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Abstract
An important area of social network research is identifying
missing information which is not explicitly represented in the
network or is not visible to all. In this paper, we propose a
novel Hybrid Approach of Classifier and Clustering, which
we refer to as HACC, to solve the missing node identification
problem in social networks. HACC utilizes a classifier as a
preprocessing step in order to integrate all known informa-
tion into one similarity measure and then uses a clustering
algorithm to identify missing nodes. Specifically, we used the
information on the network structure, attributes about known
users (nodes) and pictorial information to evaluate HACC and
found that it performs significantly better than other missing
node algorithms. We also argue that HACC is a general ap-
proach and domain independent and can be easily applied to
other domains. We support this claim by evaluating HACC on
a second authorship identification domain as well.

Introduction
Data clustering has been used for more than 50 years in or-
der to find a natural grouping of a set of patterns, points, or
objects based on similarity or dissimilarity measures (Jain
2010). The main challenge is to find the measures that
can improve clustering accuracy. To achieve this goal, in
this paper we propose HACC, a novel Hybrid Approach of
Classifier and Clustering, for solving the missing node iden-
tification problem in social networks. Additionally, we ar-
gue that our approach is general and domain independent
and can be easily applied to other domains. The novelty of
HACC is its use of a small collection of labeled objects to
tune and learn a classifier as a preprocessing step in order to
integrate all known information into one similarity measure.
The classifier learning is done only once and in advance, us-
ing labeled objects of different clusters than the clusters of
the unlabeled data. Later, HACC can use this classifier to fa-
cilitate and improve the clustering result of different, large
collections of unlabeled objects. To the best of our knowl-
edge, HACC is the first algorithm to combine the use of su-
pervised classifiers as a preprocessing step before activating
the unsupervised clustering algorithm of objects of different
clusters than the unlabeled ones.

Machine learning methods including clustering and clas-
sification are well-established and have been used in a vari-
Copyright c© 2015, Association for the Advancement of Artificial
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ety of fields (Bishop 2006; Jain 2010). Several researchers
have also suggested combining several methods of classifi-
cation in order to yield better results (Kuncheva 2004). Ex-
amples of hybrid methods containing both clustering and
classification classification were presented by Nguyen and
Armitage, (Nguyen and Armitage 2008) and Shrot et al.
(Shrot et al. 2014). However, these works used the clustering
algorithm as a first step of unsupervised classification before
a second, refinement step of supervised classification. Other
work (Basu, Bilenko, and Mooney 2004) suggested a semi-
supervised clustering framework, where the performance of
unsupervised clustering algorithms can be improved with
limited amounts of supervision in the form of labels on the
data or constraints. They proposed a principled probabilistic
framework based on Hidden Markov Random Fields (HM-
RFs) for semi-supervised clustering that combined the ex-
isting constraint-based and distance-based approaches in a
unified model. However, their model assumed that part of
objects needs to be clustered is labeled, while in HACC the
classifier is learned in advance. Another difference is that the
HACC classifier is based on a different set of labeled objects
and clusters than the objects currently being processed.

To better understand HACC’s novelty, consider the au-
thorship identification domain. Existing works on authorship
identification are unsupervised or supervised, where the au-
thor’s model is learned based on the same author’s previ-
ous publications (Stamatatos 2009). The generalization of
the learned model is for new publications of the same au-
thors, as the tagging of both sets is the same. In contrast,
HACC learns models from one set of authors and generalizes
its model to identify another set of authors. Here, the gen-
eralization is from one set of authors and their publications
to identify a new set of authors and their new set of pub-
lications. As such, the tagging sets of the learned data and
the testing data are different – not only the data points. The
advantage of HACC’s type of learning is that it facilitates
a hybrid model that creates a classifier which is not used
for categorization, but instead as input for a second learning
model in HACC.

The main contribution of HACC is the way it utilizes a pre-
learned classifier as a preprocessing step. HACC creates one
combined affinity measure between each object pair, which
is the classifier’s confidence score, that measures the prob-
ability that two objects needing to be clustered will be in
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the same cluster. We first demonstrate how HACC can be
implemented in order to solve the missing node identifica-
tion problem (Eyal, Rosenfeld, and Kraus 2011), which lo-
cates and identifies missing nodes within the network. For
this domain, we conducted a thorough study which includes
an intensive evaluation and analysis of 5 different types of
classifiers and 12 different sets of domain features. We show
that HACC performs significantly better than other missing
node algorithms. To support the claim that HACC is domain
independent and can be easily applied to other web domains,
we also implemented HACC for an authorship identification
task and again found that HACC performs significantly better
than the baseline algorithm (Akiva and Koppel 2013).

