
 

 

 
 

Abstract 
A new algorithm via Canonical Correlation Analysis (CCA) 
is developed in this paper to support more effective cross-
modal image clustering for large-scale annotated image col-
lections. It can be treated as a bi-media multimodal mapping 
problem and modeled as a correlation distribution over mul-
timodal feature representations. It integrates the multimodal 
feature generation with the Locality Linear Coding (LLC) 
and co-occurrence association network, multimodal feature 
fusion with CCA, and accelerated hierarchical k-means clus-
tering, which aims to characterize the correlations between 
the inter-related visual features in images and semantic fea-
tures in captions, and measure their association degree more 
precisely. Very positive results were obtained in our exper-
iments using a large quantity of public data.1 

Introduction 
With the massive explosion of annotated image data on the 
Web, methods to seamlessly handle the complex structures 
of image data to achieve more efficient organization and 
management have become an important research focus 
(Datta et al. 2008; Rasiwasia et al. 2010). Usually, an an-
notated image is exhibited in a multimodal form, that is, 
both semantic and visual. Thus, integrating multimodal in-
formation sources to enable cross-modal image clustering 
has been the core component. However, due to the seman-
tic gap, there may be significant differences and independ-
ence among visual images and textual captions, which 
leads to the huge difficulty and uncertainty in making full 
use of the relations between the visual features (in images) 
and semantic features (in captions) (Fan et al. 2012). 
 To achieve effective cross-modal image clustering, three 
inter-related issues should be addressed simultaneously: 1) 
the valid coding and discovery of valuable multimodal fea-
tures to characterize visual images and textual captions 
more reasonably, 2) multimodal feature fusion to identify 
better multimodal correlations between the visual features 
in images and semantic features in captions, and 3) appro-
priate clustering methods to speed up the cross-modal clus-
tering process. To address the first issue, it is very im-
portant to leverage large-scale annotated images for robust 
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visual coding and semantic mining to achieve more com-
prehensive multimodal feature representation. To address 
the second issue, it is very interesting to develop new algo-
rithms for fusing multimodal features and efficiently ex-
ploiting the correlations among attributes of different mo-
dalities in annotated images. To address the third issue, it is 
critical to explore an appropriate clustering mechanism 
with high efficiency but no sacrifice of clustering accuracy. 
 Based on the above observations, a novel scheme is de-
veloped in this paper to facilitate more effective cross-
modal image clustering for large-scale annotated image 
collections. Our scheme significantly differs from other 
earlier work as follows. a) The visual feature generation 
based on Locality Linear Coding (LLC) can achieve a 
smaller quantization error and better coding stability. The 
semantic feature generation based on a co-occurrence asso-
ciation network can exploit the inter-term statistical co-
occurrence associations to learn the semantic feature repre-
sentations. b) The multimodal feature fusion based on Ca-
nonical Correlation Analysis (CCA) has a strong ability to 
characterize the multimodal correlations between the visual 
features in images and semantic features in captions. c) 
The specified accelerated hierarchical k-means clustering is 
exploited to face scalability problems when scaling up to 
large-scale annotated images. d) A new cross-modal image 
clustering framework is built by integrating the above fea-
ture representation, fusion, and clustering mechanisms. 
 How to integrate multimodal features for image cluster-
ing is an open issue because it is hard to provide a base to 
multiple similarities among the images which are calculat-
ed from multiple features in different modalities. The main 
contribution of our work is that we effectively apply CCA 
to enable cross-modal image clustering, which has provid-
ed a more reasonable base for us to integrate visual similar-
ity with semantic similarity by determining an optimal cor-
related projection space. Thus such cross-modal clustering 
can be treated as a bi-media multimodal mapping problem, 
and modeled as a correlation distribution over multimodal 
feature representations, where the most important task is 
creating the multimodal association between visual and 
semantic features and measuring the degree to which they 
are related. We have obtained very positive results in our 
experiments to demonstrate our observations. 
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Related Work 
Image clustering is not a novel task, but has been the sub-
ject of extensive research in areas such as multimedia in-
formation processing and retrieval (Chaudhuri et al. 2009; 
Yang et al. 2010). Earlier research placed the main empha-
sis on unimodal approaches, where the clustered images 
shared a single modality (Pan et al. 2004; Goldberger, 
Gordon, and Greenspan 2006). However, because of con-
sidering only visual or textual information in annotated im-
ages, such methods often demonstrate a poor performance 
(Chen, Wang, and Dong 2010; Jia, Salzmann, and Darrell 
2011). Recently, closer attention has been given to meth-
ods that rely on both low-level visual and high-level se-
mantic features, that is, grouping together visually similar 
and semantically related images. Thus, there has been in-
creasing research interest in combining multiple infor-
mation sources and exploiting the multimodal information 
in annotated images to support precise image clustering. 
 In recent years, some related research has used the tex-
tual information that accompanies an image. Bekkerman 
and Jeon (2007) introduced the powerful Comraf frame-
work to cluster multimedia collections, in which they ex-
ploited the multimodal nature of multimedia collections 
from multiple views or modalities. Moëllic, Haugeard, and 
Pitel (2008) studied an image clustering process for de-
scriptors of different natures, using textual information and 
visual features based on bags-of-SIFT descriptors. Rege, 
Dong, and Hua (2008) addressed the problem of Web im-
age clustering by the simultaneous integration of visual and 
textual features from a graph partitioning perspective. 
Yang et al. (2009) presented image clustering as an exam-
ple to illustrate how unsupervised learning can be im-
proved by transferring knowledge from auxiliary heteroge-
neous data. Chen, Wang, and Dong (2010) presented a 
semi-supervised approach for image co-clustering based on 
non-negative matrix factorization. Fu et al. (2011) present-
ed a multi-modal constraint propagation approach to ex-
ploiting pairwise constraints for constrained clustering 
tasks on multi-modal datasets. Hamzaoui, Joly, and Bou-
jemaa (2011) proposed a new multi-source shared neigh-
bors scheme applied to multi-modal image clustering. 
 Unfortunately, none of these approaches have provided 
good solutions for the following three important issues. (a) 
Multimodal Information Exploration for Discovering 
Multimodal Features – Most existing image clustering 
techniques typically focus on the traditional visual feature 
representation and the oversimplified utilization of the lim-
ited textual information. They may not stress an in-depth 
consideration of more reasonable coding methods for the 
low-level visual features involved in images or exploit all 
the information to acquire more comprehensive high-level 
semantic features contained in captions. These approaches 
may be restricted to the use of the limited annotation tags 

