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Abstract

Semantic Web documents that encode facts about enti-
ties on the Web have been growing rapidly in size and
evolving over time. Creating summaries on lengthy Se-
mantic Web documents for quick identification of the
corresponding entity has been of great contemporary
interest. In this paper, we explore automatic summa-
rization techniques that characterize and enable iden-
tification of an entity and create summaries that are
human friendly. Specifically, we highlight the impor-
tance of diversified (faceted) summaries by combining
three dimensions: diversity, uniqueness, and popular-
ity. Our novel diversity-aware entity summarization ap-
proach mimics human conceptual clustering techniques
to group facts, and picks representative facts from each
group to form concise (i.e., short) and comprehensive
(i.e., improved coverage through diversity) summaries.
We evaluate our approach against the state-of-the-art
techniques and show that our work improves both the
quality and the efficiency of entity summarization.

Introduction
Linking Open Data (LOD) initiative encouraged data pub-
lishers to put data on the web and link them to other related
datasets. The LOD bubble that originated few years ago with
a limited number of datasets has now grown into a very large
data space. The entity descriptions in these datasets evolve
over time (Auer et al. 2013) and grow in length. For exam-
ple, DBpedia is a very large and central dataset in the LOD
cloud extracted from Wikipedia. The English version 3.9 of
DBpedia has 4 million entities described in over 800 mil-
lion RDF triples (facts), averaging about 200 triples per en-
tity. This amount of information is too much for the quick
identification of an entity for an user. Therefore, selecting
a small subset of the original triples associated with an en-
tity as a summary is necessary for quick/convenient identi-
fication/access of entity-related information. This problem
has been called Entity Summarization (Cheng, Tran, and Qu
2011) in the literature.

Document summarization has been a topic of interest for
data mining and information retrieval communities for a
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long time (Nenkova and McKeown 2012; Mani 2001). Un-
supervised summarization techniques for text have been ex-
tensively used in the recent past due to their flexibility to
adapt to the nature of datasets and ability to create dynamic
summaries (Wang and Li 2010). Document summarization
is different from entity summarization because documents
are unstructured and contain frequent words that can be ex-
ploited for summarization. In contrast, RDF entity descrip-
tions are structured and do not have frequent word appear-
ances. (Cheng, Tran, and Qu 2011) proposed an algorithm to
create RDF entity summaries considering these differences
and taking insights from hypertext document ranking on the
Web. It is based on PageRank centrality measure and utilizes
relatedness and uniqueness of features (i.e., property-value
pairs). Furthermore, they showed that entity summaries can
be used for quick identification of the original entity.

We hypothesize that centrality measures (including pop-
ularity) and ranking mechanisms alone are not sufficient to
improve the quality of entity summaries. Rather the added
use of orthogonal semantic groups of facts to diversify the
summaries can be more effective. To investigate our hy-
pothesis, we propose the FACeted Entity Summarization
(FACES) approach. Our contributions are two fold:

1. We identify conceptually similar groups of facts of an
RDF entity by adapting and modifying an incremental hi-
erarchical conceptual clustering algorithm called Cobweb
(Fisher 1987) and introduce an algorithm to rank facts
within a group.

2. We combine three dimensions: diversity, popularity, and
uniqueness, to create human friendly entity summaries in
time efficient manner.

Moreover, FACES has the following distinct character-
istics compared to other entity summarization tools: (1) It
selects facts considering diversity which eliminates redun-
dancy (by filtering similar features). (2) It is dynamic as
it is not affected by the order of input facts and is robust
with regards to evolving facts (thus applicable in streaming
contexts). (3) It is relatively fast due to its hierarchical and
incremental processing structure. FACES groups conceptu-
ally similar facts in order to select the highest ranked feature
(based on uniqueness and popularity) from each group to
form a faceted (diversified) entity summary. We show that
FACES outperforms the state-of-the-art approaches using a
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manually created gold standard.
The structure of the paper is as follows. In the next sec-

tions, we discuss related work, define the problem, and
present the FACES approach. Then we explain the evalua-
tion of the system and discuss the results. Finally, we con-
clude with suggestions for future research.