HACC and Problem Definition
HACC proposes combining supervised classifiers as a pre-
processing step before activating a clustering algorithm in
order to effectively cluster a group of unlabeled objects. The
goal of the clustering task is to discover the natural grouping
of these unlabeled objects.

Problem Definition Suppose we have a set of data objects,
D, which has an inherent clustering scheme and should
be clustered into x clusters such that C(D) represents all
x clusters. For example, the data’s clusters may represent
nodes originating from a person within a social network or
clusters of documents that an author wrote.D is divided into
a set, O, of unlabeled data and a small additional collection
of labeled objects Ô from D which is already labeled with
its representative clusters. However, Ô << O and no over-
lap exists between the two sets (i.e. Ô∩O=∅). Additionally,
assuming |C(O)|=K and |C(Ô)|=K̂, then x =K+K̂, mean-
ing that the clusters from Ô do not appear withinO such that
C(Ô) ∩ C(O)=∅. Our goal is to utilize Ô to help create the
best possible division of O to K clusters.

The HACC Algorithm HACC is a two-staged algorithm,
where its novelty is how it uses Ô to predict object pairs’
confidence score in order to improve the clustering perfor-
mance. The HACC algorithm is defined as follows:

1. Builds a classifier (Offline):
(i) Inputs vectors of similarity features for all object pairs
in Ô together with a label whether or not they belong to
the same cluster or not;
(ii) Returns a probabilistic confidence score whether they
are in the same cluster.

2. Clusters objects in O (Online):
(i) Calculates the similarity feature vectors, this time from
all pairs of data objects inO, and inputs them into the clas-
sifier created at stage one to obtain the confidence score
for each object pair;
(ii) Uses the confidence scores as a combined affinity mea-
sure to create an affinity matrix for all pairs in O;
(iii) Runs a clustering algorithm, such as K-means, that
uses the affinity matrix as its input.

Note that the feature vectors of the classifier are similarity
measures and thus are associated with each pair of objects
and not with a single object.

The Evaluation Measure We used purity as our primary
evaluation measure in order to gauge the effectiveness of
clustering algorithms as it is an accepted measure of check-
ing the quality and accuracy of clustering algorithms (Strehl
and Ghosh 2003). The purity measure is calculated in the
following two steps: Step one – each cluster is classified ac-
cording to the true classification of the majority of samples
in that cluster. Here, we classified each cluster according to
the most frequent grouping label of the objects in that clus-
ter; Step two – the number of correctly classified samples in
all clusters are counted and divided by the number of sam-
ples. In our case, the number of samples that are classified
is |O|. Formally, in our problem setting, where ck is defined
as the set of objects which were assigned to cluster k, and
the objective truth for a sample o∈O is denoted t(o), purity
is defined as: purity(C) = 1

|O|
∑

kmaxc∈C(O)|ck ∩ {o ∈
O | t(o) = c}|.

To demonstrate how HACC can be applied to two web do-
mains, we now present a thorough study of the missing node
identification problem as well as a brief study of the author-
ship identification problem.

The Missing Node Identification Problem
We begin with a background about the missing node identifi-
cation problem. We then formally define the problem which
we address, describe how HACC is implemented in this do-
main, and our experimental setup.
Overview and Background We focus on a specific varia-
tion of the missing nodes problem where the missing nodes
requiring identification are “friends” of known nodes, as pre-
viously done with the MISC and SAMI based algorithms
(Eyal, Rosenfeld, and Kraus 2011; Sina, Rosenfeld, and
Kraus 2013). An unidentified friend is associated with a
“placeholder” node to indicate the existence of the miss-
ing friend. Thus, a given missing node may be associated
with several “placeholder” nodes, one for each friend of the
missing node. Following this approach, the missing node
challenge is to try to determine which of the “placeholder”
nodes are associated with the same unidentified friend and
thus to find the correct clustering of the “placeholder” nodes.
To better understand this problem, consider the follow-
ing example: A hypothetical company, Social News Inc.,
is running an online news service within LinkedIn. Many
LinkedIn members are subscribers of this company’s ser-
vices, yet it would like to expand its customer base. So-
cial News maintains a network of users, which is a subset
of the group of LinkedIn users, and the links between these
users. The users of LinkedIn who are not members of the ser-
vice are not visible to their system. Social News Inc. would
like to discover the LinkedIn nodes to lure them into joining
their service. The company is thus faced with the missing
nodes identification problem. By solving this problem, So-
cial News Inc. could improve its advertising techniques and
target users who have not yet subscribed to their service.