corresponding to salient objects in the images, while dis-
carding the wealth of information and its connotations in 
the captions. An attractive paradigm is to improve the uni-
modal-based model by using multimodal information and 
performing a deep exploration for the construction of both 
a visual and semantic feature space. The captioned images 
could be well represented in this multimodal space and 
beneficial to image clustering. (b) Inter-related Correla-
tion Measure for Multimodal Feature Fusion – Most ex-
isting related approaches focus on exploiting information 
from different modalities separately, and the inter-related 
correlations between different modalities are completely 
ignored. Although some advances have been reported on 
multimodal image clustering, they have usually involved 
the fusion of features from different modalities into a sin-
gle vector, or learning different models for different mo-
dalities and fusing their output. Cross-modal correlations 
could provide helpful hints on mining multimodal infor-
mation for image clustering. Establishing multimodal asso-
ciations between low-level visual features and high-level 
semantic attributes may shed light on the captioned image 
understanding and clustering. Thus, the explicit modeling 
of cross-modal correlations between visual and semantic 
features becomes very important. From the viewpoint of 
multimodal feature exploitation and fusion, it’s a signifi-
cant way to combine both visual and semantic abstractions 
for images and captions in a joint space and establish a 
multimodal joint modeling. (3) Clustering Optimization 
for Time Efficiency – Building an appropriate optimized 
clustering mechanism to make clustering, especially cross-
modal clustering, scalable to large-scale annotated images 
is an important challenge. However, most existing uni-
modal or multimodal clustering schemes have no in-depth 
consideration of such a mechanism. Some accelerated clus-
tering strategies can be employed in controlling both the 
time and memory cost within a more reasonable range. 
 To tackle the above obstacles, we have developed a nov-
el framework by integrating the visual feature generation 
with LLC and semantic feature generation with co-
occurrence association network (i.e., mining valuable mul-
timodal feature information), the CCA-based multimodal 
feature fusion (i.e., bridging the semantic gap between vis-
ual contents and semantic annotations), and the accelerated 
hierarchical k-means clustering (i.e., fusing the optimiza-
tion strategy to improve the clustering efficiency). In our 
study, we realized that an annotated image usually appears 
with multiple correlated semantic concepts and spans mul-
timodal associations in both visual and conceptual levels. 
Our CCA-based cross-modal image clustering aims at ex-
ploring valuable multimodal correlations involved in imag-
es and their annotations to improve the reasoning ability 
for clustering. It’s a new attempt on exploiting such feature 
generation, fusion and clustering optimization strategies, 
especially CCA, on cross-modal image clustering. 
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Multimodal Feature Generation 
The multimodal information is the significant expression 
and exhibition for image content, that is, the visual and 
semantic description in each annotated image. Thus to ac-
quire the cross-modal correlation between visual images 
and textual captions, the multimodal features in annotated 
images should be detected and represented more precisely. 

