
Handling owl:sameAs via Rewriting

Boris Motik, Yavor Nenov, Robert Piro and Ian Horrocks
Department of Computer Science, Oxford University

Oxford, United Kingdom
forename.lastname@cs.ox.ac.uk

Abstract

Rewriting is widely used to optimise owl:sameAs reason-
ing in materialisation based OWL 2 RL systems. We inves-
tigate issues related to both the correctness and efficiency of
rewriting, and present an algorithm that guarantees correct-
ness, improves efficiency, and can be effectively parallelised.
Our evaluation shows that our approach can reduce reasoning
times on practical data sets by orders of magnitude.

1 Introduction
RDF (Manola and Miller 2004) and SPARQL (Harris and
Seaborne 2013) are increasingly being used to store and ac-
cess semistructured data. An OWL ontology (Motik, Patel-
Schneider, and Parsia 2012) is often used to enhance query
answers with tuples implied by the ontology and data, and
the OWL 2 RL profile was specifically designed to allow
for tractable rule-based query answering (Motik et al. 2012).
In practice, the latter often involves using a forward chain-
ing procedure in which the materialisation (i.e., all conse-
quences) of the ontology and data is computed in a prepro-
cessing step, allowing queries to be evaluated directly over
the materialised triples. This technique is used by systems
such as Owlgres (Stocker and Smith 2008), WebPIE (Urbani
et al. 2012), Oracle’s RDF store (Wu et al. 2008), OWLIM
SE (Bishop et al. 2011), and RDFox (Motik et al. 2014a).

One disadvantage of materialisation is that the prepro-
cessing step can be costly w.r.t. both the computation and the
storage of entailed triples. This problem is exacerbated when
materialisation requires equality reasoning—that is, when
the owl:sameAs property is used to state equalities between
resources. OWL 2 RL/RDF (Motik et al. 2012, Section 4.3)
axiomatises the semantics of owl:sameAs using rules such
as 〈s′, p, o〉 ← 〈s, p, o〉 ∧ 〈s, owl:sameAs, s′〉 that, for each
pair of equal resources r and r′, ‘copy’ all triples between
r and r′. It is well known that such ‘copying’ can severely
impact both the materialisation size and time (Kolovski, Wu,
and Eadon 2010); what is less obvious is that the increase in
computation time due to duplicate derivations may be even
more serious (see Section 3).

In order to address this problem, materialisation based
systems often use some form of rewriting—a well-known

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

technique for theorem proving with equality (Baader and
Nipkow 1998; Nieuwenhuis and Rubio 2001). In the OWL 2
RL setting, rewriting consists of choosing one representative
from each set of equal resources, and replacing all remain-
ing resources in the set with the representative. Variants of
this idea have been implemented in many of the above men-
tioned systems, and they have been shown to be very effec-
tive on practical data sets (Kolovski, Wu, and Eadon 2010).

Although the idea of rewriting is well known, ensuring
its correctness (i.e., ensuring that the answer to an arbitrary
SPARQL query is the same with and without rewriting) is
not straightforward. In this paper we identify two problems
that, we believe, have been commonly overlooked in exist-
ing implementations. First, whenever a resource r is rewrit-
ten in the data, r must also be rewritten in the rules; hence,
the rule set cannot be assumed to be fixed during the course
of materialisation, which is particularly problematic if com-
putation is parallelised. Second, it is a common assumption
that SPARQL queries can be efficiently evaluated over the
materialisation by rewriting them, evaluating them over the
rewritten triples, and then ‘expanding’ the answer set (i.e.,
substituting all representative resources with equal ones in
all possible ways). However, such an approach can be incor-
rect when SPARQL queries are evaluated under bag seman-
tics, or when they contain builtin functions.

We address both issues in this paper and make the fol-
lowing contributions. In Section 3 we discuss the problems
related to owl:sameAs in more detail and show how they can
lead to both increased computation costs and incorrect query
answers. In Section 4 we present an algorithm that gener-
alises OWL 2 RL materialisation, can also handle SWRL
rules (Horrocks et al. 2004), rewrites rules as well as data
triples, and is lock-free (Herlihy and Shavit 2008). The latter
means that at least one thread always makes progress, en-
suring that the system is less susceptible to adverse thread
scheduling decisions and thus scales better to many threads.
In Section 5 we show how to modify SPARQL query pro-
cessing so as to guarantee correctness. Finally, in Section 6
we present a preliminary evaluation of an implementation
of our algorithms in the open-source RDFox system. We
show that rewriting can reduce the number of materialised
triples by a factor of up to 7.8, and can reduce materialisa-
tion time by a factor of up to 31.1 on a single thread, with
the time saving being largely due to the elimination of dupli-

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

231



cate derivations. Our approach also parallelises computation
very well in practice,1 providing a speedup of up to 6.7 with
eight physical cores, and up to 9.6 with 16 virtual cores.2

