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Abstract

RDF and Description Logics work in an open-world setting
where absence of information is not information about ab-
sence. Nevertheless, Description Logic axioms can be in-
terpreted in a closed-world setting and in this setting they
can be used for both constraint checking and closed-world
recognition against information sources. When the informa-
tion sources are expressed in well-behaved RDF or RDFS
(i.e., RDF graphs interpreted in the RDF or RDFS seman-
tics) this constraint checking and closed-world recognition is
simple to describe. Further this constraint checking can be
implemented as SPARQL querying and thus effectively per-
formed.

There has recently been considerable attention paid to
the problem of validating RDF (Cyganiak, Wood, and Lan-
thaler 2014) or RDFS information. There are several com-
mercial systems that provide facilities for RDF validation,
including TopQuadrant’s SPIN (TopQuadrant 2011) and
Clark&Parsia’s Stardog ICV (Pérez-Urbina, Sirin, and Clark
2012; Clark&Parsia 2014). There are several proposals for
specifying the desired form of RDF information, such as Re-
source Shapes (Ryman 2014). In 2013 W3C held an RDF
Validation Workshop (W3C 2013) to gauge interest in the
area, and W3C has started a new working group on RDF
validation (W3C 2014).

Just what, however, is RDF validation?
Some accounts and systems (such as Stardog ICV) iden-

tify RDF validation with satisfying integrity constraints,
similar to checking database integrity constraints. In this ac-
count, there are conditions (constraints) placed on instances
of classes, such as requiring that every person has a name
and an address, both strings. The defining characteristic here
is that explicit information is needed to satisfy the integrity
constraint. To pass the constraint that a person has a name it
is necessary to provide a particular string for the name of the
person, and not just state that the person has some unknown
name.

Other accounts and proposals, such as OSLC Resource
Shapes (Ryman, Hors, and Speicher 2013) (used by the
Open Services for Lifecycle Collaboration community) and
ShEx (Prud’hommeaux 2014; Solbrig and Prud’hommeaux
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2014), identify RDF validation more with recognition, sim-
ilar to determining whether an individual belongs to a De-
scription Logic (Baader et al. 2010) description. For exam-
ple one might define shape that requires a name and an ad-
dress and then ask which individuals satisfy the shape’s con-
straint. Here, in contrast to the previous situation, the vali-
dation is divorced from any type information in the data.
Again, however, there is the requirement that explicit in-
formation is needed to match the shape—a particular name
must be provided, not just information that there must be
one.

As shown in this paper, Description Logics can be used
to provide the necessary framework for both checking con-
straints and providing closed-world recognition facilities,
and thus cover most of what SPIN and ShEx provide.

Why then are there claims (Ryman, Hors, and Speicher
2013; Fokoue and Ryman 2013) that OWL (Motik, Patel-
Schneider, and Parsia 2012)—the Semantic Web Descrip-
tion Logic—is inadequate for these purposes? There are
several aspects of the standard view of Description Log-
ics that might not be consonant with constraints and the
kind of recognition that might be desired. However, Descrip-
tion Logic syntax and semantics, and their instantiation in
OWL, can serve as the basis for RDF constraint checking
and closed-world recognition. The only change required is
to consider a closed-world variation of the Description Logic
semantics. Then the development of RDF constraint check-
ing and closed-world recognition is easy.

The Basic Idea
Closed-World Recognition
Let’s first look at recognition. In recognition we want to de-
termine whether a particular node in an RDF graph matches
some criteria. For example, John in the RDF graph1

ex:John foaf:name "John"ˆˆxsd:string . (1)
ex:John foaf:phone "+19085551212"ˆˆxsd:string .
ex:John exo:friend ex:Bill .
ex:John exo:friend ex:Willy .

matches the ShEx shape

1Turtle (Prud’hommeaux and Carothers 2014) will be used for
writing RDF graphs throughout this paper. Prefix and base state-
ments will generally be omitted.
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{ foaf:name xsd:string, (2)
foaf:phone xsd:string,
exo:friend [2] }

because John has a string value for his name, a string value
for his phone, and two friends.