Visual Feature Generation 
Each image can be represented by using the SIFT de-
scriptor under the Bag-of-Features (BoF) framework 
(Csurka et al. 2004). However, such a kind of feature usu-
ally occupies the large storage space and requires much 
more computational cost in a high-dimensional space. 
Some coding methods have been proposed to project the 
higher dimensional features into a sparse presentation, such 
as Vector Quantization (VQ) (Sivic and Zisserman 2003), 
Sparse coding (SC) (Yang et al. 2009) and Local Coordi-
nate Coding (LCC) (Yu, Zhang, and Gong 2009). However, 
these manners may produce larger quantization error and 
lose the correlations between codes. Thus to achieve more 
precise visual description of images, it’s very useful to es-
tablish an efficient coding manner to achieve dimension 
reduction and reduce the computational cost. 
 First, each SIFT descriptor is viewed as a visual word, 
and assigned one or a few feature points in the codebook 
based on the coding algorithm according to the codebook. 
Compared to the traditional methods, Locality Linear Cod-
ing (LLC) can generate the coding result by searching the 
k-nearest neighbors and require the less computational cost 
(Wang et al. 2010). As the main strategy for feature coding, 
LLC is incorporated into our visual feature extraction. 
 Assume that S is a set of D-dimensional visual words ex-
tracted from an image with N entries, S=[s1, s2, ..., sN] 
RD×N. Given a codebook with M entries, B=[b1, b2, ..., bM] 
RD×M. Each word is converted into a M-dimensional code 
to generate the final image representation by Formula (1), 
which is the approximated method of LLC for fast coding. 
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where bi only contains a small group of local bases that are 
the nearest neighbors of si in the codebook B. The coding 
result C is constructed quickly and then the global features 
of images can be obtained, while the local information is 
ignored. In order to characterize the local features for im-
ages more accurately, the LLC is combined with the Spa-
tial Pyramid Matching (SPM), which partitions images into 
increasingly fine spatial sub-regions and computes the lo-
cal features from each sub-region (Lazebnik, Schmid, and 
Ponce 2006). Typically, this coding manner consists of 
2l×2l subregions in each level, l=0, 1, 2. Thus the similarity 
based on SPM between two images u and v can be calcu-
lated as shown in Formula (2). 
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Where F(ui
l) and F(vi

l) denote the coding result of SIFT 
features, that is, the ith sub-region in the lth sub-region level 
of two images u and v; and L means the max level of SPM. 

Semantic Feature Generation 
To obtain more accurate semantic formulation for annotat-
ed images, the co-occurrence association network and op-
timal semantic feature coding are both constructed to assist 
in getting more coherent semantic feature representations. 
a. Co-occurrence Association Network Construction 
Our co-occurrence association network is automatically 
generated from large-scale annotated images to character-
ize the co-occurrence correlations between a large number 
of semantic concepts of interest (i.e., annotation tags). 
Such a network can provide a good environment for: (a) 
discovering more meaningful co-occurrence associations 
among annotation tags; (b) acquiring more abundant se-
mantic descriptions for annotated images; (c) assisting the 
semantic feature coding optimization more effectively. 
 Our association network consists of: (1) large amounts 
of semantic concepts of interest; and (2) their inter-concept 
co-occurrence association relations. Intuitively, semantic 
concepts of interest related to an annotated image should 
be some concept terms associated with the prominent ob-
jects or scenes in this image and play important roles in 
making discrimination between different objects and 
scenes in different images. Thus the selected semantic con-
cepts of interest focus on the key terms with high frequen-
cy in image annotations from Flickr and class names from 
Caltech 256 commonly used in computer vision. 
 We hope our association network could fuse the im-
portant semantic concept association information involved 
in annotations. Thus the flat construction criterion is con-
sidered to achieve more precise characterization of the in-
ter-concept semantic association relations in large-scale 
annotated image collections. For two semantic concepts of 
interest, their association relation consists of the flat asso-
ciation relation because of their co-occurrences in image 
collections, e.g., the higher co-occurrence probability cor-
responds to the stronger association relation. Even if there 
are no obvious semantic relations among some co-
occurrence concepts, it’s still easy for people to relate these 
concepts together, such as “monkey” and “banana”. Thus 
the co-occurrence probability between two semantic con-
cepts of interest SCi and SCj can be computed according to 
Formula (3), which indicates what percentage of images 
annotated by both SCi and SCj in the images with SCi or SCj. 
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where IMG_SetSCi and IMG_SetSCj denote two image sets 
that contain SCi and SCj as one annotation tag respectively. 
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 Each semantic concept of interest on the co-occurrence 
association network can be linked with all the other associ-
ated concepts on the network. Eliminating the weak inter-
concept links can allow concentrating on the most signifi-
cant association relations. Thus each concept is linked with 
the most relevant concepts with stronger flat semantic as-
sociation relation. The co-occurrence association network 
for our whole image database is shown in Figure 1. 