Related Work
Summarization tasks can be categorized into extractive and
non-extractive methods. Extractive summaries choose a sub-
set of the features for the summary whereas non-extractive
summaries include reformulation of the extracted facts. We
focus on extractive summaries at the entity level.

(Cheng, Tran, and Qu 2011) introduced and defined the
problem of entity summarization in RDF graphs and showed
its usefulness in quick identification of an entity. Their sys-
tem, called RELIN, generalizes the PageRank algorithm to
select both related and informative features. The problem
with RELIN’s random surfer, which selects both related
and informative features, is that it tends to emphasize cen-
tral themes and similar features of an entity because of the
centrality based ranking mechanism of PageRank. SUM-
MARUM (Thalhammer and Rettinger 2014) is an entity
summarization system for DBpedia that is also based on
PageRank and utilizes the global popularity of resources
gleaned with the help of information from the correspond-
ing Wikipedia pages. Note that, neither RELIN nor SUM-
MARUM focus on diversity in the summary whereas our
approach does. (Thalhammer, Knuth, and Sack 2012) pro-
posed an approach that utilizes usage data for creating en-
tity summaries and evaluated it in the movie domain where
they could find user ratings for movies. Such an approach
is hard to generalize because usage data may not be read-
ily available for entities. We do not utilize any usage data.
(Xu, Cheng, and Qu 2014) created entity summaries to fa-
cilitate coreference resolution and consider pairs of entities
when creating summaries. Hence, it is different from our ap-
proach, RELIN, and SUMMARUM.

Ranking in the Semantic Web is closely related to entity
summarization as the latter task can be perceived as select-
ing the top k features from an RDF graph. Various ranking
algorithms exist in the literature for RDF graphs including
TripleRank (Franz et al. 2009) that ranks triples, SemRank
(Anyanwu, Maduko, and Sheth 2005) that ranks associa-
tions, (Ding et al. 2005) that ranks documents, and TRank
(Tonon et al. 2013) that ranks concepts. These approaches
incorporate ranking algorithms for different reasons. For ex-
ample, TripleRank (Franz et al. 2009) groups triples using
tensors and link analysis. TripleRank’s goal is to rank and
identify authoritative sources for a given entity. The facet
or latent grouping concept that we introduce in FACES is
different from facets in TripleRank as TripleRank’s group-
ing is based on authority whereas FACES’s is based on se-
mantic overlap of the expanded terms of the features. Also,
(Cheng, Tran, and Qu 2011) pointed out that it is hard to
align the TripleRank approach to the entity summarization
problem but its authoritative ranking is similar to RELIN
where centrality dominates. Grouping in RDF datasets has
been investigated in upper level ontology creation (Zhao

and Ichise 2012) and property alignment (Gunaratna et al.
2013), but these groupings are different from what we ex-
plored in FACES. We find conceptually similar groups (ex-
plained later) that are not just related (i.e., object value over-
lap of RDF triples) (Zhao and Ichise 2012) or equivalent
(Gunaratna et al. 2013) groups.

Diversity has been shown to be useful in creating graph-
ical entity summarization (Sydow, Pikuła, and Schenkel
2013), which is different from entity summarization as it
produces a graph (includes neighboring entities) rather than
a set of features. They pick ‘lexicographically different’
property names to achieve diversity in the summary using
syntactic measures (e.g., birthPlace and deathPlace are dif-
ferent in their context) whereas FACES groups them to-
gether (i.e., significantly beyond string similarity). FACES
differs from the existing entity summarization and rank-
ing systems to create both concise and comprehensive sum-
maries. We hypothesize that diversity makes the summary
provide a more complete picture of the entity (i.e., compre-
hensive) when subjected to a length constraint (i.e., concise)
environment.