The missing node identification problem has recently
generated research interest. Previously, Eyal et al. (Eyal,
Rosenfeld, and Kraus 2011; Eyal et al. 2014) presented the
MISC algorithm in order to solve this problem. MISC com-
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Figure 1: A full network, the known network and the visible
network obtained (right) by adding the placeholders for the
missing nodes 1 and 5, which need to be united into clusters.

bines spectral clustering algorithms (Ng, Jordan, and Weiss
2001) and metrics built for the missing link problem (Liben-
Nowell and Kleinberg 2007). The main idea behind their
work was to embed a set of data points, which should be
clustered, in a graph structure representing the affinity be-
tween each pair of points based on the structure of the net-
work. Kim and Leskovec (Kim and Leskovec 2011) tackled
the network completion problem, which is a similar problem
that deals with situations where only a part of the network
is observed and the unobserved part must be inferred. They
proposed the KronEM algorithm, which uses an Expecta-
tion Maximization approach and where the observed por-
tion of the network is used to fit a Kronecker graph model of
the full network structure. Sina et al. (Sina, Rosenfeld, and
Kraus 2013) extended the missing node identification prob-
lem by considering how to incorporate information about
the known nodes in the network in order to improve per-
formance. They presented the SAMI-A and SAMI-N al-
gorithms, which used different ways to integrate the addi-
tional attributes’ information about the known nodes with
the network structure’s affinity measure. They showed that
these algorithms, which leverage the additional information,
achieve predictions with significantly better quality than
both the KronEM and MISC algorithms, which only used
information about the network’s structure. However, none of
these previous works considered how to generally incorpo-
rate information, including pictorial information which has
become ubiquitous in many social networks, as we do in this
work. The challenge in this type of data is that it requires a
model that can handle missing features as many of the nodes
have no pictures.

The idea of using information from specific nodes was
previously considered in a variety of different problems.
Several previous works (Gong et al. 2011; Yin et al. 2010)
proposed a model to jointly infer missing links and miss-
ing node attributes by representing the social network as an
augmented graph where the nodes’ attributes are represented
as special nodes in the network. Other approaches stud-
ied different ways of leveraging information about known
nodes within the network in order to better solve the miss-
ing link or missing attribute problems. For example, Freno
et al. (Freno, Garriga, and Keller 2011) proposed a super-
vised learning method which uses both the graph structure
and node attributes to recommend missing links. Pictures
in social networks are also considered in a variety of dif-
ferent problems. These problems include cascade prediction
in the network (Cheng et al. 2014), placing images on the
world map (Hauff and Houben 2012) and learning influ-
ence in the social network (Goyal, Bonchi, and Lakshmanan

2010). However, these works use the pictures’ descriptions,
tags and some properties, such as color histograms, but do
not consider the relative similarity of pictures as in the PIC
measure we propose.

Problem Definition We assume that there is a social net-
work represented as an undirected graphG=(V,E), in which
n=|V | and e=〈v, u〉∈E represents an interaction between
v∈V and u∈V . In addition to the network structure, each
node vi∈V is associated with an attribute vector ~AVi of
length l and a set of pictures IM i of size l2. We assume that
each attribute in the attribute vectors is a binary value, i.e.
each node has or does not have the attribute. Formally, we
define a binary attribute matrix A of size nxl where Ai,j in-
dicates whether or not a node vi∈V has an attribute j. Some
of the nodes in the network are missing and are not known
to the system. We denote the set of missing nodes Vm ⊂ V ,
and assume that the number of missing nodes is given as
K=|Vm|.