Due to space constraints, in this paper we have only been
able to present a high level description of our algorithms, but
detailed formalisations and correctness proofs are provided
in a technical report (Motik et al. 2014b). The implemented
system and all test data sets are available online.3

2 Preliminaries
A term is a resource (i.e., a constant) or a variable. Un-
less otherwise stated, s, p, o, and t are terms, and x, y,
and z are variables. An atom is a triple of terms 〈s, p, o〉
called the subject, predicate, and object, respectively. A
fact (or triple) is a variable-free atom. A rule r is an im-
plication of the form (1), where h(r) ··= 〈s, p, o〉 is the
head, b(r) ··= 〈s1, p1, o1〉 ∧ . . . ∧ 〈sn, pn, on〉 is the body,
and each variable in h(r) also occurs in b(r).

〈s, p, o〉 ← 〈s1, p1, o1〉 ∧ . . . ∧ 〈sn, pn, on〉 (1)

A program P is a finite set of rules, and P∞(E) is the ma-
terialisation of P on a finite set of explicit (i.e., extensional
or EDB) facts E (Abiteboul, Hull, and Vianu 1995).

Two styles of OWL 2 RL reasoning are known, corre-
sponding to the RDF- and DL-style semantics of OWL. In
the RDF style, an ontology is represented using triples stored
with the data in a single RDF graph, and a fixed (i.e., inde-
pendent from the ontology) set of rules is used to axiomatise
the RDF-style semantics (Motik et al. 2012, Section 4.3).
While conceptually simple, this approach is inefficient be-
cause the fixed program contains complex joins. In the DL
style, the rules are derived from and depend on the ontology
(Grosof et al. 2003), but they are shorter and contain fewer
joins. This approach is complete only if the ontology and
the data satisfy conditions from Section 3 of (Motik, Patel-
Schneider, and Parsia 2012)—an assumption commonly met
in practice. Rewriting can be used with either style of rea-
soning, but we will use the DL style in our examples and
evaluation because the rules are more readable and their
evaluation tends to be more efficient.

3 Problems with owl:sameAs
In this section we discuss, by means of an example, the prob-
lems that the owl:sameAs property poses to materialisation-
based reasoners. The semantics of owl:sameAs can be cap-
tured explicitly using program P≈, consisting of rules (≈1)–
(≈5), which axiomatises owl:sameAs as a congruence rela-
tion (i.e., an equivalence relation satisfying the replacement
property). We call each set of resources all of which are
equal to each other an owl:sameAs-clique.

〈xi, owl:sameAs, xi〉 ← 〈x1, x2, x3〉, for 1 ≤ i ≤ 3 (≈1)

1Datalog reasoning is PTIME complete in the size of the data,
and it is thus believed that sequential computation will be required
in some cases.

2In hyperthreading, each virtual core has its own architectural
state, but several virtual cores share the execution resources of one
physical core.

3https://krr-nas.cs.ox.ac.uk/2015/AAAI/RDFox/Equality/

〈x′1, x2, x3〉 ← 〈x1, x2, x3〉 ∧ 〈x1, owl:sameAs, x′1〉 (≈2)

〈x1, x′2, x3〉 ← 〈x1, x2, x3〉 ∧ 〈x2, owl:sameAs, x′2〉 (≈3)

〈x1, x2, x′3〉 ← 〈x1, x2, x3〉 ∧ 〈x3, owl:sameAs, x′3〉 (≈4)
false← 〈x, owl:differentFrom, x〉 (≈5)

OWL 2 RL/RDF (Motik et al. 2012, Section 4.3) also makes
owl:sameAs symmetric and transitive, but those rules are re-
dundant as they are instances of (≈2) and (≈4).

Rules (≈1)–(≈5) can lead to the derivation of many equiv-
alent triples, as we demonstrate using an example program
Pex containing rules (R)–(F3); these correspond directly to
SWRL rules, but one could equally use slightly more com-
plex rules obtained from OWL 2 RL axioms.

〈x, owl:sameAs, :USA〉 ← 〈:Obama, :presidentOf, x〉 (R)
〈x, owl:sameAs, :Obama〉 ← 〈x, :presidentOf, :USA〉 (S)
〈:USPresident, :presidentOf, :US〉 (F1)
〈:Obama, :presidentOf, :America〉 (F2)
〈:Obama, :presidentOf, :US〉 (F3)

On Pex ∪ P≈, rule (R) derives that :USA is equal to :US and
:America, and rules (≈1)–(≈4) then derive an owl:sameAs
triple for each of the nine pairs involving :USA, :America,
and :US. The total number of derivations, however, is much
higher: we derive each triple once from rule (≈1), three
times from rule (≈2), once from rule (≈3),4 and three times
from rule (≈4); thus, we get 66 derivations in total for the
nine owl:sameAs triples. Analogously, rule (S) derives that
:Obama and :USPresident are equal, and rules (≈1)–(≈4)
derive the two owl:sameAs triples 22 times in total. These
owl:sameAs triples lead to further inferences; for example,
from (F1), rules (≈2) and (≈4) infer 2 × 3 triples with sub-
ject :Obama or :USPresident, and object :USA, :America,
or :US. Each of these six triples is inferred three times from
rule (≈2), once from rule (≈3), and three times from rule
(≈4), so we get 36 derivations in total.