Problem description
Informal problem statement: An entity is usually de-
scribed using conceptually diverse set of facts to improve
coverage. We want to select a ‘representative’ subset of this
set in a good summary to uniquely identify the entity.

We review below preliminaries introduced in (Cheng,
Tran, and Qu 2011) for completeness.

Preliminaries
A data graph is a graph based data model, which describes
entities using properties and their values. It consists of sets
of entities (E), literals (L), and properties (P ). An entity e
(e ∈ E) is described in a data graph using property-value
pairs (a, v) ∈ P x (E ∪ L).
Definition 1 (data graph) A data graph is a digraph G =
〈V, A, LblV , LblA〉, where (i) V is a finite set of nodes, (ii)
A is a finite set of directed edges where each a ∈ A has a
source node Src(a) ∈ V, a target node Tgt(a) ∈ V, (iii) LblV
: V 7→ E ∪ L and (iv) LblA : A 7→ P. LblV and LblA are
labeling functions that map nodes to entities or literals and
edges to properties, respectively.

Definition 2 (feature) A feature f is a property-value pair
where Prop(f ) ∈ P and Val(f ) ∈ E ∪L denote the property
and the value of the feature f , respectively. An entity e has
a feature f in a data graph G = 〈V, A, LblV , LblA〉 if there
exists a ∈ A such that LblA(a) = Prop(f ), LblV (Src(a)) = e
and LblV (Tgt(a)) = Val(f ).

Definition 3 (feature set) Given a data graph G, the feature
set of an entity e, denoted by FS(e), is the set of all features
of e that can be found in G.

An entity summary is a subset of all features that belong
to that entity.
Definition 4 (entity summary) Given an entity e and a pos-
itive integer k < |FS(e)|, summary of entity e is Summ(e, k)
⊂ FS(e) such that |Summ(e, k)| = k.
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Figure 1: Facets of entity - Marie Curie. Values for concep-
tually similar features are in the same color pattern.

Consider the entity Marie Curie taken from DBpedia as
shown in Figure 1. We omit namespaces of the URIs for the
clarity of presentation. Then a summary for the entity Marie
Curie can be created selecting a subset of the features. E.g.,
Summary 1 and Summary 2 are two summaries of length 3
that can be created for the entity Marie Curie.

Faceted entity summaries
In general, different properties represent different aspects of
an entity. E.g., Summary 2 in Figure 1 has two features hav-
ing knownFor and spouse properties where they represent
different aspects of the entity. The first represents an intangi-
ble value and the second represents a human; one talks about
the entity’s professional background and the other about its
personal life. Based on this observation, we can formalize
facets of an entity in terms of its feature set.
Definition 5 (facet) Given an entity e, a set of facets F (e)
of e is a partition of the feature set FS(e). That is, F (e)
= {C1, C2, ...Cn} where Ci ⊆ FS(e). Each Ci is called a
facet of e.

Our hypothesis is that the feature set of an entity can be
divided into conceptually orthogonal groups, approximated
by the facets, using a partitioning (clustering) algorithm (we
will explain the details in the next section). Furthermore, a
facet can be viewed as a hidden variable. See Figure 1. {F1,
F2, F3} is a partition of the feature set FS. Note that the fea-
tures within each facet are similar than those between facets.
I.e., the features that are expressed through KnownFor and
Field properties are conceptually similar because they both
talk about the entity’s professional life. But features having
birthPlace and knownFor properties are conceptually dis-
similar as they represent completely different information to
each other. Next, we define Faceted Entity Summary for an
entity based on facets.
Definition 6 (faceted entity summary) Given an entity e
and a positive integer k < |FS(e)|, faceted entity sum-
mary of e, FSumm(e, k), is a collection of features such that
FSumm(e, k) ⊂ FS(e), |FSumm(e, k)| = k, and if k > |F(e)|
then ∀X ∈ F(e) ⇒ X∩ FSumm(e, k) 6= ∅ else ∀X ∈ F(e)
⇒ |X∩ FSumm(e, k) | ≤ 1.