Determining whether an individual belongs to a Descrip-
tion Logic concept is also recognition. The Description
Logic description2 corresponding to the ShEx Shape (2) is

=1 foaf:name u ∀foaf:name.xsd:string u (3)
= 1 foaf:phone u ∀foaf:phone.xsd:string u
=2 exo:friend

So it seems that Description Logics can easily handle ShEx
recognition. Although the ShEx syntax is somewhat more
compact here, as ShEx has constructs that combine num-
ber restrictions and value restrictions, the Description Logic
syntax is not verbose and is quite reasonable.

However, John does not match (3) in the standard seman-
tics of Description Logic. This is precisely because in this
standard reading, and in RDF, the absence of information is
not information about absence. In the standard Description
Logic reading, and also in RDF, John could have more than
one name as far as the information in the above RDF graph is
concerned. Many Description Logics (and, again, RDF too)
also do not assume that different names refer to different in-
dividuals. So Bill and Willy could be the same person as far
as the information in the above RDF graph is concerned.

It turns out that expressive Description Logics have fa-
cilities to explicitly state information about absence and in-
formation about differences and thus can be used to state
complete information, at least on a local level. For example,
if we add information to (1) stating that John has only one
name and phone, that John’s only friends are Bill and Willy,
and that Bill is not the same as Willy, as in

ex:John ∈ ≤ 1 foaf:name
ex:John ∈ ≤ 1 foaf:phone
ex:John ∈ ∀exo:friend.{ex:Bill, ex:Willy}
ex:Bill 6= ex:Willy

then John does match (3).
So it is not that Description Logics (including OWL) do

not perform recognition as in ShEx, it is just that Descrip-
tion Logics do not make the assumption that absence of in-
formation is information about absence. In expressive De-
scription Logics (again including OWL) it is possible to ex-
plicitly state what comes implicitly from the assumption that
absence of information is information about absence.

However, suppose that we want to make this assumption
generally? We could manually add a lot of axioms like the
ones above, but this is both tedious and error-prone, and thus
not at all a viable solution. Instead we can proceed by mak-
ing the assumption that if the truth of some fact cannot be de-
termined from the information given, then that fact is false.
This is often called the closed world assumption or negation

2The abstract syntax (Baader et al. 2010) for Description
Logics—a compact but non-ASCII syntax—will be used through-
out this paper.

by failure, as the failure to prove some fact is used to support
its falsity. There is a very large body of work on this topic
(see the Related Work section for pointers into this work)
and there are many tricky questions that arise with respect to
closure in any sophisticated formalism, and expressive De-
scription Logics (including OWL) are indeed sophisticated.
As well, reasoning in expressive Description Logics that also
have closed world facilities is extremely difficult, even in
simple cases.

Fortunately RDF and RDFS are unsophisticated and in-
expressive, so neither the tricky questions nor the reason-
ing difficulties arise if all information comes in the form of
RDF triples interpreted under the RDF or RDFS semantics
(Hayes and Patel-Schneider 2014). The basic idea is to treat
the triples (and their RDF or RDFS consequences, if desired)
as completely describing the world. In this treatment

1. if a triple is not present then it is false and

2. different IRIs denote different individuals.

This is precisely the same idea that underlies model check-
ing, where a model is a finite set of ground first-order facts
and everything else is false. First-order inference is undecid-
able, but determining whether a first-order sentence is true in
one particular model (model checking) is much, much eas-
ier.

In this way it is possible to use the Description Logic syn-
tactic and semantic machinery to define how to recognize
descriptions under the same assumptions that underlie ShEx.
The only change from the standard Description Logic setup
is to define how to go from an RDF graph to the Descrip-
tion Logic model that the RDF graph embodies. Definitions,
even recursive definitions, can also be handled.