Figure 1. The co-occurrence association network for our image database. 
b. Optimal Semantic Feature Coding 
To obtain the better quantization for semantic features, the 
statistical method based on tf-idf is incorporated to con-
struct the optimal semantic feature coding, by which the 
annotation tags (i.e., semantic concepts of interest) could 
have different importance degrees in different images. 
 Assume S is an image dataset with the size of N, which 
contains D different annotation tags in total, Qi

j means the 
quantization result of the ith annotation tag Tagi in the jth 
image Imgj. Considering that the annotation tags in differ-
ent images have different importance metrics, we let Qi

j=0 
if TagiImgj. Otherwise, if TagiImgj, we achieve coding 
the image annotation set according to Formula (4). 
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where BLImgi(Tagk) is 1 when Tagk belongs to Imgj, other-
wise is 0; and BLImgp(Tagi) has the similar definition. 
 The above algorithm can be considered as the basic 
model for the initial tf-idf-based semantic feature genera-
tion. However, the common fact is that there are limited 
annotation tags in an image caption. If only considering 
such annotation tags to construct the semantic feature rep-
resentation, there may cause the restricted or even sparse 
semantic feature description for an annotated image. It’s 
worth noting that the frequent co-occurrence tags related to 
the original tags in an image caption can be very beneficial 
to the semantic information enhancement or supplement 
for constructing more complete semantic expression for the 
image. The desirable situation is that more strongly related 
tags can be explored to the semantic description for an im-
age as possible. Thus, to further acquire more accurate se-
mantic feature representation, the initial semantic feature 

coding optimization can be implemented based on the co-
occurrence associations among different annotation tags on 
our co-occurrence association network, as shown in For-
mula (5). The main purpose of such an optimization strate-
gy is to exploit both the explicit semantic information (i.e., 
the original annotation tags in image caption) and the im-
plicit semantic information (i.e., the related tags with the 
strong co-occurrence association relations on our co-
occurrence association network) for ensuring more accu-
rate and comprehensive formulation of semantic feature. 
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where Qj can be understood as the initial tf-idf-based se-
mantic feature vector for the jth image, Qi

j is the ith feature 
in Qj; Cj can be understood as the optimized semantic fea-
ture vector for the jth image, Ci

j
 is the ith feature in Cj; ||Ci

j- 
Qi

j||2 means that the feature coding optimization should 
keep the characteristics of the initial tf-idf-based feature, 
and the difference between the optimized feature and the 
initial feature should as small as possible; ||Ci

j-Ck
j||2 means 

that if an annotation tag has the strong co-occurrence asso-
ciation with the original annotation tag on our co-
occurrence association network, it can contribute to the 
semantic feature representation for the corresponding im-
age and the discrepancy between the semantic features for 
these two tags should as small as possible; and wik indi-
cates the weight between two annotation tags (i.e., seman-
tic concepts of interest) of SCi and SCk on the co-
occurrence association network, and defined as: 
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where τ is a predefined threshold value. 
 To guarantee the valid solution for Formula (5), it can be 
transformed into a simplified form for each image in For-
mula (7), which is a convex optimization problem. 
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Through computing the derivative with respect to Ci and 
set it to 0, we can obtain Formula (8) after some algebra. 
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Thus for all the annotation tags in an annotated image, the 
following Formula (9) can be obtained. 
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(9) 
The above operation can be iteratively performed until a 
certain condition is met. The final (C1, …, Ci, …, CD) is the 
optimized feature representation for the given image. 
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Multimodal Feature Fusion 
The multimodal feature fusion based on Canonical Corre-
lation Analysis (CCA) is implemented to exploit multiple 
features of annotated images and explore the multimodal 
associations between visual property features and semantic 
expression features. To make a clear presentation, we first 
introduce the canonical correlation model, and then devel-
op our CCA-based multimodal feature fusion mechanism. 

Revisit of Canonical Correlation Analysis (CCA) 
The CCA algorithm is a classic statistical method to multi- 
view and multi-scale analysis for multiple data sources, 
which has received much attention in the field of cross- 
media/cross-modal processing (Cao et al. 2009; Gordoa et 
al. 2012). It aims at finding linear projections for different 
types of data with the maximum correlation, which can 
provide a linear function learning method by projecting 
different types of data into a high dimension feature space 
(Gong et al. 2012). The difference between CCA and other 
closely related approaches is that CCA learns two separate 
encodings with the objective that the learned encodings are 
as correlated as possible, and such different objectives may 
have advantages in different settings. Thus CCA, which 
could obtain more accurate highly abstract expression of 
real data via the complex linear transformation, is intro-
duced to make a better solution for multimodal feature fu-
sion in cross-modal image clustering. We emphasize on 
building a novel cross-modal feature representation for im-
age clustering, which combines canonical correlations of 
multimodal (visual and semantic) features. 