Informally, if the number of facets is n and the size of
the summary is k, at least one feature from each facet is
included in the summary when k > n. If k ≤ n, then at most
one feature from each facet is included in the summary. E.g.,
a faceted summary of length 3 for the entity Marie Curie can
be {f1, f2, f6} as shown in Figure 1.

Approach

The FACES approach generates faceted entity summaries
that are both concise and comprehensive. Conciseness is
about selecting a small number of facts. Comprehensive-
ness is about selecting facts to represent all aspects of an
entity that improves coverage. Diversity is about selecting
facts that are orthogonal to each other so that the selected
few facts enrich coverage. Hence, diversity improves com-
prehensiveness when the number of features to include in a
summary is limited. Conciseness may be achieved by rank-
ing and filtering techniques. But creating summaries that sat-
isfy both conciseness and comprehensiveness constraints si-
multaneously is not a trivial task. It needs to recognize facets
of an entity so that the summary can represent as many facets
(diverse and comprehensive) as possible without redundancy
(concise). The number and nature of facets (corresponding
to abstract concepts) in a feature set is not known a priori for
an entity and is hard to guess without human intervention or
explicit knowledge. Therefore, a supervised or unsupervised
clustering (partitioning) algorithm with prescribed number
of clusters to seek cannot be used in this context. Next, we
describe the three main algorithms in our approach: parti-
tioning feature set into facets, ranking features within facets,
and generating faceted entity summaries.

Partitioning feature set

Our goal is to partition the feature set FS(e) of an entity e.
To achieve this goal, we adapted the Cobweb (Fisher 1987),
an incremental system for hierarchical conceptual cluster-
ing. The algorithm embodies a top-down approach and cre-
ates a concept hierarchy where each node represents a con-
cept with a probabilistic explanation/description. I.e., it clus-
ters items utilizing attribute-value pairs associated with them
and the clustering depends on the probability of attribute-
value pairs for the items in each part of the partition. Further,
it maximizes intra-cluster similarity and inter-cluster dissim-
ilarity of items being clustered. This is closely related to
the decisions that humans make in partitioning tasks (Fisher
1987). We chose this algorithm because: (1) it is hierarchical
and hence the number of clusters need not be known a priori,
(2) it creates groups for specific concepts, and (3) it is influ-
enced by heuristics that humans use for grouping based on
probability. Cobweb is also efficient compared to other hi-
erarchical clustering algorithms (e.g., single-link, complete-
link) because it is incremental.

Cobweb has been designed to work with attribute-value
pairs for objects such as ‘height - 6 ft’ and ‘weight - 120
pounds’ for a person. In our problem, there are two attributes
associated with each feature f : property and value. Values
of these attributes are Prop(f) and V al(f), respectively.
Moreover, Cobweb uses a heuristic measurement called Cat-
egory Utility (CU) to determine partitions in the hierarchy by
measuring partition quality. Let Cp be a node in the hierar-
chy with a set of features and has child clusters (partition)
C1, C2, .., Cn. Then CU of partition {C1, C2, .., Cn} of Cp

can be computed as in Equation 1.
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CU(Cp) =

n∑
x=1

P (Cx)
2∑

i=1

[P (Ai, Vi|Cx)
2 − P (Ai, Vi|Cp)

2]

n
(1)

P (Cx) is the probability of a random feature belonging to
child cluster Cx and (Ai, Vi) is the ith attribute-value pair
of the new feature being clustered. When a new feature is to
be positioned in the hierarchy, Cobweb starts from the root
node and performs one of the following operations based on
the maximum CU score at each level until the new feature is
settled in the hierarchy. They are: (1) Insert operation that in-
serts the feature into an existing cluster, (2) Create operation
that creates a new cluster for the feature, (3) Merge operation
that combines two clusters into one, and (4) Split operation
that divides an existing cluster into several clusters. Cobweb
uses a cut-off threshold to decide when to stop in the hier-
archy and inherits agglomerative and divisive characteristics
from merge and split operations, respectively. Furthermore,
the split operation can be used to undo a merge operation
performed earlier and vice versa.