We denote the rest of the nodes as known, i.e., Vk=V \Vm,
and the set of known edges is Ek = {〈v, u〉 | v, u ∈
Vk ∧ 〈v, u〉 ∈ E}. In order to identify the missing nodes,
we focus on the visible part of the network that is available
Ga=(Va, Ea). In this network, each of the missing nodes is
replaced by a set of placeholders. Formally, we define a set
Vp for placeholders and a set Ep for the associated edges.
For each missing node v∈Vm and for each edge 〈v, u〉∈E,
u∈Vk, a placeholder is created. That is, for each original
edge 〈v, u〉 we assume that there is a placeholder v′ for v in
Vp and the placeholder is connected to the node uwith a new
edge 〈v′, u〉, which belongs to Ep. When these components
are considered together, Va=Vk∪Vp andEa=Ek∪Ep. As for
a given missing node v, there may be many placeholders in
Vp. The missing node challenge is to try to determine which
of the placeholders should be clustered together and associ-
ated with the original v, thus allowing us to reconstruct the
original social network G.

To better understand this formalization, consider the fol-
lowing example: Assume we have a gamers’ network where
users may choose to register or remain anonymous before
playing. An edge between two users indicates that these two
users played a game together. We might have additional in-
formation regarding the registered users, such as pictures,
origin, group membership and playing time. We consider
the registered users to be the known nodes, while the anony-
mous users are the placeholders. We would like to identify
which of the anonymous users are actually the same person.

Domain Features The success of a clustering algorithm
depends on its affinity matrix - a calculated measure be-
tween each pair of nodes in the network, which is used to
determine which of the placeholders are associated with the
same source node. In HACC, we input vectors of similar-
ity features for all node pairs to create the classifier model.
This model returns as output a confidence score which is
entered into a matrix and then used for the clustering al-
gorithm. We considered as input a variety of known simi-
larity measures as fields within the vectors. These include
features based on network structure that were previously
studied (Eyal, Rosenfeld, and Kraus 2011). Specifically, we
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used the two structure similarity measures that previously
yielded the best results: the Relative Common Neighbors
(RCN) measure (Liben-Nowell and Kleinberg 2007) and the
Adamic/Adar (AA) measure (Adamic and Adar 2003), and
a third structure similarity measure which is the combina-
tion of the two measures (RCN+AA), formally defined as
(RCN+AA)ij= 1

2 (RCN ij+AAij). Additionally, we used
two other similarity measures which are not based on the
general structure of the network, but similarities between
the attributes of a specific pair of nodes, vi and vj . The first
measure is based on a previously developed measure of the
common attributes between nodes (ATT) (Sina, Rosenfeld,
and Kraus 2013) and a second measure based on picture
similarity (PIC) is new to this work. We defined the pic-
ture similarity, PIC, as: PICij=MatchConf(i, j), where
MatchConf(i, j) represents the highest matching confi-
dence between the pictures associated with nodes i and j, and
zero if one of the nodes does not have any pictures. To cal-
culate the matching confidence, we used a free web service
for face detection and recognition http://betafaceapi.com/.

The MI-HACC Algorithm
Algorithm 1 (MI-Alg) presents the pseudocode for solv-
ing the missing node identification problem. The strength
of the HACC approach is the novel way the affinity ma-
trix is calculated in line 1. Our proposed algorithm, which
we refer to as MIC (Missing node Identification using a
Classifier) uses the MI-Alg algorithm as the basis of the
implementation of the HACC approach. We implemented
several variations of the MIC algorithm for different types
of classifiers and different subsets of node features as in-
put (defined above). First, and only once offline, we calcu-
lated the feature vectors which are composed of the simi-
larity measures of structure, attributes and pictures for the
training dataset, and used them to learn and store 5 types
of classifiers: decision tree (tree), neural network (nnet),
k-nearest-neighbors (kNN), AdaBoost and Bayes. During
runtime for each one of the learned classifiers, we calcu-
lated the selected similarity measures for the test dataset,
used it as the classifier’s input and set the pairwise affin-
ity according to the classifier confidence score for each
pair of nodes. We created 4 data type variations for each
one of the classifiers which contained a different subset
of the similarity measures: the first was based on struc-
ture only (S), the second on structure and attributes (SA),
the third on the structure and pictures (SP), and last on
the structure, pictures and attributes (SAP). For example,
we define the matrix of affinity measures for the decision
tree classifier with the SAP variation MCTree−SAP−RCN

using the RCN measure as: MCTree−SAP−RCN
ij =

predict(tree,RCNij , P ICij , ATTij). Overall there are 60
instances of the MIC algorithm: 5 classifier types (tree,
nnet, kNN, AdaBoost and Bayes), 4 data types (S,SA,SP
and SAP) and 3 structure similarity types (RCN,AA and
RCN+AA).

