inferred.

The evaluation of a query q(u) : TP1(v1), . . . , TPk(vk)
over a deductive dataset dds(u) consists in
finding substitutions θ such that the facts
TP1(θ.v1), . . . , TPk(θ.vk) can be inferred from the
deductive dataset, or equivalently belong to the result
SAT (F,R) of the facts that can be inferred from F and R:

Answer(q(u), 〈F,R〉) = Answer(q(u), SAT (F,R))

Thus, a boolean query q(u) is evaluated to true if and only
if q(u) ∈ SAT (F,R), i.e., if and only if 〈F,R〉 	 q(u),
where 	 is the standard notation for logical inference.

Within the vocabulary of a deductive dataset, we distin-
guish the extensional predicates (EDB predicates for short)
that appear in the triplets of the dataset F , from the inten-
tional predicates (IDB predicates) that appear in conclusion
of some rules in R. Like in deductive databases, and without
loss of generality (i.e., by possibly renaming predicates and
adding rules), we suppose that these two sets are disjoint. We
will denote ODB predicates the external predicates (i.e., de-
fined in a different namespace than the considered deductive
dataset) that possibly appear in the dataset or in the rules.
These predicates are the core of Linked Data in which a good
practice is to re-use existing reference vocabularies. We sup-
pose (again, without loss of generality) that the set of ODB
predicates is disjoint from the set of IDB predicates (but not
necessarily from the set of EDB predicates).

The problem that we consider can now be formally stated.
Given a deductive dataset dds(u) = 〈F,R〉, and a

boolean query q(u) the local evaluation of which gives an
empty answer set (i.e., 〈F,R〉 
	 q(u)), we aim to construct a

set of external queries q1(u1), . . . , qk(uk) for which we can
guarantee that the subsets of external facts resulting from
their evaluation over the (possibly huge) external datasets
are sufficient to answer the initial query. More formally:

〈F ∪i∈[1..k] Answer(qi(ui), ds(ui)), R〉 	 q(u)

iff 〈F ∪i∈[1..k] ds(ui), R〉 	 q(u)

The more specific the external queries are, the less exter-
nal facts have to be added and stored to the local dataset
and therefore the more interesting a proposed approach is to
solve this problem.

5 The iterative Import-by-Query Algorithm

We now describe the algorithm that we have designed and
implemented for solving the problem stated above.
Given an input boolean same-as query q, a deductive dataset
〈F,R〉, and a set ū of query entry points to external datasets,
Import-by-Query iteratively alternates steps of sub-query
rewriting based on backward chaining and of external query
evaluation.

Each sub-query rewriting step is realized by an adap-
tation of the Query-Subquery algorithm (Vieille 1986;
Abiteboul, Hull, and Vianu 1995) that is a set-oriented
memoing backward chaining method (Hinkelmann and
Hintze 1993) used in deductive databases for evaluating
Datalog programs. This results in the Query-External-
Subquery (QESQ for short) algorithm. For space limitation,
here we just explain its main principles, compared to Query-
Subquery, when applied to a list SG of subgoals. QESQ
handles the subgoals built on EDB or IDB predicates exactly
like Query-Subquery, i.e., iteratively removes subgoals built
on EDB predicates if they can be matched with local facts,
propagates the corresponding substitutions to the remaining
subgoals, replaces a subgoal g built on an IDB predicate by
the list of partially instantiated conditions of a rule whose
conclusion can be matched to g. As for the subgoals on
ODB predicates, they are handled by QESQ before the
subgoals on IDB predicates, and if and once all the subgoals
built on EDB predicates have been removed, and after the
corresponding substitutions are applied to the remaining
subgoals in the list. These ODB subgoals are conjuncted to
obtain an external query qext, the compatibility of which
must be checked w.r.t. ū to be considered further. QESQ
then treats the remaining list SGidb of subgoals on IDB
predicates just as Query-External-Subquery, i.e., triggers
the recursive call QESQ(SGidb). It will return as output
either true or false (if it has enough local information to
infer a result to the input boolean query), or a set of external
queries that, if compatible with the vocabulary of the given
external datasets, are then conjuncted with qext to constitute
the output returned by QESQ(SG). As a result QESQ ({q})
succeeds in handling locally the goal q using F and R just
like Query-Subquery and then the process is stopped and
the result returned by Import-by-Query is true or false
accordingly, or it produces a set {q1(ū1), . . . , qk(ūk)} of
external queries the evaluation of which is likely to bring
missing facts to F for proving the goal q using R. If this set

12



is empty, the process is stopped and the result returned by
Import-by-Query is false.