Thus, for each owl:sameAs-clique of size n, rules (≈1)–
(≈4) derive n2 owl:sameAs triples via 2n3 + n2 + n
derivations. Moreover, each triple 〈s, p, o〉 with terms in
owl:sameAs-cliques of sizes ns, np, and no, respectively, is
‘expanded’ to ns×np×no triples, each of which is derived
ns + np + no times. This duplication of facts and deriva-
tions is a major source of inefficiency.

To reduce these numbers, we can choose a representa-
tive resource for each owl:sameAs-clique and then rewrite
all triples—that is, replace all resources with their repre-
sentatives (Stocker and Smith 2008; Urbani et al. 2012;
Kolovski, Wu, and Eadon 2010; Bishop et al. 2011). For ex-
ample, after applying rule (R), we can choose :USA as the
representative of :USA, :US and :America, and, after apply-
ing rule (S), we can choose :Obama as the representative
of :Obama and :USPresident. The materialisation of Pex
then contains only the triple 〈:Obama, :presidentOf, :US〉
and, as we show in Section 4, the number of derivations of
owl:sameAs triples drops from over 60 to just 6.

4Rule (≈1) derives 〈owl:sameAs, owl:sameAs, owl:sameAs〉,
so we can map variable x2 to owl:sameAs in rule (≈3).

232



Since owl:sameAs triples can be derived continuously
during materialisation, rewriting cannot be applied as pre-
processing; moreover, to ensure that rewriting does not af-
fect query answers, the resulting materialisation must be
equivalent, modulo rewriting, to [Pex ∪ P≈]∞(E). Thus,
we may need to continuously rewrite both triples and rules:
rewriting only triples can be insufficient. For example, if we
choose :US as the representative of :USA, :US and :America,
then rule (S) will not be applicable, and we will fail to de-
rive that :USPresident is equal to :Obama. To the best of
our knowledge, no existing system implements rule rewrit-
ing; certainly OWLIM SE and Oracle’s RDF store do not,5
and so rewriting in these systems is not guaranteed to pre-
serve query answers.

Note that the problem is less acute when using a fixed
rule set operating on (the triple encoding of) the ontology
and data, but it can still arise if owl:sameAs triples involve
rdf: or owl: resources (with a fixed rule set, these are the only
resources occurring in rule bodies).

4 Parallel Reasoning With Rewriting
The algorithm by Motik et al. (2014a) used in the RDFox
system implements a fact-at-a-time version of the seminaı̈ve
algorithm (Abiteboul, Hull, and Vianu 1995): it initialises
the set of facts T with the input data E, and then com-
putes P∞(E) by repeatedly applying rules from P to T
using N threads until no new facts are derived. The objec-
tive of our approach is to adapt the RDFox algorithm to
use rewriting and thus reduce both the size of T and the
time required to compute it, while ensuring that an arbitrary
SPARQL query can be answered over the resulting facts as
if the query were evaluated directly over [P ∪ P≈]∞(E).
To achieve this, we use a mapping ρ that maps resources
to their representatives. For α a fact, a rule, or a set thereof,
ρ(α) is obtained by replacing each resource r in αwith ρ(r);
moreover, T ρ ··= {〈s, p, o〉 | 〈ρ(s), ρ(p), ρ(o)〉 ∈ T} is the
expansion of T with ρ. To promote concurrency, we update ρ
in a lock-free way, using compare-and-set primitives to pre-
vent thread interference. Moreover, we do not lock ρ when
computing ρ(α); instead, we only require ρ(α) to be at least
as current as α just before the computation. For example, if
ρ is the identity as we start computing ρ(〈a, b, a〉), and an-
other thread makes a′ the representative of a, then 〈a, b, a〉,
〈a′, b, a〉, 〈a, b, a′〉, and 〈a′, b, a′〉 are all valid results.

We also maintain queues R and C of rewritten rules and
resources, respectively, for which also use lock-free imple-
mentations as described by Herlihy and Shavit (2008).

To extend the original RDFox algorithm with rewriting,
we allow each thread to perform three different actions.
First, a thread can extract a rule r from the queueR of rewrit-
ten rules and apply r to the set of all facts T , thus ensuring
that changes to resources in rules are taken into account.

Second, a thread can rewrite outdated facts—that is, facts
containing a resource that is not a representative of itself.
To avoid iteration over all facts in T , the thread extracts a
resource c from the queue C of unprocessed outdated re-
sources, and uses indexes by Motik et al. (2014a) to identify

5Personal communication.

each fact F ∈ T containing c. The thread then removes each
such F from T , and it adds ρ(F ) to T .