Note that although MI-Alg is a generalization of the
MISC algorithm (Eyal, Rosenfeld, and Kraus 2011), it also
introduces a major change in addition to HACC’s novel cal-
culation of the affinity matrix. In contrast to MISC, MI-Alg

no longer processes the affinity measures of missing nodes
through spectral clustering but instead exclusively uses the
K-means clustering algorithm on the placeholders’ affinity
matrix. We chose to implement this change for two reasons:
First, we wanted to improve the performance of the origi-
nal MISC algorithm in large-scale networks. MISC applies
spectral clustering to the affinity matrix of the entire network
(of both known nodes and placeholders), while MI-Alg
applies K-means only on the matrix of a small number of
placeholder nodes; Second, we had to overcome a memory
consumption challenge caused by the ATT measure calcula-
tion, which only yielded a partial solution in previous work
(Sina, Rosenfeld, and Kraus 2013). Our preliminary tests
show that this change improved the runtime and memory
consumption without performance degradation.

Algorithm 1 MI-Alg (Missing node Identification)
Input: Gk=〈Vk, Ek〉 – the known part of the network
Ga=〈Va, Ea〉 – the available visible part of the network
K – the number of missing nodes
Vp – the placeholder nodes
α : G(V,E)→ R|Vp|×|Vp| – a procedure for calculating
the affinity matrix of placeholder nodes in a graph
Output: C ∈ N|Va\Vk| - a vector indicating the cluster
index of each placeholder node,
Ĝ=
(
V̂ , Ê

)
– prediction of the full network graph

1: A← α(Ga) – calculate the affinity matrix of the place-
holder nodes in the graph

2: C← k means(A,N) – cluster the rows which match the
placeholder nodes to K clusters

3: V̂ ← Vk, Ê ← Ek – initialize the output graph to con-
tain the known network

4: For each cluster c ∈ C create a new node vc ∈ V̂
5: For each placeholder v in cluster c and edge (u, v) ∈
Ea, create an edge (u, vc) ∈ Ê

6: Return C, Ĝ=
(
V̂ , Ê

)
The Dataset and The Experimental Setup
We used a previously developed social network dataset,
Steam (Becker et al. 2012) (http://steamcommunity.com), to
empirically evaluate our work. The Steam community net-
work is a large social network of players on the Steam gam-
ing platform. The data we applied is from 2011 and con-
tains 9 million nodes (“anonymous” users) and 82 million
friendship edges. Each user had the following data: country
(the origin of the user; 50% voluntarily provided their coun-
try), member since (the date when the user opened his Steam
account), a list of game playing times and a list of group
memberships. We chose three groups of attributes: coun-
try, playing time and player group association. These three
groups formed a total of 60 attributes – one for the country,
20 attributes of different game playing times and 39 differ-
ent official associations. We first crawled the social network
and only selected nodes that had at least 2 games or groups.
This crawling reduced the dataset size to 1.3 million nodes
(users). We then extracted different network samples, using
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a Forest Fire (FF) walk (Leskovec and Faloutsos 2006). We
crawled a 16K network from this reduced dataset, marked
it as the training dataset and removed the nodes from the
dataset. We then re-sampled the 16K node training dataset
to extract several 2K training networks, which we used as
Ô for learning the MIC classifiers and the parameters of
the comparison algorithm MIWS (described below). Lastly
we extracted several test networks O of different sizes from
the remaining dataset. As the Steam dataset did not have
pictures, we then added public pictures from Facebook’s
users who elected to make their Facebook profiles public.
We crawled 100 sets of pictures from 100 randomly selected
users from this directory and saved them anonymously. Each
set contained 3-8 pictures from a specific profile. We used 50
sets for our training dataset and the other 50 sets for the test
dataset. For each two pictures in each of the picture datasets
(training/test), we calculated the matching confidence prob-
ability using Betafaceapi, a free web service for face detec-
tion and recognition package (http://betafaceapi.com/). Most
of the pictures (80%) contained only 1 figure, while the oth-
ers contained 2 or more figures. In this case, we used the
highest calculated matching confidence probability.