Integrating Multimodal Features with CCA 
For integrating multi-modal features to cross-modal fea-
tures with CCA, it aims at projecting the multimodal fea-
tures with different modalities on multiple views into a 
common subspace and making sure that the correlation be-
tween visual and semantic features could be maximized. 
 Let IMG be the set of annotated images that consists of 
N samples; VRDV*N is the centered visual feature matrices 
for IMG and SRDS*N represents the centered semantic fea-
ture matrices, DV and DS are the dimensionality values for 
these two matrices, generally DVDS. The following pro-
jection can be considered, as shown in Formula (10). 
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 To find a projection relation between the visual feature 
space and semantic feature space that could maximize the 
correlation between different feature views, the following 
Formula (11) is adopted to achieve such a goal. 
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where the small regularization factor ρ is used to avoid the 
numerically ill-conditioned problem; p and q are the pro-
jection directions that force the data from V and S into the 
common space; and I denotes an identity matrix. Hence, 
we can obtain the set of the projection matrix P={p1, p2, …, 
pR} and Q={q1, q2, …, qR} by transforming it to a symmet-
ric eigenvalue problem. The ith component pi and qi can be 
calculated by the following Formula (12). 
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where λ2
i and φ2

i represent the ith eigenvalue. We can pro-
ject the feature vectors of V and S into a common space 
based on the matrices of PRDV*R and QRDS*R. Thus we 
can embed the multi-modal features (i.e., visual features 
and semantic features) into a subspace that can generate 
the final cross-modal feature MF as shown in Formula (13). 

  QSPVMF TT   1      (13) 
where α is a constant parameter in [0, 1]. Compared to the 
common feature concatenation, such a linear weighting can 
achieve the lower dimensional feature representation with-
out the sacrifice of the clustering performance. 
 In fact, for the visual and semantic features involved in 
each annotated image, they belong to different feature 
spaces with different dimensions, and have no direct asso-
ciations. Our CCA-based multimodal feature fusion can 
provide a relatively perfect feature representation with as-
sociations between various features in different modalities 
for cross-modal image clustering, which can mitigate the 
problem of semantic gap to a certain extent and achieve the 
better clustering with multimodal feature associations. 

Accelerated Hierarchical K-means Clustering 
Since our cross-modal image clustering orients to large-
scale annotated image collections, the number of image 
class may reach up to hundreds, thousands, or even tens of 
thousands. To describe multimodal attributes for each an-
notated image, hundreds of feature points of interest can be 
extracted from each image to compose the associated high-
dimensional feature vector representation. Thus for facili-
tating the better solution of cross-modal image clustering, 
it’s meaningful to build an efficient optimized clustering 
mechanism with the ability to work with large dataset, 
high-dimensional data, reasonable time complexity, etc. 
 The most popular method for image clustering is the k-
means algorithm, which has been widely applied in the 
field of image processing (Elkan 2004; Arai and Barakbah 
2007; Hamerly 2010). It has the relatively fast computation 
speed, and can gradually converge to the best situation 
with the execution of iteration. The superiority of k-means 
is that even if the convergence process for clustering need 
execute thousands of iterations, the solution close to the fi-
nal convergence results can be obtained just after dozens of 
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iterations. However, k-means also has the obvious defect, 
that is, the convergence effect is very sensitive to the selec-
tion of initial starting points, which leads to the difficulty 
to reach global optimum, but only in local minimum. The 
initial cluster is generated randomly in k-means, thus the 
unique clustering results cannot be guaranteed. Meanwhile, 
due to the fact that most distance calculations in k-means 
are redundant, if a point is far away from a cluster center, 
it’s not necessary to calculate the exact distance between 
this point and the center in order to confirm that this point 
should not be assigned to the center. Such redundant calcu-
lations may usually consume more computational cost. 
Thus in our cross-modal image clustering, the Accelerated 
Hierarchical K-means Clustering (AHKMC) algorithm is 
adopted to determine the initial centers for the accelerated 
k-means, which combines the idea of hierarchical cluster-
ing and accelerated k-means to satisfy various restrictions 
under the condition of huge amounts of data and make the 
suitable optimization for cutting down the computational 
cost. The basic framework of AHKMC is shown as follows. 
Algorithm 1 AHKMC(multimodal feature point set MFS) 
1: for p = 1 to P do 
2:    CKp←random(MFS, K) 
3:    ICp←Accelerated K-means Clustering AKMC(MFS, CKp) 
4:    FC←all elements in ICp, p[1, P] 
5:   while |FC|>K do 
6:      Merge(FCi, FCj),  