CLASSIT (Gennari, Langley, and Fisher 1989) is a varia-
tion of Cobweb that is used in the text clustering domain, but
requires a normal distribution for the values of the attributes.
CLASSIT has been shown applicable in the document clus-
tering context with the use of Katz’s distribution where rich
term distributions can be found (Sahoo et al. 2006). We do
not have such a rich term distribution as in (Wang and Li
2010; Sahoo et al. 2006) for documents and hence it is dif-
ficult to use the CLASSIT implementation. Therefore, we
adapt and modify the original Cobweb for our problem.

Input to the Cobweb is the feature set FS(e) of an entity
e and each feature f should have sufficient attribute-value
pairs so that the CU function can group them accurately in
the hierarchy. Each feature, modeled as two attribute-value
pairs, does not have adequate details to group conceptually
similar features. Hence, we expand the property and value
of each feature f to get a set of words WS(f) in such a way
that expanded terms can be used to glean higher level ab-
stract meaning. The terms in the word set can be mapped to
attribute-value pairs required by the algorithm by mapping
words in the word set to 1 and those not in the word set to 0.

Our partitioning algorithm uses labels associated with
URIs. If labels are not available, the local name of the URIs
are utilized. For the property name expansion, we first tok-
enize property name and remove stop words. Then we re-
trieve higher level abstract terms for the tokenized words.
For the value expansion, we retrieve typing information
(classes assigned to the resource), tokenize them, remove
stop words, and expand them to include higher level abstract
terms of the tokenized words. Tokenizing includes process-
ing camelcase, spaces, punctuations, underscores etc. Then
we add output of the property name and value expansion
steps of feature f into a single word set WS(f). See Fig-
ure 2 for example. In our implementation, we used hyper-
nyms as the abstract terms taken from WordNet1, a widely

1http://wordnet.princeton.edu/

Figure 2: Feature expansion example. Terms taken from
WordNet as hypernyms are underlined.

used online lexical database. Note that any service similar to
WordNet could be used for this purpose. We are interested in
using hypernyms because we need conceptually similar fea-
ture groups as facets from the clustering algorithm. If typing
information is not available in the dataset or for the value
(such as data-type property), an external knowledge source
such as Wikipedia2 can be used.

We modified the original Cobweb CU implementation
designed for nominal attributes shown in Equation 1 and
adapted it to use only the terms in the word set WS(f) for
a feature f (omit 0 or 1). See Equation 2. Wi is a word ap-
pearing in WS(f).

CU(Cp) =

n∑
x=1

P (Cx)
∑
i

[P (Wi|Cx)
2 − P (Wi|Cp)

2]

n
(2)

Ranking features
Our approach ranks features that appear within each facet
locally, and hence, related features do not affect the rank-
ing result, unlike graph based ranking algorithms. A spe-
cific ranking algorithm influenced by the tf-idf technique
has been used to get the top features from each facet to
form the faceted summary. For a feature f and the value
v of f , the ranking takes into consideration the informa-
tiveness/uniqueness (reflected using idf) of f (Inf(f)), and
popularity (reflected using tf) of v (Po(v)). Inf(f) is de-
fined in Equation 3. N is the total number of entities in the
data graph G. Po(v) is the number of distinct triples in the
data graph G that has the matching value v. Following the
IR tradition we take the log of this value as expressed in
Equation 4.

The ranking of features within a facet is then the product
of the informativeness of the feature and popularity of the
value as defined in Equation 5. Our intuition is that a feature
(property-value pair) should be relatively rare (i.e., informa-
tive) to be interesting and not the property alone. Also when
the value is popular in the dataset, it tends to help form a
more human readable summary.