Experimental Setup The experimental setup began by
sampling a network from the dataset. This sampling was re-
peated 10 times, each starting from a different random node,
in order to avoid randomization errors and biases, creating
10 different networks for each size. In the following step, K
nodes were randomly selected as missing nodes. Each one
of these nodes was then randomly associated with one of the
picture sets. This was repeated 10 times from each one of
the networks, resulting in different random instances of the
problem setting for each combination of graph sizes and K.
The randomly selected missing nodes were removed from
each instance. Each missing node was replaced with a place-
holder for each of its links to remaining nodes in the net-
work. Each such placeholder was associated with one pic-
ture of the removed node. If the node had fewer pictures than
numbers of links, some of the placeholders would not have
an associated picture (on average only 54% of the place-
holders had an attached picture). The resulting graph was
inputted into the algorithm, which produced a clustering of
the placeholders. By uniting the placeholders in each cluster
into a new node and connecting the new node to the neigh-
bors of the placeholders in the corresponding cluster, the al-
gorithms created a predicted network. The goal of these al-
gorithms was to predict a network that resembled the struc-
ture of the original network from which the random nodes
were removed. The clustering produced by the algorithms
was evaluated using the purity measure described above, and
the average purity value achieved for all of the instances
and/or for the instances of a specific K was reported. This
result was also averaged over the different instances and/or
for the instances of a specific K and was reported as well.

The Comparison Algorithm We compared our algorithm
to a baseline, denoted MIWS (Missing node Identification
using a Weighted Sum), which is a generalization of the pre-
viously published SAMI-A algorithm (Sina, Rosenfeld, and

Kraus 2013)1. MIWS calculates an affinity measure based on
a weighted sum between the 3 types of similarity measures:
structure, attributes and pictures. Formally, we define the
matrix of affinity measures MARCN using the RCN mea-
sure as:MARCN

ij = (1−wa−wp)∗RCN ij+wa∗ATT ij+
wp ∗ PICij where wa is an input parameter that repre-
sents the relative weight of the attributes’ similarity mea-
sure and wp is an input parameter that represents the relative
weight of the pictures’ similarity measure. Similarly, we de-
fine MAAA

ij for the AA measure and MARCN+AA
ij with the

average of the RCN and AA measures. Here we also con-
sidered different subsets of similarity measures, thus over-
all there were 12 instances of the MIWS algorithm: 4 data
types (S,SA,SP and SAP) and 3 structure similarity types
(RCN,AA and RCN+AA).

Training the Algorithms
We used the training datasets to empirically learn the do-
main dependent classifiers for MIC and the domain optimal
weights wa and wp for the comparison algorithm MIWS.
The Classifiers For the MIC algorithms, we used the
training datasets to learn the 5 types of classifiers (tree,
nnet, kNN, AdaBoost and Bayes) with the 4 data types
(S,SA,SP and SAP) and 3 structure affinity types (RCN,AA
and RCN+AA). Using the 2K training sample networks
and the 50 training sets of pictures, we calculated the 5
affinity measures (RCN, AA, RCN+AA, ATT and PIC) for
the 50 missing nodes configuration and saved the data as
a list of rows as follows. For each two placeholders, i, j
(i6=j), the row includes the affinity measures (RCN ij ,AAij ,
RCN +AAij ,ATT ij , PICij) and an additional Iij value
of 1 or 0, which indicates whether or not the two placehold-
ers originated from the same node. We repeated the run 10
times over the six training networks. As this data was unbal-
anced (only 2% of the data have an indicator Iij of value 1),
we undersampled the rows with an indicator Iij of value 0,
using a uniform probability of 5%. This undersampling pro-
duced data in which 28% of the rows had an indicator Iij of
value 1. We used this data to train and save the 60 variations
of classifiers (using Matlab 2013). To evaluate these classi-
fiers, we generated test data using an additional 2 runs over
the six training networks. This time we did not undersam-
ple the data. We found that the average of the accuracy and
precision (for class 0) measures were usually (all excluding
kNN) high (over 95%), while the recall values (for class 1)
were between 48%-65%.
The Weight Parameters In the MIWS algorithms, the
weights wa and wp are used for the weighted sum be-
tween the structure affinity, the attributes affinity and the
pictures affinity. We ran the MIWS algorithm with 3 data
types (SA,SP and SAP) and 3 structure similarity types
(RCN,AA and RCN+AA) using the 2K training sample
networks, the same 5 missing node values (10, 20, 30,