Third, a thread can extract and process an unprocessed
fact F in T . The thread first checks whether F is outdated
(i.e., whether F 6= ρ(F )); if so, the thread removes F from
T and adds ρ(F ) to T . If F is not outdated but is of the form
〈a, owl:sameAs, b〉 with a 6= b, the thread chooses a repre-
sentative of the two resources, updates ρ, and adds the other
resource to queue C. The thread derives a contradiction if
F is of the form 〈a, owl:differentFrom, a〉. Otherwise, the
thread processes F by partially instantiating the rules in P
containing a body atom that matches F , and applying such
rules to T as described by Motik et al. (2014a).

Rewriting rules is nontrivial: RDFox uses an index to ef-
ficiently identify rules matching a fact, and the index may
need updating when ρ changes. Updating the index in paral-
lel would be very complex, so we perform this operation
serially: when all threads are waiting (i.e., when all facts
have been processed), a single thread updates P to ρ(P ),
reindexes it, and inserts the updated rules (if any) into the
queue R of rules for reevaluation. This is obviously a par-
allelisation bottleneck, but our experiments have shown that
the time used for this process is not significant when pro-
grams are of moderate size.

Parallel modification of T can also be problematic, as the
following example demonstrates: (1) thread A extracts a cur-
rent fact F ; (2) thread B updates ρ and deletes an outdated
fact F ′; and (3) thread A derives F ′ from F and writes
F ′ into T , thus undoing the work of thread B. This could
be solved via locking, but at the expense of parallelisation.
Thus, instead of physically removing facts from T , we just
mark them as outdated; then, when matching the body atoms
of partially instantiated rules, we simply skip all marked
facts. All this can be done lock-free, and we can remove all
marked facts in a postprocessing step.

Our rewriting algorithm is presented in full in the accom-
panying technical report (Motik et al. 2014b). Theorem 1
states several important properties of our algorithm that,
taken together, ensure the algorithm’s correctness; a detailed
formalisation of the algorithm and a proof of the theorem are
provided in the technical report.
Theorem 1. The algorithm terminates for each finite set of
facts E and program P . Let ρ be the final mapping and let
T be the final set of unmarked facts.

1. 〈a, owl:sameAs, b〉 ∈ T implies a = b—that is, ρ captures
all equalities.

2. F ∈ T implies ρ(F ) = F—that is, T is minimal.
3. T ρ = [P ∪ P≈]∞(E)—that is, T and ρ together repre-

sent [P ∪ P≈]∞(E).

Example
Table 1 shows six steps of an application of our algorithm
to the example program Pex from Section 3 on one thread.
Some resource names have been abbreviated for conve-
nience, and ≈ abbreviates owl:sameAs. The . symbol iden-
tifies the last fact extracted from T . Facts are numbered for
easier referencing, and their (re)derivation is indicated on the

233



right: R(n) or S(n) means that the fact was obtained from
fact n and rule R or S; moreover, we rewrite facts immedi-
ately after merging resources, soW (n) identifies a rewritten
version of fact n, and M(n) means that a fact was marked
outdated because fact n caused ρ to change.

We start by extracting facts from T and, in steps 1 and 2,
we apply rule R to facts 2 and 3 to derive facts 4 and 5, re-
spectively. In step 3, we extract fact 4, merge :America into
:USA, mark facts 2 and 4 as outdated, and add their rewrit-
ing, facts 6 and 7, to T . In step 4 we merge :USA into :US,
after which there are no further facts to process. Mapping ρ,
however, has changed, so we update P to contain rules (R′)
and (S′), and add them to the queue R.

〈x, owl:sameAs, :US〉 ← 〈:Obama, :presidentOf, x〉 (R′)
〈x, owl:sameAs, :Obama〉 ← 〈x, :presidentOf, :US〉 (S′)

In step 5 we evaluate the rules in queue R, which introduces
facts 9 and 10. Finally, in step 6, we rewrite :USPresident
into :Obama and mark facts 1 and 9 as outdated. At this
point the algorithm terminates, making only six deriva-
tions in total, instead of more than 60 derivations when
owl:sameAs is axiomatised explicitly (see Section 3).

5 Rewriting and SPARQL Query Answering
Given a set of unmarked facts T and mapping ρ, we can an-
swer a SPARQL query Q correctly by evaluating Q in the
expansion T ρ, but that is inefficient because it ‘duplicates’
join evaluation for equal triples. An attempt at an improve-
ment would be to evaluate ρ(Q) in T and expand the result—
that is, for each answer µ obtained by evaluating ρ(Q) in T ,
output each answer ν such that ρ(ν(x)) = µ(x) for each
variable x in the domain of µ. However, using the example
program Pex from Section 3, we show that such an approach
is not complete. Note that, after we finish the materialisation
of Pex, we have ρ(x) = :US for each x ∈ {:USA, :AM, :US}
and ρ(x) = :Obama for each x ∈ {:USPresident, :Obama}.