Each evaluation step simply consists in choosing one of
the external query qi(ūi) produced by the sub-query rewrit-
ing step and to submit it to Linked Data through the specified
query entry points. The result is either an empty set (negative
result) or a set of external facts (positive result) that can be
added to the current local dataset. In both cases, the result is
memorized in an associated answer table for the sub-query
qi(ūi) that will be thus marked as an already processed sub-
goal for which the (positive or negative) result is known and
can be directly exploited later on. If the result is positive,
a new iteration of Import-by-Query is started on the same
input except for the set of facts F that is enriched with the
facts obtained as the result of the evaluation of the external
query qi(ūi). If the result is negative, another external query
qj(ūj) in the set produced by the current call to QESQ is
evaluated. If the evaluation of all the external queries in the
set returns ’false’, then the process is stopped and the result
returned by Import-by-Query on q is false.

The termination of the Import-by-Query algorithm relies
on the termination of QESQ, which is guaranteed by the
same memoing technique as Query-Subquery (i.e., by han-
dling goal and answer tables for each ODB and IDB pred-
icate). The soundness and completeness of the Import-by-
Query algorithm results from the soundness and complete-
ness of Query-Subquery (Vieille 1986) and from the obser-
vation that the result produced by Query-Subquery, if ap-
plied to the same input in which the ODB predicates are just
considered as additional EDB predicates, would be the same
as the one produced by Import-by-Query. The reason is that
the only difference of Import-by-Query is to replace succes-
sive matching of atomic goals against the facts by matching
all at once the atomic goals composing the external queries
produced by QESQ. This does not impact the global boolean
result of the sequence of goal matching.

Combining forward and backward chaining

Like any backward chaining method, Import-by-Query (and
its main component QESQ) re-starts from scratch for each
new goal it tries to solve, even if the facts and the rules re-
main unchanged. The intermediate subgoals generated and
handled by QESQ can be simplified if the input rules are re-
placed by their (partial) instantiations obtained by the prop-
agation of the facts into (the conditions of) the rules.

Fact propagation is a forward chaining method used in in-
ference engines such as RETE (Forgy 1982) for rule-based
systems. It avoids redundant evaluation of same conditions
appearing in several rules by memorizing, for each fact f ,
which condition it satisfies in which rule (possibly already
partially instantiated by facts previously propagated), and
the corresponding variable substitution that is then applied
to all the remaining conditions of the rules.

In our setting, we perform fact propagation as a pre-
processing step of the Import-by-Query algorithm, by com-
puting at the same time the set SAT (F,R) of facts that can
be inferred locally, and the set PI(F,R) of partial instanti-
ations of the rules in R. This forward reasoning step can be

summarized as follows, where SAT (F,R) is initialized as
F and PI(F,R) is initialized as R:

• FOR each f in SAT (F,R)
FOR each rule Condr ⇒ Concr in PI(F,R) having a
condition c that can be matched with f , i.e., there exists
θ such that θ.c = f

∗ IF c is the only condition in Condr THEN add
θ.Concr to SAT (F,R)

∗ ELSE add to PI(F,R) the rule obtained from
θ.Condr ⇒ θ.Concr by removing the condition θ.c
(that is satisfied by the fact f ).

• Remove from PI(F,R) those rules whose condition con-
tains EDB predicates that are not ODB predicates (and
thus cannot be satisfied by local facts).

• RETURN 〈SAT (F,R), P I(F,R)〉
Each partially instantiated rule ri returned in PI(F,R) is

issued from an input rule r in which some conditions have
been matched to facts f1, ..., fk that have been inferred be-
fore (and added to SAT (F,R)), and thus allows us to infer
the same conclusion as the input rule r on any set of facts in-
cluding f1, ..., fk. The result SAT (F,R)∪PI(F,R) is then
logically equivalent to the input deductive dataset F ∪R for
inferring facts on IDB predicates from the union of F and
a set OF of external facts (with ODB predicates), i.e. for
every fact f an external set of facts OF :

〈F ∪OF,R〉 	 f iff 〈SAT (F,R) ∪OF,PI(F,R)〉 	 f

Therefore, it can be equivalently used for proving goals by
checking whether they belong to SAT (F,R), or for rewrit-
ing goals by applying QESQ to the PI(F,R) (instead of
the original R).