1We chose not to compare MIC to the original MISC algorithm,
which uses spectral clustering, nor to KronEM, another recently
developed algorithm which only uses the network graph structure,
as our preliminary tests showed that MIWS outperformed both of
these algorithms.
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40 and 50) and a range of weights between 0.2 and 0.8
with steps of 0.1. We repeated the run 10 times over the
six training networks we had. Based on the training re-
sults, the best results for the SA and SP data types were
achieved with wa=0.5 for MIWS-SA-RCN and wa=0.6 for
both MIWS-SA-AA and MIWS-SA-RCN+AA, wp=0.5 for
both MIWS-SP-RCN and MIWS-SP-AA and wp=0.4 for
MIWS-SA-RCN+AA. For the SAP data type, the best results
were achieved with wa=0.3, wa=0.3 for MIWS-SAP-RCN
and wa=0.5 and wa=0.2 for both MIWS-SAP-AA and
MIWS-SAP-RCN+AA.

(a) Different missing nodes

(b) Different network sizes

Figure 2: The purity results with the RCN+AA measure.

Evaluation and Results
We evaluated the two sets of configurations for the MIC
and MIWS algorithms. We proceeded to compare the 10 net-
works of sizes 10K, 25K and 100K described above where
we randomly removed sets of 10, 20, 30, 40, and 50 miss-
ing nodes. We repeated each configuration 10 times to ob-
tain 100 results for each one of the missing nodes’ values.
Table 1 shows the average results for all missing node val-
ues for the different algorithm variations for the 10K, 25K
and 100K node networks. MIC-nnet-SAP for all 3 vari-
ations of structure affinity (with no significant difference
found between their results) outperformed MIWS and also
all other MIC variations for all network sizes. For exam-
ple, the result for the 100K node networks of RCN+AA
MIC-nnet-SAP was found to be significantly better com-
pared to RCN+AA MIWS-SAP (the ANOVA results at 0.05
is 4.75E-54). The results also confirm our claim that the ad-
ditional pictorial information can improve the missing node
identification compared to the previously known algorithms
(MIWS-S and MIWS-SA) as depicted in Figure 2. This im-

provement is also true for MIC. For example, the results with
the AA measure of MIC-nnet-SAP and MIC-nnet-SP
were found to be significantly better than MIC-nnet-SA
and MIC-nnet-S (the ANOVA results at the 0.05 level are
p=4.49E-22, 2.78E-53, 0.16E-2 and 2.48E-22, respectively).
Moreover, the results also show that HACC outperformed the
previous algorithm even when a single, same feature such as
the structure feature is exclusively considered. Table 1 shows
that the MIC-nnet-S provided better results than MIWS-S
for the 3 variations of structure affinity.