The first problem is due to the bag semantics of SPARQL,
where repeated answers matter. Let Q1 be as follows:

SELECT ?x WHERE { ?x :presidentOf ?y }

On T ρ, query Q1 produces answers µ1 = {?x 7→ :Obama}
and µ2 = {?x 7→ :USPresident}, each of which is repeated
three times—once for each match of ?y to :USA, :US, or
:America. In contrast, on T , query ρ(Q1) yields only one oc-
currence of µ1, and its expansion produces one occurrence
of µ2; we thus obtain all answers, but not with the correct
cardinalities. This problem arises because variable ?y is pro-
jected out, so the final expansion step does not take into ac-
count the number of times each binding of ?y contributes to
the result. To solve this problem, we must modify the pro-
jection operator to output each projected answer as many
times as there are resources in the projected owl:sameAs-
clique(s). Thus, we can answer Q1 as follows: we match the
triple pattern of ρ(Q1) to T as usual, obtaining one answer
ν1 = {?x 7→ :Obama, ?y 7→ :US}; then, we project ?y from
ν1 to obtain three occurrences of µ1 since the owl:sameAs-
clique of :US is of size three; finally, we expand each occur-
rence of µ1 to µ2 to obtain all six results.

The second problem is due to SPARQL builtin functions.
For example, let Q2 be as follows:

SELECT ?y WHERE {
?x :presidentOf :US .
BIND(STR(?x) AS ?y)

}

On T ρ, queryQ2 produces answers τ1 = {?y 7→ “Obama”}
and τ2 = {?y 7→ “USPresident”}; in contrast, on T , query
ρ(Q2) yields only τ1, which does not expand into τ2 be-
cause strings “Obama” and “USPresident” are not equal. To
solve this problem, we must expand answers before eval-
uating builtin functions. Thus, we can answer Q2 as fol-
lows: we match the triple pattern of ρ(Q2) to T as usual,
obtaining κ1 = {?x 7→ :Obama}; then, we expand κ1 to
κ2 = {?x 7→ :USPresident}; next, we evaluate the BIND
expression and extend κ1 and κ2 with the respective val-
ues for ?y; finally, we project ?x to obtain τ1 and τ2. Since
we have already expanded ?x, we should not repeat the pro-
jected answers as many times as there are elements in the
owl:sameAs-clique for ?x; instead, we output each projected
answer only once to obtain the correct answer cardinalities.

6 Evaluation
We have implemented our approach in RDFox, allowing the
system to handle owl:sameAs via rewriting (REW) or the
axiomatisation (AX) from Section 3. We then compared the
performance of materialisation using these two approaches.
In particular, we investigated the scalability of each ap-
proach with the number of threads, and we measured the
effect that rewriting has on the number of derivations and
materialised triples.

Test Data Sets. We used five test data sets, each con-
sisting of an OWL 2 DL ontology and a set of facts. The
data sets were chosen because they contain axioms with the
owl:sameAs property leading to interesting inferences. Four
data sets were derived from real-world applications.

• Claros has been developed in an international collabora-
tion between IT experts and archaeology and classical art
research institutions with the aim of integrating disparate
cultural heritage databases.6

• DBpedia is a crowd-sourced community effort to extract
structured information from Wikipedia and make this in-
formation available on the Web.7

• OpenCyc is an extensive ontology about general human
knowledge. It contains hundreds of thousands of terms or-
ganised in a carefully designed ontology and can be used
as the basis of a wide variety of intelligent applications.8

• UniProt is a subset of an extensive knowledge base about
protein sequences and functional information.9

6http://www.clarosnet.org/XDB/ASP/clarosHome/
7http://www.dbpedia.org/
8http://www.cyc.com/platform/opencyc/
9http://www.uniprot.org/

234



Table 1: An Example Run of Materialisation on Pex and One Thread
Step 1 Step 2 Step 3

1 〈:USPres, :presOf, :US〉 1 〈:USPres, :presOf, :US〉 1 〈:USPres, :presOf, :US〉
.2 〈:Obama, :presOf, :Am〉 2 〈:Obama, :presOf, :Am〉 2 〈:Obama, :presOf, :Am〉 M(4)

3 〈:Obama, :presOf, :US〉 .3 〈:Obama, :presOf, :US〉 3 〈:Obama, :presOf, :US〉
4 〈:Am,≈, :USA〉 R(2) 4 〈:Am,≈, :USA〉 .4 〈:Am,≈, :USA〉 M(4)

5 〈:US,≈, :USA〉 R(3) 5 〈:US,≈, :USA〉
6 〈:Obama, :presOf, :USA〉 W (2)
7 〈:USA,≈, :USA〉 W (4)