This is all quite easy and conforms to a common thread of
both theoretical and practical work. It also matches the the-
oretical underpinning of Stardog ICV (Pérez-Urbina, Sirin,
and Clark 2012; Clark&Parsia 2014). Further, the approach
can be implemented by translation into SPARQL queries,
showing that it is practical. (There may be some constructs
of very expressive description logics that do not translate
into SPARQL queries when working with complete infor-
mation, but at least the Description Logic constructs that cor-
respond to the usual recognition conditions do so translate.)

Constraint Checking
Constraint checking does not appear to be part of the ser-
vices provided by Description Logics. This has lead to
claims that OWL cannot be used for constraint checking.
However inference, which is the core service provided by
Description Logics, and constraint checking are indeed very
closely related.

Inference is the process of determining what follows from
what has been stated. Inference ranges from simple (John is
a student, students are people, therefore John is a person) to
the very complex (involving reasoning by cases, reductio ad
absurdum, or even noticing that an infinite sequence of infer-
ences will not produce any useful information). Determining
whether a constraint holds is just determining whether the
constraint follows from the given information.
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Figure 1: Data for Example
ex:Amy rdf:type exo:UniStudent . ex:Amy exo:enrolled ex:SUNYOrange . ex:Amy exo:friend ex:Bill .
ex:Amy foaf:name "Amy"ˆˆxsd:string . ex:Bill exo:enrolled ex:ReindeerPoly . ex:Amy exo:friend ex:John .
ex:Bill rdf:type exo:UniStudent . ex:Bill exo:enrolled ex:HudsonValley . ex:Bill exo:friend ex:Amy .
ex:Bill foaf:name "Bill"ˆˆxsd:string . ex:John exo:enrolled ex:ReindeerPoly . ex:Bill exo:friend ex:John .
ex:John rdf:type exo:GrStudent . ex:Susan exo:enrolled ex:ReindeerPoly . ex:John exo:friend ex:Amy .
ex:John foaf:name "John"ˆˆxsd:string . ex:Susan exo:enrolled ex:SUNYOrange . ex:John exo:friend ex:Bill .
ex:John exo:supervisor ex:Len . ex:Susan exo:enrolled ex:HudsonValley . ex:John exo:friend ex:Len .
ex:Susan rdf:type exo:Person . ex:Len exo:affiliation ex:ReindeerPoly . ex:Len exo:friend ex:Amy .
ex:Susan foaf:name "Susan"ˆˆxsd:string . ex:Len exo:affiliation ex:SUNYOrange . ex:Len exo:friend ex:Susan .
ex:Len rdf:type exo:Faculty . ex:SUNYOrange rdf:type exo:ResOrg .
ex:Len foaf:name "Len"ˆˆxsd:string . ex:HudsonValley rdf:type exo:Uni .

Figure 2: RDFS Ontology for Example
foaf:name rdfs:range xsd:string . exo:enrolled rdfs:domain exo:UniStudent .
exo:UniStudent rdfs:subClassOf exo:Person . exo:enrolled rdfs:range exo:Uni .
exo:GrStudent rdfs:subClassOf exo:UniStudent . exo:supervisor rdfs:domain exo:GrStudent .
exo:Faculty rdfs:subClassOf exo:Person . exo:supervisor rdfs:range exo:Faculty .
exo:Uni rdfs:subClassOf exo:Organization . exo:affiliation rdfs:domain exo:Person .
exo:ResOrg rdfs:subClassOf exo:Organization . exo:affiliation rdfs:range exo:Organization .