//CDist( , ) is a distance metric defined on center-center pairs 
7: return AKMC(MFS, FC) 
Algorithm 2 AKMC(multi-modal feature point set MFS, initial center set C) 
1: for i=1 to |MFS| do 
2:    Center(i)←arg min{Dist(MFSi, Cj)} 

//Center(i) is the index of the center to which MFSi is assigned 
//Dist( , ) is a distance metric defined on point-center pairs 

3: while not converged do 
4:    C←new centers C’ except the first iteration; UPDATE(Center(i), C) 
5:    for i=1 to |MFS| do 
6:       if Dist(CCenter(i), MFSi)+Dist(C’Center(i), CCenter(i))<BFCCenter(i), continue 

      //BFCj denotes the first bound of centers 
7:       if Dist(CCenter(i), MFSi)<BSCCenter(i)-1/2*Dist(C’Center(i), CCenter(i)), continue 
       //BSCj denotes the second bound of centers 
8:       for j=1 to |C| do 
9:          if Dist(C’Center(i), MFS i)<1/2*Dist(C’Center(i), C’j), continue 
10:          else if Dist(C’Center(i), MFS i)>Dist(C’j, MFSi), Center(i)←j 
11:  return C’ 
Algorithm 3 UPDATE(Center(i), C) 
1: for j=1 to |C| do 
2:         
3: for j=1 to |C| do 
4:                                     ,  

 It’s important to note that our AHKMC algorithm can 
achieve the significant acceleration effect through filtering 
out some avoidable redundant calculations with the charac-
teristic of triangle inequality. The first bound for the first 
triangle inequality in Line 6 of Algorithm 2 is set based on 
Lemma 1 in (Elkan 2004; Hamerly 2010). The second 
bound is a novel boundary check condition for the second 
triangle inequality in Line 7, which is proposed under con-
sideration for further refining effective calculations. 
Its derivation process is described in detail as follows. Ac-
cording to the principle of triangle inequality, for any three 
points x, y and z, d(x, z)<d(x, y)+d(y, z) and d(x, z)>d(x, y)-
d(y, z), where d( , ) is a distance metric function. Assume 
in Algorithm 2, x is a point, a and b are two centers in C 

(i.e., the center in the previous iteration), a’ and b’ are two 
centers in C’ (i.e., the center in the current iteration), as 
shown in Figure 2. Thus for the triangle Δaxb’, d(x, 
b’)>d(a, b’)-d(x, a); and for Δaxa’, d(a, a’)+d(x, a)>d(x, 
a’). If d(a, b’)-d(x, a)>d(a, a’)+d(x, a), i.e., d(x, 
a)<1/2*(d(a, b’)-d(a, a’)), then d(x, b’)>d(x, a’). 

b
b'

a'

a x  
Figure 2. An instantiation for the second bound in Line 7 of Algorithm 2. 

Experiment and Analysis 

Dataset and Evaluation Metrics 
Our dataset is established based on two benchmark datasets 
of Corel30k and Nus-Wide. To evaluate the performance, 
we employ the benchmark metric of Normalized Mutual 
Information (NMI) and two metrics of Average Clustering 
Accuracy (ACA) and Average Clustering Entropy (ACE). 
The higher value of NMI or ACA appears better clustering, 
but the lower ACE indicates the excellent clustering. 
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where Ω is the cluster set after clustering; C is the ground-
truth cluster set; I=(Ω, C) represents the mutual infor-
mation; and H(Ω) and H(C) denote the entropy values. 
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where CA(ωi) indicates the clustering accuracy for the 
cluster ωi, TagSet(Imgi) is the tag set for the image Imgi; 
Topic(ωi) is a concept that has the highest correlation with 
ωi,; and δ(TagSet(Imgi), Topic(ωi)) is to judge whether the 
annotation for an image in the cluster contains the most 
important concept that can be representative of this cluster. 
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where M is the number of different tags in the same cluster; 
and P(tagl) is the occurrence probability of the lth tag in ωi. 

Experiment on Parameter Setting 
To show the effect of the important parameter α in Formu-
la (13) on the whole clustering performance, we compare 
the performance rising speeds for different settings of α, as 
shown in Figure 3. It can be observed that on Corel30k, the 
NMI, ACA and ACE have no significant fluctuations under 
different settings of α. This implies the smaller correlation 
gap between the visual and semantic feature spaces ob-
tained on this dataset. However, the different situation ap-
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pears on Nus-Wide. The NMI and ACA decrease with α in-
creasing while the ACE rises, which means the weak con-
sistency between two modalities in such a dataset. Thus we 
set α as 0.3 to make a trade-off for better performance. 