6 Experiments

We have conducted experiments on a real deductive dataset
composed of 35 rules and ∼6 million RDF facts from INA
dataset. The rules may be found at http://goo.gl/NfR12w.
Most of the 35 rules capture local knowledge in the do-
main (functional properties and keys declared as schema
constraints, and rules provided by INA experts), mappings
between INA and DBpedia vocabularies, and general prop-
erties of owl:sameAs and owl:differentFrom. Some of the
rules of our experiments involve a built-in predicate (called
built-in:name-similar) to allow slight differences when com-
paring literal values corresponding to person names (e.g. R8
in Table 1). This predicate depends on a built-in function
which checks if the similarity of the two name strings is
above a given threshold. In all our experiments we used edit
distance and 0.99 as a threshold. Other built-in predicates
involved in the rules are not-equal, less-or-equal, sum, etc.

It is worth noting that the 35 rules can be extended or
modified without the need of changing the algorithmic ma-
chinery of our approach.

Experimental Goals and Set-Up

The goal of our experiments was threefold: (1) to show that
external information available in Linked Open Data is use-
ful to infer owl:sameAs and owl:differentFrom facts within

13



INA referenced persons, and, thus, to disambiguate local
homonyms; (2) to assess the gain in reduced imported facts
of our Import-by-Query approach compared to approaches
based on forward reasoning only; and (3) to evaluate the
runtime of our Import-by-Query algorithm and the possible
amortized gain if fact propagation is performed beforehand.

The external datasets from Linked Open Data with which
the INA vocabulary shares terms are DBpedia.org and DB-
pedia.fr. The baseline for evaluating our two first goals is
a set of 0.5 million external facts obtained by download-
ing from DBpedia.org and DBpedia.fr (using their SPARQL
endpoints) all the facts about entities having the same name
as one of the homonyms in the INA dataset. We applied a
preprocessing step on the original INA dataset to keep only
the facts on predicates appearing in the rules conditions. The
resulting dataset contains almost 1.15 million of RDF facts
and will be the INA dataset referred to henceforth.

Our algorithms have been implemented in SWI-Prolog.
All the evaluations were done on a machine with an Intel i7
Quad-core processor and 6 GB of memory.

Experimental Results

For evaluating our first goal, we applied (using our forward
reasoner) the set of 35 rules to (a) the INA dataset only and
(b) the union of the INA dataset with the baseline external
facts, and then we compared the number of owl:sameAs and
owl:differentFrom facts on INA homonyms we obtained.

The rules applied to the INA dataset only allowed to infer
2 owl:sameAs facts and 108 owl:differentFrom facts, com-
pared to the 4,884 owl:sameAs and 9,764 owl:differentFrom
facts inferred when the external facts were added to the pro-
cess. This clearly demonstrates the benefit of using external
information from Linked Open Data for local disambigua-
tion. These resulting 14,648 facts are guaranteed to be cor-
rect under the assumption that both rules and data are cor-
rect. However, since this is not ensured for DBpedia data,
we asked INA experts to evaluate a random sample of 500
of such facts, and all of them were assessed to be true.2

The rule expressing owl:sameAs transitivity is crucial for
inferring all the owl:sameAs facts that cannot be inferred
locally. More generally, full reasoning is very important to
discover owl:sameAs and owl:differentFrom facts. In order
to show this, we applied Silk to the same two datasets (the
INA dataset only, and the union of the INA dataset with the
baseline external facts). For doing so, we first had to trans-
late our rules into the Silk specification language. It is not
possible, however, to translate into Silk our rules conclud-
ing on owl:differentFrom atoms. Thus, we focused on the
rules leading to owl:sameAs inference. Among the 4,884
owl:sameAs facts discovered by our full forward reasoner,
Silk (which does not perform full reasoning) only discovered
88, i.e. less than 2% of the total. This shows that inference
is important for data linkage.