Inf(f) = log(
N

|{e|f ∈ FS(e)}| ) (3)

Po(v) = log|{triple t|∃ e, f : t “appears in” G

and t ≡ (e Prop(f) V al(f)) and V al(f) = v}|
(4)

2http://www.wikipedia.org/ has category hierarchy that can be
used similar to class labels
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Rank(f) = Inf(f) ∗ Po(V al(f)) (5)

Generating faceted entity summary
Given the feature set FS(e) of an entity e and a positive in-
teger k < |FS(e)|, the process of faceted entity summary
creation can be stated as follows. (1) First, each feature f
in FS(e) is enriched to have a wordset WS(f). (2) The
enriched feature set FS(e) is input to the partitioning al-
gorithm to create facets. The algorithm yields a dendrogram
(hierarchical tree) for FS(e) and it is cut at a desired level to
get the facet set F (e) of FS(e). (3) Then, features in each
facet are ranked using the ranking algorithm. (4) The top
ranked features from each facet are picked according to Def-
inition 6 to form the faceted entity summary of length k. In
this implementation, we avoid picking features that have the
same property name from each facet when k > |F (e)|.

Evaluation
We evaluate the FACES approach in two orthogonal ways:
(1) Evaluate the quality of the summaries in comparison to
the state-of-the-art systems using a gold standard. (2) Evalu-
ate summary quality by user preference. We evaluate FACES
against RELIN that outperformed earlier entity summariza-
tion tools and SUMMARUM which is DBpedia specific.
We did not choose domain specific summarization tools like
(Thalhammer, Knuth, and Sack 2012) as they are not ap-
plicable in general and require additional domain specific
usage data. We do not consider the graphical entity summa-
rization (Sydow, Pikuła, and Schenkel 2013) approach as it
is different from an entity summarization captured by RE-
LIN and FACES.

We selected the DBpedia dataset for our evaluation as it
was the benchmark dataset selected in (Cheng, Tran, and
Qu 2011) and contains entities that belong to different do-
mains. We created a gold standard for the evaluation due
to unavailability of the evaluation data of RELIN (as con-
firmed by the authors of RELIN). We randomly selected 50
entities3 from DBpedia (English version 3.9) that have at
least 17 distinct properties per entity. The average number
of distinct features per entity is 44. Further, RELIN’s results
and user agreement for ideal summaries are not the same as
those reported in (Cheng, Tran, and Qu 2011) because of the
differences in the test set. We filtered out schema informa-
tion and dataset dependent details such as dcterms:subject,
rdf:type, owl:sameAs, wordnet type and Wikipedia related
links to ease manual evaluation and further they do not ex-
press facts about the entities. We extracted object-type prop-
erties for this dataset as the original set of triples is too large
for manual evaluators, they are cleaner than data-type prop-
erties, and they contain more interesting information. Fur-
ther, use of object-type properties is consistent with SUM-
MARUM, and hence enables a meaningful comparison. We
asked 15 human judges with background in Semantic Web to

3Selected entities are from the domains of politician, actor, sci-
entist, song, film, country, city, river, company, game, etc

select 5 and 10 feature length summaries for each of the enti-
ties. These are referred from now on as the ideal summaries.
They were not given specific information about any system
and asked to select a summary that can better represent the
entity (facilitate quick identification). We provided them the
Wikipedia page link of each entity in case they needed ad-
ditional information about an unfamiliar entity. Each entity
has at least 7 ideal summaries from 7 different judges and
this comprises the gold standard for evaluation. All experi-
ments were performed using a Core i7 3.4 GHz Desktop ma-
chine with 12 GB of RAM. We replicated DBpedia dataset
locally and used caches for RELIN as mentioned in (Cheng,
Tran, and Qu 2011). More details about the approach and
gold standard dataset can be found at our web page4.