The Authorship Identification Problem
To demonstrate the generality of HACC, we chose to imple-
ment it on a second authorship identification task. Similar
to the missing node identification problem, in this task there
also were objects that needed to be identified as originating
from a person. However, in this task instead of finding miss-
ing nodes, we needed to identify which anonymous docu-
ments originated from a given person.
Overview and Background Authorship analysis has a
long history and the problem of clustering a set of anony-
mous documents according to authorship has been exten-
sively explored (Stamatatos 2009). While the research origi-
nally started by focusing on literary works of disputed or un-
known authorship, it also has been extended to web applica-
tions for purposes such as verifying the authorship of emails,
blogs and web talkbacks (Cheng, Chandramouli, and Sub-
balakshmi 2011). Recent work (Layton, Watters, and Daze-
ley 2013) tried to cluster multiple documents, each of which
written by a single author, while other work (Akiva and Kop-
pel 2013) focused on a harder problem that aimed to seg-
ment a single unsegmented document according to author-
ship, with no guarantee that any unit longer than a single
sentence was written by a single author. Other works also
considered the problem of author identification or decom-
posing a document according to authorship, but their meth-
ods were supervised (Stamatatos 2007; Graham, Hirst, and
Marthi 2005).
Problem Definition We studied the previously proposed
author-clustering problem variation (Layton, Watters, and
Dazeley 2013; Akiva and Koppel 2013). Briefly, given a col-
lection of unlabeled texts taken from the works of multiple
authors, our objective was to divide the texts of the respec-
tive authors into sets, given the number K of authors.
Domain Features We considered the M words that appear
in the greatest number of different articles in the combined
corpus as previously done (Akiva and Koppel 2013). We
used two variations of this vector, one with a binary repre-
sentation of a text and the other with its frequency. Accord-
ingly, we calculated two similarity features for each pair of
texts: one based on the binary vectors (Ratio) and the other
based on the vectors with the word frequency (Cosine).
The AI-HACC Algorithm For the HACC implementation,
we first found the M words that appeared in the greatest
number of different articles and for each pair of texts we
calculated the Ratio and the Cosine measures. We tuned the
classifier in the same way we did for the Missing Node Iden-
tification, using a different training dataset (described next),
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and the classifier confidence score as the affinity measure for
the K-means clustering algorithm.
The Dataset and the Experimental Setup For our exper-
iments, we used texts on the same topic from the Reuters
Corpus Volume 1 (RCV1). Specifically, we used the Reuter-
50-50 dataset2, which contains an online database with 5000
classified articles, 100 articles of 50 authors, divided into
training and test sets for each author. One advantage of this
dataset was its generality. It had been previously used in web
classification tasks such as gender identification in e-mails,
blogs and chatrooms (Cheng, Chandramouli, and Subbalak-
shmi 2011).

Our algorithm used 10 authors as a training dataset, Ô,
to learn the classifiers, and the other 40 authors as the test
dataset, O, for comparison. The experimental setup began
by choosing K authors randomly. It then chose 2-8 random
texts for each of the K chosen authors. These selected texts
were then delivered to the different algorithms. Finally we
calculated the purity of the clustering results for each one of
the algorithms according to their labels in the dataset.
The Comparison Algorithm We compared HACC to the
algorithm presented in (Akiva and Koppel 2013) for the
author-clustering problem. Their algorithm, which we de-
note AkivaKoppel, considers only the M words that ap-
pear in the greatest number of different articles in the com-
bined corpus and uses only the binary vector representation
of a text. Their algorithm takes the binary vectors as input,
calculates the similarity measure between each pair of texts
and delivers it to the n-cut clustering algorithm.
Evaluation and Results We repeated the experiment 40
times with K=10,20,30,40, which produced 160 different
problem instances. We tested 3 configurations using the
most common M words (M=500,1000,1500) that appear
across the articles. For the HACC algorithm, we used a
neural network classifier which previously provided the
best results. Note that in the 1500 word configuration, the

2Dataset creator and donator: Zhi Liu, liuzhi8673@gmail.com,
National Engineering Research Center for E-Learning, China.

features calculation in HACC was done using all of the
words. Table 2 shows the average purity results over all the
runs with the different selection of the top words for the
AvikaKoppel and HACC-nnet. Overall, HACC-nnet
outperformed AvikaKoppel and demonstrated that the
additional step of tuning a classifier in the training set can
improve the authorship identification solution.

Table 2: Author identification purity results.

Conclusions and Future Work

This paper represents, to the best of our knowledge, the first
work to combine supervised classifiers on clusters different
than the clusters of the unlabeled objects as a preprocess-
ing step before activating the clustering algorithm in order
to divide a group of objects into K separate sets. The general
HACC approach is particularly suitable when additional in-
formation is available which can be incorporated in a quick
and efficient way. We believe that we also are the first to
study the missing node identification problem by including
information from pictures (which become more ubiquitous)
together with the network structure and the attribute infor-
mation of known nodes. Including pictorial data introduces
a new research challenge as it requires a model that can han-
dle missing features as many nodes have no pictures. The
main key contributions of this paper are: (i) demonstration
of how the novel HACC approach first utilizes a classifier as
a preprocessing step in order to create one combined affinity
component measure and (ii) showing that this general algo-
rithm can be used to outperform known algorithms in web
learning tasks such as the missing node identification prob-
lem and the authorship identification task. In the future, we
would like to further explore the potential of our novel ap-
proach with other datasets, different domains and different
similarity measures.
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