Figure 3: Constraints and Recognition Axioms for Example
1 exo:Person u exo:Organization ≡ {} 7 exo:Faculty v ≤ 5 exo:supervisor−.exo:GrStudent
2 exo:Person v =1 foaf:Name u ∀foaf:Name.xsd:string 8 exo:Uni v ≥ 2 exo:enrolled−

3 exo:UniStudent v ≥ 1 exo:enrolled u ∀exo:enrolled.exo:Uni 9 exo:GrStudent|exo:enrolled v
4 exo:GrStudent v =1 exo:enrolled u ∀exo:enrolled.exo:ResOrg exo:supervisor ◦ exo:affiliation
5 exo:Faculty v ≥ 1 exo:affiliation u ∀exo:affiliation.exo:Uni ex:HecticStudent ≡ ≥ 3 exo:enrolled
6 exo:Faculty v ≤ 1 exo:affiliation.exo:ResOrg ex:StudentFriend ≡ ≥ 2 exo:friend.ex:StudentFriend

Again, however, constraint checking is generally done
with respect to complete information. So, to determine
whether the constraint

ex:John ∈ exo:Person u (4)
= 1 foaf:name u ∀foaf:name.xsd:string u
=1 foaf:phone u ∀foaf:phone.xsd:string u
=2 exo:friend

is valid in the presence of (locally) complete information
such as

ex:John ∈ exo:Person
ex:John foaf:name "John"ˆˆxsd:string .
ex:John ∈ =1 foaf:name
ex:John foaf:phone "+19085551212"ˆˆxsd:string .
ex:John ∈ =1 foaf:phone
ex:John exo:friend ex:Bill .
ex:John exo:friend ex:Willy .
ex:John exo:friend ex:Susan .
ex:John ∈ ∀exo:friend.{ex:Bill, ex:Willy, ex:Susan}
ex:Bill 6= ex:Willy
ex:Bill 6= ex:Susan
ex:Susan 6= ex:Willy

is simply a matter of determining whether the constraint fol-
lows from the information. (Generally constraints like (4)
are written to handle all the members of a class as in

exo:Person v
=1 foaf:name u ∀foaf:name.xsd:string u
=1 foaf:phone u ∀foaf:phone.xsd:string u
=2 exo:friend

instead of just a single node, but the principle is the same.)
So a way to do constraints in Description Logics is to first

set up complete information, and then just perform infer-
ence. This approach has been explored in the context of let-
ting certain roles be completely specified as in a database
(Patel-Schneider and Franconi 2012). Other approaches to
constraints in Description Logics (de Bruijn et al. 2005;
Motik, Horrocks, and Sattler 2009; Tao et al. 2010; Donini,
Nardi, and Rosati 2002; Sengupta, Krisnadhi, and Hitzler
2011) are considerably more complex, as they deal with the
complexities that arise when there are multiple ways to com-
plete the information. However, all these approaches largely
agree when there is only a single way to complete the infor-
mation.

Setting up complete information is just what was done
above for closed-world recognition, so this technique can
also be used for constraint checking. Of course, this doesn’t
mean that you have to implement Description Logic infer-
ence with complete information the same way that you need
to with incomplete information. In fact, as above, constraint
checking can be implemented as SPARQL queries.
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Example
Here is a small example of how Description Logic constructs
can be used for constraint checking. There are three separate
kinds of information in the example. The RDF triples in Fig-
ure 1 provide the data for the example. The RDFS ontology
in Figure 2 provides the organization of the data. The De-
scription Logic axioms in Figure 3 provide the constraints
to be validated against the data and the ontology and the
classes vocabulary for closed-world recognition.

The constraints are all satisfied, except for one, as follows:

1. Nothing can be inferred to be both a person and an orga-
nization, and so persons and organizations are disjoint.

2. Every object that can be inferred to be a person (i.e., stu-
dents and faculty) has a single name provided, and that
name is a string, so every person has exactly one name in
the closure.

3. All students (and graduate students) are enrolled in
universities—the range of exo:enrolled is exo:Uni, which
makes the typing part of the constraint redundant here.

4. Reindeer Poly is not specified to be a research organiza-
tion, so although John is enrolled exactly once the con-
straint on graduate students being enrolled in research or-
ganizations is not satisfied.