 
Figure 3. The experimental results for different settings of α. 

Experiment on Cross-modal Image Clustering 
Our modal is created by integrating Multimodal Feature 
Generation (MFG) [Visual/Semantic Feature Generation 
(VFG/SFG)], Multimodal Feature Fusion (MFF) and 
AHKMC. To investigate the effect of each part, we intro-
duce three evaluation patterns: 1) Baseline(MFG_VFG) 
[BMV]; 2) Baseline(MFG_SFG) [BMS]; and 3) Base-
line(MFG_VFG&SFG)+MFF [BMV&S+MFF]. The exper-
imental results are shown in Figure 4, 5 and 6. 

 
Figure 4. The experimental results for NMI on Corel30k and Nus-Wide. 

 
Figure 5. The experimental results for ACA on Corel30k and Nus-Wide. 

 
Figure 6. The experimental results for ACE on Corel30k and Nus-Wide. 

 It can be seen from Figure 4 that on Corel30k and Nus-
Wide, we can obtain the best NMI value of 0.5802 in the 
evaluation pattern of fusing Baseline with MFG_VFG, 
MFG_SFG and MFF. In comparison with the baseline 
model using unimodal visual information, the performance 
could be greatly promoted by successively adding 
MFG_SFG and MFF, which confirms the obvious ad-

vantage of our cross-modal clustering. Compared two 
baseline models using unimodal visual and semantic fea-
ture information, the performance with semantic feature 
generation appears better, which shows the beneficial ef-
fect of semantic feature on image clustering. Compared 
two models with unimodal semantic and multimodal fea-
ture information, our cross-modal clustering can still gain 
the significant advantage for the performance on both 
Corel30k and Nus-Wide. Compared the results for different 
numbers of feature dimension, we can observe that with 
the dimension increasing, the performance gradually be-
comes pretty good. These results are consistent with what 
we expect considering more valuable multimodal feature 
information. Compared the results on Corel30k and Nus-
Wide, the results on Nus-Wide appear less performant due 
to the differences between these two datasets. Corel30k is a 
relatively small-scale dataset with normative and consistent 
annotations and the images in the same cluster have the 
higher visual similarity, while Nus-Wide from Flickr is a 
relatively large-scale dataset with more obvious character-
istics of social annotated images, such as noisy tag, redun-
dant tag, missing tag, etc. As shown in Figure 5 and 6, the 
same conclusions as above can be drawn from the ACA and 
ACE on Corel30k and Nus-Wide, which show the consist-
ence of our model on different indicators. All these obser-
vations indicate that the CCA-based multimodal feature fu-
sion have more positive effect on image feature description, 
which can exactly yield the significant performance im-
provement more than only considering the unimodal fea-
ture representation. It can be found that our cross-modal 
manner is obviously superior to the traditional unimodal 
methods and more suitable for the optimized clustering in 
the complicated environment of social annotated images. 
 In addition, to explore the efficiency advantage of our 
framework with AHKMC, we focus on making a compari-
son of the time cost between the accelerated clustering in 
AHKMC and the general k-means clustering under the 
same settings of initial condition. The curves of clustering 
time are shown in Figure 7. With the number of feature 
dimension increasing, the general k-means manner can get 
the fast clustering within 313 and 16,304 seconds on 
Corel30k and Nus-Wide respectively. In contrast, the ac-
celerated clustering time in AHKMC can be dramatically 
decreased to 63% (196 seconds) and 81% (13,200 seconds) 
of those with the general k-means clustering on Corel30k 
and Nus-Wide respectively, which gives no side-effects on 
the performance and contributes the better efficiency. 

  
Figure 7. The comparison results for clustering time. 
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 It’s worth noting that in our optimized clustering algo-
rithm, the in-depth multimodal analysis is available and 
presents more impactful ability for discovering the mean-
ingful multimodal features and correlations. Our frame-
work can not only significantly improve the clustering per-
formance via CCA, but also greatly reduce the time cost 
via AHKMC. The same conclusions can be drawn from the 
different sets of Corel30k and Nus-Wide, which show the 
consistence of our model on different data sources. An in-
stantiation of some clusters is shown in Figure 8. 

 
waves             flowers 

Figure 8. An instantiation of some cross-modal clusters. 