Step 4 Step 5 Step 6
1 〈:USPres, :presOf, :US〉 1 〈:USPres, :presOf, :US〉 1 〈:USPres, :presOf, :US〉 M(9)
3 〈:Obama, :presOf, :US〉 W (6) 3 〈:Obama, :presOf, :US〉 3 〈:Obama, :presOf, :US〉

.5 〈:US,≈, :USA〉 M(5) 8 〈:US,≈, :US〉 R′(3) 8 〈:US,≈, :US〉
6 〈:Obama, :presOf, :USA〉 M(5) 9 〈:USPres,≈, :Obama〉 S′(1) .9 〈:USPres,≈, :Obama〉 M(9)
7 〈:USA,≈, :USA〉 M(5) 10 〈:Obama,≈, :Obama〉 S′(3) 10 〈:Obama,≈, :Obama〉 W (9)
8 〈:US,≈, :US〉 W (5, 7)

The ontologies of all data sets other than DBpedia are not
in the OWL 2 RL profile, so we first discarded all axioms
outside OWL 2 RL, and then we translated the remaining
axioms into rules as described in (Grosof et al. 2003).

Our fifth data set was UOBM (Ma et al. 2006)—a syn-
thetic data set that extends the well-known LUBM (Guo,
Pan, and Heflin 2005) benchmark. We did not use LUBM
because neither its ontology nor its data uses the owl:sameAs
property. The UOBM ontology is also outside OWL 2 RL;
however, instead of using its OWL 2 RL subset, we used
its upper bound (Zhou et al. 2013)—an unsound but com-
plete OWL 2 RL approximation of the original ontology;
thus, all answers that can be obtained from the original on-
tology can also be obtained from the upper bound, but not
the other way around. Efficient materialisation of the upper
bound was critical for the work by Zhou et al. (2013), and it
has proved to be challenging due to equality reasoning.

The left-hand part of Table 2 summarises our test data
sets: column ‘Rules’ shows the total number of rules, col-
umn ‘sA-rules’ shows the number of rules containing the
owl:sameAs property in the head, and column ‘Triples be-
fore’ shows the number of triples before materialisation.

Test Setting. We conducted our tests on a Dell computer
with 128 GB of RAM and two Xeon E5-2643 processors
with a total of 8 physical and 16 virtual cores, running 64-
bit Fedora release 20, kernel version 3.13.3-201. We have
not conducted warm and cold start tests separately since, as
a main-memory system, the performance of RDFox should
not be affected by the state of the operating system’s buffers.
For the AX tests, we extended the relevant program with the
seven rules from Section 3. In all cases we verified that the
expansion of the rewritten triples is identical to the triples
derived using the axiomatisation.

Effect of Rewriting on Total Work. In order to see how
rewriting affects the total amount of work, we materialised
each test data set in both AX and REW modes while col-
lecting statistics about the inference process; the results are
shown in the right-hand part of Table 2. Column ‘Triples af-
ter’ shows the number of triples after materialisation; in the

case of REW tests, we additionally show the number of un-
marked triples (i.e., of triples relevant to query answering).
Column ‘Memory’ shows the total memory use as measured
by RDFox’s internal counters. Column ‘Rule appl.’ shows
the total number of times a rule has been applied to a triple,
and column ‘Derivations’ shows the total number of deriva-
tions. Column ‘Merged resources’ shows the number of re-
sources that were replaced with representatives in the course
of materialisation. Finally, row ‘factor’ shows the ratio be-
tween the respective values in the AX and the REW tests.

As one can see, the reduction in the number of the de-
rived triples is correlated with the number of rewritten con-
stants: on UniProt there is no observable reduction since
only five resources are merged; however, equalities prolifer-
ate on OpenCyc and so rewriting is particularly effective. In
all cases the numbers of marked triples are negligible, sug-
gesting that our decision to mark, rather than delete triples
does not have unexpected drawbacks. In contrast, the reduc-
tion in the number of rule applications and, in particular, of
derivations is much more pronounced than the reduction in
the number of derived triples.

Effect of Rewriting on Materialisation Times. In order
to see how rewriting affects materialisation times, we mea-
sured the wall-clock times needed to materialise our test data
sets in AX and REW modes on 1, 2, 4, 8, 12, and 16 threads.
For each test, we report average wall-clock time over three
runs. Table 3 shows our test results; column ‘sec’ shows
the materialisation time in seconds, column ‘spd’ shows the
speedup over the single-threaded version, and column ‘ AX

REW ’
shows the speedup of REW over AX.