5. All faculty (Len) are affiliated with only universities.

6. All faculty (again only Len) are affiliated with at most one
research organization, as Reindeer Poly is not specified to
be a research organization and Len is only affiliated with
SUNY Orange and Reindeer Poly.

7. All faculty supervise fewer than five graduate students, as
the only faculty (Len) only supervises one student (John).

8. Each university (SUNY Orange, Reindeer Poly, and Hud-
son Valley) has at least two students enrolled in it, because
Amy, Bill, John, and Susan are different individuals.

9. For every graduate student enrollment (exo:enrolled
domain-restricted to exo:GrStudent) there is a supervi-
sor of the graduate student affiliated with the university.
This constraint uses an auxiliary non-recursive equiva-
lence definition.

The only hectic student is Susan, as she is the only per-
son with at least three enrollments. However, Amy, Bill,
and John all belong to ex:StudentFriend because when max-
imally interpreting ex:StudentFriend they each have at least
two friends who belong to ex:StudentFriend. Len does not
belong to ex:StudentFriend even though he has two friends,
because Susan has too few friends and cannot belong to
ex:StudentFriend.

One might want to validate that domain and range types
are not inferred, but are instead explicitly stated in the data.
This can be done by using a version of the ontology with-
out the domain and range statements and validating against
a set of constraints that just have the removed domain and
range statements. In the example, this would detect that Su-
san was not stated to be a student, violating the domain
constraint for exo:enrolled; that SUNY Orange and Rein-
deer Poly were not stated to be universities, violating the

range constraint for exo:enrolled; and that Reindeer Poly was
not stated to be an organization, violating the range con-
straint for exo:affiliation. All other domain and range con-
straints would be satisfied, as some required class member-
ships would be inferred from the subclass statements.

Related Work
The closest work in a technical sense is the work of Patel-
Schneider and Franconi (2012). In that work some properties
and classes were considered as closed, which turned descrip-
tion logic axioms involving those properties and classes into
constraints. RDF and RDFS are very similar to a situation
where all properties and classes are closed. The current pa-
per adds the idea of closed-world recognition, which was
only implicit in the previous work, and maximal extensions,
which provide a much better treatment of recursive defini-
tions, particularly in the monotone case.

The work of Motik, Horrocks, and Sattler (2009) and of
Tao et al. (2010) both divide up axioms into regular axioms
and constraints. They both also permit general Description
Logic axioms, not just RDF or RDFS graphs as here. To
handle full Description Logic information requires a much
more complex construction, involving minimal interpreta-
tions. Neither consider closed-world recognition. Tao et al.
use SPARQL queries as a partial translation of their con-
straints and forms a basis for Stardog ICV.

The work of Sengupta, Krisnadhi, and Hitzler (2011) uses
circumscription as the mechanism to minimize interpreta-
tions. It is otherwise similar to the previous efforts. The work
of Donini, Nardi, and Rosati (2002) uses autoepistemic con-
structs within axioms to model constraints, and is thus quite
different from the approach here. OWL Flight (de Bruijn et
al. 2005) is a subset of OWL where axioms are given mean-
ing as Datalog constraints. Again, as an expressive Descrip-
tion Logic is handled the construction is more complex than
the one here. RDFUnit (Kontokostas et al. 2014) has a com-
ponent that turns RDFS axioms and simple OWL axioms
into SPARQL queries that check for data that does not match
the axiom and so is somewhat similar to this work. However,
there is no notion that RDFUnit is turning ontology axioms
into constraints that cover the entire meaning of the axiom.

Shex (Solbrig and Prud’hommeaux 2014) uses very dif-
ferent mechanisms. It builds up shapes, which are akin to
definitions of classes, and gives them meaning by a trans-
lation into a recursive extension of Z over an abstraction
of RDF graphs. Entire documents or document portions are
then matched against these shapes.