For evaluating our second experimental goal, we took

2For copyright reasons, we are not allowed to expose the whole
INA dataset. However, 100 of the 500 facts from the sample, and
corresponding INA data, may be found at http://goo.gl/amm1fJ and
http://goo.gl/zBrqH5.

as reference boolean queries the above sample of 500
owl:sameAs and owl:differentFrom facts, and we applied
our import-by-query algorithm to each of these boolean
queries. The number of external facts imported by our al-
gorithm for all boolean queries was 6,417, which makes,
on average, 13 imported facts per boolean query. In con-
trast, the total number of baseline external facts needed to
conclude the boolean queries with the forward reasoner was
much higher (∼500,000). This shows that our import-by-
query algorithm reduces drastically the number of imported
facts needed for disambiguating local data.

Concerning the runtime evaluation, the import-by-query
algorithm requires 3 iterations on average — it successively
outputs and evaluates 3 external sub-queries (each of them
being produced by calling QESQ) — before termination. It
takes on average 186 s per boolean query when applied to
the initial set of rules and the local dataset. This drops to 7 s
when it is applied to the partially instantiated rules obtained
by fact propagation beforehand, which means a gain in time
of 179 s (∼96%). With respect to the fact propagation, we
propagated all facts involving properties of class ina:Person.
This took 191 s but it is done only once for all queries, and its
cost is amortized very fast, as shown by the above numbers.

7 Conclusion
We have proposed a novel approach for data linkage based
on reasoning and adapted to the decentralized nature of the
Linked Data cloud. This approach builds on the formal and
algorithmic background of answering Datalog queries over
deductive databases, that we have extended to handle ex-
ternal rewriting when local answers cannot be obtained. In
contrast with existing rule-based approaches for data link-
age (Saı̈s, Pernelle, and Rousset 2009; Hogan et al. 2012)
based on forward reasoning to infer same-as facts, Import-
by-Query is a backward chaining algorithm that imports
on demand only external facts useful to infer target same-
as facts handled as boolean queries. Our experiments have
shown that this approach is feasible and reduces the number
of facts needed to be imported. Compared to the depth-first
approach sketched in (Abiteboul et al. 2005) for distributed
Query-Subquery, our QESQ algorithm generates external
rewriting in a breadth-first way.

Performing fact propagation beforehand in order to ap-
ply Import-by-Query to a set of more specific rules than the
original ones is an optimization close to the ones proposed
in QueryPIE (Urbani et al. 2011) for efficient backward rea-
soning on very large deductive datasets. One important dif-
ference, though, is that in the QueryPIE setting, the problem
of handling recursive rules can be fully delegated to forward
reasoning because all the facts are given and the recursive
rules concern a well identified subset of them (so called ter-
minological facts). Another major difference is that Import-
by-Query performs query rewriting if no local answer is ob-
tained from the input deductive dataset.

The import-by-query approach in (Grau and Motik 2012)
is limited to ABox satisfiability queries used as oracles
in Tableau-based reasoning. Compared to the many recent
works on ontology-based data access initiated by (Calvanese
et al. 2007), in which query rewriting is done independently

14



of the data, we have designed a hybrid approach that alter-
nates (external) query rewriting and (local) query answer-
ing. We plan to look into this hybrid approach further, in
particular to deal with ontological constraints expressible in
Datalog+− (Calı̀, Gottlob, and Lukasiewicz 2012).

The interest of our rule-based approach is that it is generic
and declarative: new rules can be added without changing
the algorithmic machinery. At the moment the rules that
we consider are certain. As a result, the same-as facts that
they allow to infer are guaranteed to be correct (under the
assumption that the input data does not contain erroneous
facts). This is crucial to get automatically same-as facts that
are certain, in particular when the goal of discovering same-
as links is data fusion, i.e. replacement of two URIs by a
single one in all relevant facts. Another added-value to get
certain same-as and different-from facts is to find noisy data
thanks to contradictions. However, in many cases, domain
knowledge is not 100% sure such as pseudo-keys (Aten-
cia, David, and Scharffe 2012) and probabilistic mappings
(Tournaire et al. 2011). Data itself may be uncertain due to
trust and reputation judgements towards data sources (Aten-
cia, Al-Bakri, and Rousset 2013). Handling uncertain do-
main knowledge should enable to discover more same-as
facts that may be true even if inferred with some uncertainty.
We plan to extend our rule-based approach to model any
kind of data and rules uncertainty as probabilities within the
framework of Probabilistic Datalog (Fuhr 2000).