Evaluation with the gold standard
Our objective is to show that faceted entity summaries pro-
duce results that are closer to human judgment. We con-
figured FACES that produces the best possible results and
RELIN according to its recorded optimal configuration. We
empirically determined to cut FACES cluster hierarchies at
level 3 which gave good results. We also set the cut-off
threshold of Cobweb to 5, which gave the optimal results.
For RELIN, we set the jump probability and number of iter-
ations to 0.85 and 10, respectively. Authors of RELIN pro-
vided the source code of RELIN in absence of the evalua-
tion data to replicate the environment. We replaced Google
search service with Sindice API5 as Google search API is
no longer free of charge. Sindice indexes the LOD data and
is adequate for this purpose. Further, we collected Google
API and Sindice API search hits for a small random sample
(5 entities) and applied RELIN to both API search hits. The
results confirmed that the difference is negligible.

Agreement =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

|SummI
i (e) ∩ SummI

j (e)|

(6)

Quality(Summ(e)) =
1

n

n∑
i=1

|Summ(e) ∩ SummI
i (e)| (7)

We use the evaluation metrics used in (Cheng, Tran, and
Qu 2011). When there are n ideal summaries denoted by
SummI

i (e) for i = 1, .., n and an automatically generated
summary denoted by Summ(e) for entity e, the agreement
on ideal summaries is measured by Equation 6 and the qual-
ity of the automatically generated summary is measured by
Equation 7. In other words, quality of an entity summary is
its average overlap with the ideal summaries for the entity.
Our evaluation results and statistics are presented in Table
1. We modified the original RELIN algorithm to discard du-
plicate properties and named it as RELINM in Table 1. The
modification did not yield much improvement in the results

4http://wiki.knoesis.org/index.php/FACES
5http://sindice.com/developers/searchapiv3
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System
Evaluation 1 - Gold standard Evaluation 2 - User preference

k = 5 k = 10 User preference
Quality FACES % ↑ Time/Entity Quality FACES % ↑ User study 1 User study 2

FACES 1.4314 NA 0.76 sec. 4.3350 NA 84% 54%
RELIN 0.4981 187 % 10.96 sec. 2.5188 72 % NA NA
RELINM 0.6008 138 % 11.08 sec. 3.0906 40 % 16% 16%
SUMMARUM 1.2249 17 % NA 3.4207 27 % NA 30%
Agreement 1.9168 4.6415

Table 1: Evaluation of the summary quality and FACES %↑ = 100 * (FACES result - Other system result) / (Other system
result) for k=5 and k=10, respectively, and average time taken per entity for k=5 for Evaluation 1. Evaluation 2 measures user
preference % for each system. (NA stands for Not Applicable)

and this was to test whether re-ranking mechanisms can im-
prove RELIN results. We ran each algorithm for all the 50
entities 5 times and recorded the average time taken per en-
tity in seconds. According to the results, FACES achieved
138% and 40% increase in quality against RELINM and
187% and 72% increase in quality against RELIN, and 17%
and 27% increase in quality against SUMMARUM for k=5
and k=10, respectively. Even though FACES achieves supe-
rior results compared to RELIN, it does not compromise its
efficiency. FACES is much more efficient (14 times faster)
than RELIN as shown in Table 1 in summary computation
(i.e., running time). Time for SUMMARUM is not applica-
ble (NA) as we get results from a web service but can be
assumed to be similar to RELIN. FACES can be further im-
proved to compute summaries on the fly.

We conducted the paired t-test to confirm the significance
of the FACES’s mean summary quality improvements over
others. For k = 5 and k = 10, P values for FACES against
RELINM are 2.04E-10 and 1.92E-14 and for FACES against
SUMMARUM are 0.029 and 3.71E-7. When P values are
less than 0.05, the results are statistically significant.