The Details, but Not All the Details
Description Logic Semantics
The semantics of Description Logics are generally given as
a model theory, as for OWL DL (Motik, Patel-Schneider,
and Parsia 2012). OWL DL has a complex semantics, as far
as Description Logics go, to cover all its constructs and to
make it more compatible with RDF. The semantics here will
follow the semantics of OWL, with the exception that any
property can have both individuals, e.g., ex:John, and data
values, e.g., "John"ˆˆxsd:string, as values.
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The fundamental building block of Description Logics se-
mantics is interpretations, which provide a meaning for the
primitive constructs in terms of a particular domain of dis-
course. The meaning of an individual name, such as ex:John,
is an element of this domain, here that element that we think
of as being John. Literal values, such as "John"ˆˆxsd:string,
are treated specially—their meaning is determined by their
datatype. The meaning (or interpretation) of a named con-
cept such as exo:person, is a subset of the domain, here those
individuals that we might think of as people. The meaning
of a named property, such as exo:friend, is a set of pairs over
the domain, here those pairs that we might think of as be-
ing the friend-of relationship. The meaning of non-primitive
constructs, such as the description =2 exo:friend, are built
up from these primitives, resulting here in the set of domain
elements that are related to exactly two domain elements via
the meaning of exo:friend.

Axioms, such as ex:John ∈ exo:Person, are true precisely
when the meaning of their parts satisfies a particular rela-
tionship, here that the meaning of ex:John is an element of
the meaning of exo:Person. There are some other aspects to
this simple story, to handle the differences between individ-
uals, e.g., ex:John, and data values, e.g., "John"ˆˆxsd:string,
and to make reasoning over some constructs easier. A De-
scription Logic model of a set of axioms (including what we
might call facts), is then just an interpretation that makes all
the axioms true.

Canonical Interpretations of RDF Graphs
In an interpretation everything is specified, so each interpre-
tation has complete information. The basic idea is thus to
construct an interpretation making just the triples in an RDF
graph true and then work with that single interpretation. In
this way information that is absent from the RDF graph is
considered false.

We can think of most RDF graphs as sets of Description
Logic axioms, particularly as we are ignoring the common
Description Logic division of properties into properties that
have objects that are individuals and properties that have ob-
jects that are data values.3 This correspondence breaks down
in two areas: 1/ when the built-in RDF and RDFS vocabu-
lary is used in unusual ways (e.g., making rdfs:subClassOf
a sub-property of rdfs:subPropertyOf), and 2/ if reasoning
about individuals can affect reasoning about classes (e.g.,
forcing two individuals that are also classes to be the same).
The abuse and extension of the built-in RDF and RDFS vo-
cabulary is rare, so we just exclude these RDF graphs from
our account. (Particular extensions of the RDF and RDFS
vocabulary could be built in to an extension of the approach
given here.) In RDF and RDFS, but not in OWL, reasoning
about individuals can affect reasoning about classes. This is
also rare, so we will not handle these inferences.

Definition 1 Given an RDF graph G with no ill-formed lit-
erals and no triples stating membership in a datatype, we

3This division has been made so that reasoners do not have to
worry about data values having properties, but if we are construct-
ing models this is not a problem. It is easy to revise the treatment
here to bring back this division.

construct the canonical Description Logic interpretation of
G as follows.

1. Datatypes are formed for all the datatypes in the graph,
and given meaning in the usual way.

2. The domain of the interpretation consists of the non-
literal nodes of the RDF graph plus the properties in the
graph and the mapping for nodes is the identity map-
ping. (One might think that this is not an appropriate way
to construct an interpretation, as it sets the meaning of
ex:John to ex:John, not anything that we might think of
as being John, but as far as the formal machinery is con-
cerned, the actual domain elements are not important.)

3. The set of literal values is constructed in the usual way
from the datatypes. An extra copy of the integers is added
to ensure an infinite number of literal values.

4. Classes are formed for each node in the graph that has an
rdf:type link with it as an object or belongs to rdfs:Class
and their extensions are the set of nodes for which rdf:type
triples link them to the class.