Comparison with Existing Approaches 
Compared to the common image clustering methods in re-
cent years, our approach is a new exploration for taking 
full advantage of CCA to integrate multimodal information 
in clustering large-scale annotated images. To give full ex-
hibition to the superiority of our model, we have performed 
a comparison between our and the other classical ap-
proaches for the past few years. Rege et al. (2009) (Rege) 
and Fu et al. (2011) (Fu) are analogous with ours, and were 
accomplished on the same dataset of Corel30k and a tai-
lored subset of Nus-Wide (26,965 images, selecting one 
image every other ten images). This is because it must take 
a massive memory to implement Rege&Fu on the original 
Nus-Wide. The results are presented in Table 1, which re-
flect the difference of power among three approaches. 

Dataset Approaches Feature 
 Dimensions 

Evaluation Metrics 
NMI ACA ACE 

Corel30k 

Rege et al. (2009) (Rege) - 0.4724 0.7096 3.3587 
Fu et al. (2011) (Fu) 320 0.2314 0.4488 3.2375 

Our Approach 

Baseline [BMV] 512 0.3495 0.4219 4.4281 
Baseline [BMS] 512 0.5727 0.9259 2.5578 

BMV&S [MFG] 
+MFF+AHKMC 

8 0.5004 0.6809 3.1387 
16 0.5443 0.7447 2.9469 
32 0.5692 0.7992 2.7302 
64 0.5766 0.8468 2.6235 
128 0.5755 0.8855 2.5343 
256 0.5780 0.9106 2.5539 
512 0.5802 0.9463 2.5041 

Nus-Wide 

Rege et al. (2009) (Rege) - 0.2542 0.1258 5.2656 
Fu et al. (2011) (Fu) 704 0.1365 0.2807 4.1142 

Our Approach 

Baseline [BMV] 512 0.2155 0.2768 5.8589 
Baseline [BMS] 512 0.3627 0.9388 4.2252 

BMV&S [MFG] 
+MFF+AHKMC 

8 0.2973 0.3879 4.9599 
16 0.3269 0.5078 4.6864 
32 0.3515 0.6779 4.3076 
64 0.3937 0.8192 4.0111 
128 0.4066 0.9116 3.8776 
256 0.4081 0.9591 3.8956 
512 0.3927 0.9757 3.9612 

Table 1. The comparison results between our and the other approaches. 

 It can be found from Table 1 that the best performance 
can be acquired on Corel30k and Nus-Wide by our ap-

proach. Compared the results of Rege/Fu and our baseline 
model with VFG, we can find the better performance ap-
pears in Rege/Fu. However, when integrating MFG_VFG, 
MFG_SFG, MFF and AHKMC, we can acquire the obvi-
ously better performance than those of Rege/Fu with lower 
feature dimensions. As the numbers of dimension are set as 
16 and 64 on Corel30k and Nus-Wide respectively, all the 
values of NMI, ACA and ACE based on our approach have 
been dramatically higher than those based on Rege/Fu. 
With the feature dimension increasing, our approach re-
veals more significant advantage. This indicates that our 
approach is superior to Rege/Fu, and further confirms the 
prominent roles of MFG and MFF in cross-modal cluster-
ing, which implies that our model is exactly a better way 
for determining multimodal associations among images. 

Analysis and Discussion 
Through the analysis for the clustering results, it can be 
found that our cross-modal clustering quality is highly re-
lated to the following aspects. (1) The clustering effect is 
closely associated with the preprocessing for annotated im-
ages. It’s easier to introduce error or noisy detections for 
visual and semantic feature information, which will seri-
ously affect the whole clustering performance. (2) There is 
abundant information connotation involved in visual image. 
It’s empirically realized that only using visual features is 
not sufficient for well formulating the distinguishability 
among image classes. The intensive visual feature expres-
sion can be utilized to further improve the clustering effec-
tiveness and stableness. (3) There are different multimodal 
attributes among different annotated images. Although 
more obvious performance superiority has been exhibited 
via our CCA-based multimodal feature fusion, it’s very 
beneficial to exploit an adaptive fusion between visual and 
semantic feature for each annotated image. (4) Some anno-
tated images present an extreme vision with wrong or even 
without any valid annotations. With very limited useful 
annotation information and too much noises, it’s hard for 
such images to successfully implement precise cross-modal 
clustering. This may be the most stubborn problem. 

Conclusions and Future Work 
A new framework is implemented to exploit multimodal 
correlations among annotated images to enable more effec-
tive cross-modal clustering. The in-depth feature analysis 
is established for characterizing the multimodal attributes 
for annotated images. The CCA-based multimodal feature 
fusion is introduced to acquire the specified multimodal 
feature expressions. The AHKMC manner is exploited to 
solve the efficiency for optimized clustering. Our future 
work will focus on making our system available online, so 
that more Internet users can benefit from our research. 
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