As one can see from the table, RDFox parallelises com-
putation exceptionally well in both AX and REW modes.
When using the eight physical cores of our test server, the
speedup is consistently between six and seven, which sug-
gests that the lock-free algorithms and data structures of
RDFox are very effective. We believe that the more-than-
linear speedup on Claros is due to improved memory locality
resulting in fewer CPU cache misses. The speedup contin-
ues to increase with hyperthreading, but is less pronounced:

235



Table 2: Test Data Sets Before and After Materialisation
Rules sA- Triples Mode Triples after Memory Rule Derivations Merged

rules before unmarked total (GB) appl. resources

Claros 1312 42 19M
AX 102M 4.5 867M 11,009M

REW 79.5M 79.7M 3.6 149M 128M 12,890
factor 1.28x 1.28x 5.8x 85.5x

DBPedia 3384 23 113M
AX 139M 6.9 934M 895M

REW 136M 136M 7.0 44.5M 37M 7,430
factor 1.2x 0.99x 21.0x 24.4x

OpenCyc 261,067 3,781 2.4M
AX 1,176M 35.9 7,832M 12,890M

REW 141M 142M 4.6 309M 281M 361,386
factor 7.8x 7.8x 25.3x 45.9x

UniProt 451 60 123M
AX 228M 15.1 1,801M 1,555M

REW 228M 228M 15.1 262M 183M 5
factor 1.0x 1.0x 6.9x 8.5x

UOBM 279 4 2.2M
AX 36M 1.2 332M 16,152M

REW 9.4M 9.7M 0.4 33.8M 4,256M 686
factor 3.2x 3.2x 9.9x 3.8x

Table 3: Materialisation Times with Axiomatisation and Rewriting
Test Claros DBpedia OpenCyc

Threads AX REW AX
REW

AX REW AX
REW

AX REW AX
REWsec spd sec spd sec spd sec spd sec spd sec spd

1 2042.9 1.0 65.8 1.0 31.1 219.8 1.0 31.7 1.0 6.9 2093.7 1.0 119.9 1.0 17.5
2 969.7 2.1 35.2 1.9 27.6 114.6 1.9 17.6 1.8 6.5 1326.5 1.6 78.3 1.5 16.9
4 462.0 4.4 18.1 3.6 25.5 66.3 3.3 10.7 3.0 6.2 692.6 3.0 40.5 3.0 17.1
8 237.2 8.6 9.9 6.7 24.1 36.1 6.1 5.2 6.0 6.9 351.3 6.0 23.0 5.2 15.2
12 184.9 11.1 7.9 8.3 23.3 31.9 6.9 4.1 7.7 7.7 291.8 7.2 56.2 2.1 5.5
16 153.4 13.3 6.9 9.6 22.3 27.5 8.0 3.6 8.8 7.7 254.0 8.2 52.3 2.3 4.9

Test UniProt UOBM
Threads AX REW AX

REW
AX REW AX

REWsec spd sec spd sec spd sec spd
1 370.6 1.0 143.4 1.0 2.6 2696.7 1.0 1152.7 1.0 2.3
2 232.3 1.6 86.7 1.7 2.7 1524.6 1.8 599.6 1.9 2.5
4 129.2 2.9 46.5 3.1 2.8 813.3 3.3 318.3 3.6 2.6
8 74.7 5.0 25.1 5.7 3.0 439.9 6.1 177.7 6.5 2.5
12 61.0 6.1 19.9 7.2 3.1 348.9 7.7 152.7 7.6 2.3
16 61.9 6.0 17.1 8.4 3.6 314.4 8.6 137.9 8.4 2.3

virtual cores do not provide additional execution resources,
and so they mainly compensate for CPU stalls due to cache
misses. The AX mode seems to scale better with the number
of threads than the REW mode, and we believe this to be
due to contention between threads while accessing the map
ρ. Only OpenCyc in REW mode did not scale particularly
well: OpenCyc contains many rules, so sequentially updat-
ing P and the associated rule index when ρ changes becomes
a significant parallelisation bottleneck. Finally, since the ma-
terialisation of Claros with more than eight threads in REW
mode takes less than ten seconds, these results are difficult
to measure and are susceptible to skew.

Our results confirm that rewriting can significantly reduce
materialisation times. RDFox was consistently faster in the
REW mode than in the AX mode even on UniProt, where the
reduction in the number of triples is negligible. This is due to
the reduction in the number of derivations, mainly involving
rules (≈1)–(≈5), which is still significant on UniProt. In all
cases, the speedup of rewriting is typically much larger than

the reduction in the number of derived triples (cf. Table 2),
suggesting that the primary benefit of rewriting lies in less
work needed to match the rules, rather than, as commonly
thought thus far, in reducing the number of derived triples.
This is consistent with the fact that the speedup of rewriting
was not so pronounced on UniProt and UOBM, where the
reduction in the number of derivations was less significant.

Our analysis of the derivations that RDFox makes on
UOBM revealed that, due to the derived owl:sameAs triples,
the materialisation contains large numbers of resources
connected by the :hasSameHomeTownWith property. This
property is also symmetric and transitive so, for each pair
of connected resources, the number of times each triple is
derived by the transitivity rule is quadratic in the number of
connected resources. This leads to a large number of dupli-
cate derivations that do not involve equality. Thus, although
it is helpful, rewriting does not reduce the number of deriva-
tion in the same way as, for example, on Claros, which ex-
plains the relatively modest speedup of REW over AX.