5. Properties (note that we are ignoring the Description
Logic division of properties) are formed for each predi-
cate in the graph and also for each node that belongs to
rdf:Property, and their extensions are the set of pairs taken
from triples in the graph with the property as predicate.
So from the initial RDF graph in this paper, we end

up with a canonical interpretation with six domain el-
ements, ex:John, ex:Bill , ex:Willy, foaf:name, foaf:phone,
and exo:friend. The interpretation of foaf:name consists
of just 〈ex:John,"John"〉 The interpretation of foaf:phone
consists of just 〈ex:John,"+19085551212"〉. The inter-
pretation of exo:friend consists of 〈ex:John, ex:Bill〉 and
〈ex:John, ex:Willy〉.

For constraints and descriptions that use only vocabulary
in the RDF graph all we do is work with this interpretation
and consider whether the constraint axiom is true in this in-
terpretation so the development is easy. It is obvious that
ex:John belongs to the interpretation of the first Description
Logic description given above, as expected.

Evaluating constraints on the canonical interpretation of
a graph is essentially the same as evaluating them on the
graph itself. Systems that evaluate constraints on an RDF
graph, like ShEx, thus work in a manner very similar to the
approach taken here.

Extending to New Classes
For closed-world recognition, it is useful to define new
classes, as in

ex:PurePerson ≡ ≥ 1 exo:friend u
∀exo:friend.ex:PurePerson

There are several possibilities for the meaning of new classes
that are recursively defined. The new classes could be inter-
preted as broadly as possible, as narrowly as possible, or in
any consistent manner.

It appears in ShEx that such classes as to be interpreted as
broadly as possible. For example, in the RDF graph

ex:John exo:friend ex:Bill .
ex:Bill exo:friend ex:John .
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the ShEx approach would be that both ex:John and ex:Bill
belong to ex:PurePerson. We will take this approach here
and interpret new classes as broadly as possible

New classes are handled by considering extensions of the
interpretations defined as above. An extension of an inter-
pretation is a new interpretation 1/ with the same domain as
the original interpretation, and 2/ that has the same mean-
ing for all individuals, named classes, and named proper-
ties in the original interpretation. The extension is allowed
to have new named classes, but not new named properties or
new individuals. New individuals are not allowed because
some Description Logic constructs are sensitive to the set
of individuals. New properties are not allowed because they
may increase the computational complexity of closed-world
recognition.

An interpretation is an extended canonical model of an
RDF graph with respect to a set of constraints if it is an ex-
tension of the canonical model of the RDF graph and is a
model of the constraints.

To interpret recursively defined classes as broadly as pos-
sible not all extended canonical models are considered, only
maximal ones. An model is maximal among a set of mod-
els if there is no other model in the set that 1/ interprets all
classes as supersets of their interpretation in the maximal
model, and 2/ interprets at least one class as a strict superset
of its interpretation in the maximal model.

An individual is recognized as belonging to a description
if its interpretation belongs to the interpretation of the de-
scription in all maximal extended canonical models.

It turns out that there is only one (up to isomorphism)
maximal extended canonical model of the above definition
of ex:PurePerson. In this model both ex:John and ex:Bill
are in the extension of ex:PurePerson. If all new classes are
monotone in all the other new classes (i.e., if the extension
of some class grows then no other class extensions shrink)
then there is always exactly one maximal extension.4

RDF and RDFS Semantics
So everything looks fine. We go from an RDF graph to a
slightly modified Description Logic interpretation and from
there perform constraint checking by determining whether a
set of Description Logic axioms are satisfied in the interpre-
tation or in a set of maximal extensions of the interpretation.
We can also perform closed-world recognition by determin-
ing the interpretation of the new defined classes in the ax-
ioms and these classes can even be defined recursively.