Acknowledgments

This work has been partially supported by the Qualinca
project sponsored by the French National Research Agency
under grant number ANR-2012-CORD-012, the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01), and by grant
TIN2011-28084 of the Ministry of Science and Innovation
of Spain, co-funded by the European Regional Development
Fund (ERDF).

References

Abiteboul, S.; Abrams, Z.; Haar, S.; and Milo, T. 2005. Diag-
nosis of asynchronous discrete event systems: datalog to the
rescue! In Proceedings of the Twenty-fourth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems, June 13-15, 2005, Baltimore, Maryland, USA, 358–
367. ACM.
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Atencia, M.; Al-Bakri, M.; and Rousset, M. 2013. Trust in
networks of ontologies and alignments. Journal of Knowl-
edge and Information Systems. Doi: 10.1007/s10115-013-
0708-9.
Atencia, M.; David, J.; and Scharffe, F. 2012. Keys and
pseudo-keys detection for web datasets cleansing and inter-
linking. In Knowledge Engineering and Knowledge Manage-
ment - 18th International Conference, EKAW 2012, Galway
City, Ireland, October 8-12, 2012. Proceedings, volume 7603
of LNCS, 144–153. Springer.
Bizer, C.; Heath, T.; and Berners-Lee, T. 2009. Linked Data -

The story so far. International Journal on Semantic Web and
Information Systems 5(3):1–22.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A general
datalog-based framework for tractable query answering over
ontologies. Journal of Web Semantics 14:57–83.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. Journal
of Automated Reasoning 39(3):385–429.
Ferrara, A.; Nikolov, A.; and Scharffe, F. 2011. Data linking
for the semantic web. International Journal on Semantic Web
and Information Systems 7(3):46–76.
Forgy, C. 1982. Rete: A fast algorithm for the many pat-
terns/many objects match problem. Artificial Intelligence
19(1):17–37.
Fuhr, N. 2000. Probabilistic datalog: implementing logical
information retrieval for advanced applications. Journal of
the American Society for Information Science 51(2):95–110.
Grau, B. C., and Motik, B. 2012. Reasoning over ontologies
with hidden content: The import-by-query approach. Journal
of Artificial Intelligence Research (JAIR) 45:197–255.
Hinkelmann, K., and Hintze, H. 1993. Computing cost es-
timates for proof strategies. In Extensions of Logic Pro-
gramming, 4th International Workshop, ELP’93, St. Andrews,
U.K., March 29 - April 1, 1993, Proceedings, volume 798 of
LNCS, 152–170. Springer.
Hogan, A.; Zimmermann, A.; Umbrich, J.; Polleres, A.; and
Decker, S. 2012. Scalable and distributed methods for entity
matching, consolidation and disambiguation over linked data
corpora. Journal of Web Semantics 10:76–110.
Ngomo, A. N., and Auer, S. 2011. LIMES - A time-efficient
approach for large-scale link discovery on the web of data.
In IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011, 2312–2317. IJCAI/AAAI.
Saı̈s, F.; Pernelle, N.; and Rousset, M. 2009. Combining a
logical and a numerical method for data reconciliation. Jour-
nal on Data Semantics 12:66–94.
Tournaire, R.; Petit, J.; Rousset, M.; and Termier, A. 2011.
Discovery of probabilistic mappings between taxonomies:
principles and experiments. Journal on Data Semantics
15:66–101.
Urbani, J.; van Harmelen, F.; Schlobach, S.; and Bal, H. E.
2011. QueryPIE: backward reasoning for OWL horst over
very large knowledge bases. In The Semantic Web - ISWC
2011 - 10th International Semantic Web Conference, Bonn,
Germany, October 23-27, 2011, Proceedings, Part I, volume
7031 of LNCS, 730–745. Springer.
Vieille, L. 1986. Recursive axioms in deductive databases:
the query/subquery approach. In Expert Database Conf.,
253–267.
Volz, J.; Bizer, C.; Gaedke, M.; and Kobilarov, G. 2009. Silk
- A link discovery framework for the web of data. In Proceed-
ings of the WWW2009 Workshop on Linked Data on the Web,
LDOW 2009, Madrid, Spain, April 20, 2009., volume 538 of
CEUR Workshop Proceedings. CEUR-WS.org.

15