236



7 Conclusion
In this paper we have investigated issues related to the use
of rewriting in materialisation based OWL 2 RL systems,
and have shown how these issues can lead to both increased
computation costs and incorrect query answers. We have ad-
dressed these issues by presenting algorithms that guarantee
the correctness of query answers for any input ontology and
data set. Moreover, we have implemented our algorithms in
the RDFox system, a preliminary evaluation of which has
shown that our approach parallelises computation very well
in practice and can reduce materialisation times on practical
data sets by orders of magnitude.

Acknowledgements
This work was supported by the EPSRC projects MaSI3,
Score! and DBOnto, and by the EU FP7 project Optique.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison Wesley.
Baader, F., and Nipkow, T. 1998. Term Rewriting and All
That. Cambridge University Press.
Bishop, B.; Kiryakov, A.; Ognyanoff, D.; Peikov, I.; Tashev,
Z.; and Velkov, R. 2011. Owlim: A family of scalable se-
mantic repositories. Semantic Web 2(1):33–42.
Grosof, B. N.; Horrocks, I.; Volz, R.; and Decker, S. 2003.
Description Logic Programs: Combining Logic Programs
with Description Logic. In Proc. WWW, 48–57.
Guo, Y.; Pan, Z.; and Heflin, J. 2005. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web Seman-
tics 3(2–3):158–182.
Harris, S., and Seaborne, A. 2013. SPARQL 1.1 Overview.
W3C Recommendation. http://www.w3.org/TR/sparql11-
overview/.
Herlihy, M., and Shavit, N. 2008. The Art of Multiprocessor
Programming. Morgan Kaufmann.
Horrocks, I.; Patel-Schneider, P. F.; Boley, H.; Tabet, S.;
Grosof, B.; and Dean, M. 2004. SWRL: A semantic web
rule language combining OWL and RuleML. W3C Member
Submission. http://www.w3.org/Submission/SWRL/.
Kolovski, V.; Wu, Z.; and Eadon, G. 2010. Optimiz-
ing Enterprise-Scale OWL 2 RL Reasoning in a Relational
Database System. In Proc. ISWC, 436–452.
Ma, L.; Yang, Y.; Qiu, Z.; Xie, G. T.; Pan, Y.; and Liu, S.
2006. Towards a Complete OWL Ontology Benchmark. In
Proc. ESWC, 125–139.
Manola, F., and Miller, E. 2004. RDF primer. W3C Recom-
mendation. http://www.w3.org/TR/rdf-primer/.
Motik, B.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; Fokoue,
A.; and Lutz, C. 2012. OWL 2 Web Ontology Language
Profiles (Second Edition). W3C Recommendation. http:
//www.w3.org/TR/owl2-profiles/.
Motik, B.; Nenov, Y.; Piro, R.; Horrocks, I.; and Olteanu, D.
2014a. Parallel materialisation of Datalog programs in cen-
tralised, main-memory RDF systems. In Proc. of the 28th

Nat. Conf. on Artificial Intelligence (AAAI 14), 129–137.
AAAI Press.
Motik, B.; Nenov, Y.; Piro, R.; and Horrocks, I. 2014b. Han-
dling owl:sameAs via Rewriting. arXiv:cs/1411.3622.
Motik, B.; Patel-Schneider, P. F.; and Parsia, B. 2012.
OWL 2 Web Ontology Language Structural Specification
and Functional-style Syntax (Second Edition). W3C Rec-
ommendation. http://www.w3.org/TR/owl2-syntax/.
Nieuwenhuis, R., and Rubio, A. 2001. Paramodulation-
Based Theorem Proving. In Robinson, A., and Voronkov, A.,
eds., Handbook of Automated Reasoning, volume I. Elsevier
Science. chapter 7, 371–443.
Stocker, M., and Smith, M. 2008. Owlgres: A Scalable OWL
Reasoner. In Proc. OWLED: Experiences and Directions
Workshop, 26–27.
Urbani, J.; Kotoulas, S.; Maassen, J.; van Harmelen, F.; and
Bal, H. E. 2012. WebPIE: A Web-scale Parallel Inference
Engine using MapReduce. Journal of Web Semantics 10:59–
75.
Wu, Z.; Eadon, G.; Das, S.; Chong, E. I.; Kolovski, V.;
Annamalai, M.; and Srinivasan, J. 2008. Implementing
an Inference Engine for RDFS/OWL Constructs and User-
Defined Rules in Oracle. In Proc. ICDE, 1239–1248.
Zhou, Y.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; and Baner-
jee, J. 2013. Making the most of your triple store: query
answering in OWL 2 using an RL reasoner. In Proc. WWW,
1569–1580.

237