However, there is one missing part of the story. If the RDF
graph includes triples that trigger RDF or RDF inferences
that are not already in the RDF graph the interpretation will
not look like an RDF (or RDFS) interpretation. For example,
if the RDF graph is

ex:John rdf:type exo:Student .
exo:Student rdfs:subClassOf exo:Person .

our canonical interpretation states that ex:John does not be-
long to exo:Person, which goes against the RDFS meaning
of the above graph.

4Proof sketches of claims here and later in the paper are in an
extended version of this paper available at arxiv.org/abs/1411.4156.

Fortunately, it is relatively easy to recover from this prob-
lem. All that is needed is to add all the RDF (or RDFS) con-
sequences to the graph. Yes, there are an infinite number of
these consequences, but our formal development does not
care whether the graph is finite or infinite. For complexity
analysis and implementation it is not hard to come up with
a finite representation of these consequences, like the one
initially done by ter Horst (2005), and make the minor fix-
ups needed to determine correct answers from the answers
gleaned from this finite approximation.

This all works because the RDF (or RDFS) consequences
of an RDF graph can be represented as an RDF graph. OWL
consequences cannot be so represented, as the consequences
in OWL can be disjunctive. This requires working with min-
imal equality and minimal models or some other way to sin-
gle out only the desired interpretations as in previous work
on Description Logic constraints, making the formal devel-
opment much harder and presenting many more choices that
have to be justified.

Complexity
It is easy to see that checking axioms against an interpreta-
tion is polynomial, as long as there is no new vocabulary in
the axioms or no recursive definitions. The formulae corre-
sponding to the axioms are just model checked against the
interpretation.

If there are monotone recursive definitions then check-
ing constraints and performing closed-world recognition can
be done using techniques from Datalog, such as magic sets.
For example, the extension of a recursively-defined class can
first be computed ignoring the recursive portion. Violations
of the recursive portion can then be checked and objects iter-
atively removed from the class. These techniques cannot be
used for non-monotone recursive definitions, as expanding
one class or property might reduce another.

Implementation
The work of Tao et al. (2010) shows that the standard De-
scription Logic constraints can be partly implemented as
SPARQL queries when no new vocabulary is used. Tao
et al. worked in a general OWL setting, where their ap-
proach is sound but not complete, but in an RDF setting
the approach is both sound and complete, because there
is only a single model that needs to be considered. This
approach forms the basis of Stardog ICV (Clark&Parsia
2014). Indeed Stardog ICV is an implementation of the
approach described in this paper showing how the ap-
proach to constraints here can be implemented by a trans-
lation to SPARQL. The work here can thus also be thought
of as a simpler definition of the underpinning of Star-
dog ICV. Recent work at Mannheim by Thomas Bosch
(see https://github.com/boschthomas/OWL2-SPIN-Mapping)
translates OWL descriptions interpreted as constraints into
SPARQL using a similar approach, providing a different im-
plementation.

Non-recursive closed-world recognition can be handled
by using nested or repeated SPARQL queries. Monotone re-
cursive closed-world recognition can be implemented us-
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ing Datalog techniques. Non-monotone recursive closed-
world recognition is more complex and cannot be handled in
the same way. This indicates that excluding non-monotone
recursive closed-world recognition could be a reasonable
stance to take.

Conclusion
Description Logics can indeed be used for both the syn-
tax and semantics of constraint checking and closed-world
recognition in RDF, by employing an analogue of model
checking, and much of both constraint checking and closed-
world recognition can be effectively implemented using a
translation to SPARQL queries. The main difference be-
tween closed-world recognition and constraint checking is
that the former either has no axioms or only uses axioms
defining names that do not occur in the RDF graph whereas
constraint checking uses axioms that relate concepts appear-
ing in the RDF graph to descriptions.

By restricting our information to be RDF or RDFS, i.e,
working in situations where there is a unique minimal
model, we obtain a simpler formulation, easy implementa-
tion, and good performance as compared to previous work
in this area. The approach here can be easily extended to
other subsets of OWL that have a unique minimal model.
An OWL profile with this property is OWL RL (Motik et al.
2012).
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