Evaluation of user preference
We carried out two blind user evaluations (users didn’t know
which system produced which summaries) to see how users
rated summaries created by FACES, RELINM, and SUM-
MARUM. We randomly selected 10 instances from our eval-
uation sample and created k = 5 length summaries and had
69 users participate in total. The results are shown in Table
1. For the first user evaluation, we showed them summaries
of FACES and RELINM side by side and asked them to se-
lect the best summary that helped them to identify the entity.
The users average preference was 84% for FACES and 16%
for RELINM. This shows that unique properties alone are
not desirable to humans. In the second user evaluation, we
showed users all three system summaries and their prefer-
ences were 54%, 16%, and 30% for FACES, RELINM, and
SUMMARUM, respectively. This shows that users some-
times prefer popularity as in SUMMARUM but not in all
the cases. RELINM got almost the same percentage in both
experiments reflecting that users preferred unique features
for some entities. Moreover, results suggest that users like a
balanced (unique and popular) and diversified approach like
in FACES and confirm our claim that the diversity makes
summaries more human friendly.

Discussion
In summary, our evaluation shows that FACES performs bet-
ter in all cases. It was able to achieve 138% and 40% in-
crease over RELINM and 17% and 27% increase over SUM-
MARUM in summary quality for k=5 and k=10, respec-
tively. The results of the paired t-test confirms that FACES
results are not random and consistently outperforms the
other two systems. FACES achieves this by its non-trivial
facet identification process and persistence in selecting a di-
verse summary based on the facets. Note that agreements
between ideal summaries are not very high in the sample
dataset due to the large number of distinct features present
in each entity (see Table 1). The second evaluation shows
that the faceted summaries are desirable to human users.

FACES behaves similar to an ordinary summarization al-
gorithm such as RELIN and SUMMARUM when there are
few facets available. It behaves as if it is ranking a flat list of
features. A key reason why RELIN (including RELINM),
which is based on PageRank that exploits both informa-
tiveness and relatedness measures, underperforms is that
the summary can include redundant and correlated features.
This also affects SUMMARUM. The redundancy comes at
the expense of reduced coverage. We address this limitation
by emphasizing diversity to suppress redundant features6

and improve coverage by identifying facets to pick repre-
sentative features. Figure 3 shows entity summary examples
generated by the three approaches.

We observed that sometimes FACES clusters features dif-
ferently from what we expect. For example, spouse property
of Barack Obama is clustered into a facet that contains vi-
cePresident property. This happens because sometimes typ-
ing information of values is too specific7 and affects the clus-
tering process. Moreover, FACES performs better in almost
all cases according to the second evaluation except for some
specific entities. E.g., Usain Bolt is an Olympic athlete with
many records. Some users preferred facts about his 100 me-
ter records over his 200 meter records, while both informa-
tion were present in a facet. FACES can generate either of
the two facts in a summary (based on a subjective ranking
within a facet) and the tie can be broken. We can further in-
vestigate how to effectively combine diversity, uniqueness,
and popularity of features as the user preference varies. Fur-

6May not be syntactically the same but conceptually similar
7Michelle Obama’s typing information is similar to a politician
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Figure 3: Entity summaries for the entity Marie Curie by each system. k = 5 and the size of feature set is 39.

thermore, clustering phase of FACES can be tuned for fine
grained grouping by modifying the enrichment process. E.g.,
adding hyponyms to the word set makes features contain-
ing birthPlace and stateOfOrigin properties fall into differ-
ent facets.

Conclusion
We have investigated how to create entity summaries that are
concise and comprehensive for the purpose of quick identi-
fication of an entity. We adapted a well known incremental
hierarchical conceptual clustering algorithm for entities (in
RDF format) to identify facets (that addressed diversity) and
developed intra-cluster ranking algorithm for features (that
addressed uniqueness and popularity) to create faceted en-
tity summaries. We showed that faceted entity summaries
created by combining diversity, uniqueness, and popularity
are better representatives for an entity and closer to ideal
ones. Our approach shows superior results (improvement in
summary quality in the range 17% - 187%) and does not
require pre-computation of values like the existing systems.
In future, we plan to investigate facet ranking, which facets
to select and how many features to pick from each facet in
creating “personalized” and “balanced” summaries.
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